第一篇:HFSS学习小结1 1、 对称的使用 对于一个具体的高频电磁场仿真问题 ...
学习小结1
1、对称的使用
对于一个具体的高频电磁场仿真问题,首先应该看看它是否可以采用对称面。这里面的约束主要在几何对称和激励对称要求。如果一个问题的激励并不要求是可改变的,比如全部同相馈电的阵列,此时最好采用对称,甚至可以采用2个对称(E 和H 对称),将可以大大节约时间和设备资源。
2、面的使用
在实际问题中,有很多结构是可以使用 2 维面来代替的,使用2 维面的好处是可以极大的减少计算量并且结果与使用3 维实体相差无几。例如计算一个微带的分支线耦合器,印制板的微带以及地都可以指定某些面为理想电面代替,这样可以很快的获得所需要的物理尺寸及其性能。再以计算偶极子为例,如果偶极子是以理想导体为材质的圆柱,那么相同的其他条件下其计算时间大约是采用等效面为偶极子的4~5 倍,由此可见一般。
3、Lump Port(集中端口)的使用
在 HFSS8 里提供了一种新的激励:Lump Port,这种激励避免了建立一个同轴或者波导激励,从而在一定程度上减轻了模型量,也减少了计算时间。LumpPort 也可以使用一个面来代表,要注意的是对该Port 的校准线和阻抗线的设置一定要准确,端口在空间上一定要与其他金属(或电面)相接,否则结果极易出错。
4、关于辐射边界的问题
波器等密闭问题,无需设置辐射边界。在需要求解场分布或者方向图时,必须设置辐射边界。这里有些需要注意的问题:在计算大带宽周期性结构时,比如3 个倍频程,最好分段计算,例如以一个倍频程为一段,也就是说在不同的频段计算时设置不同大小的辐射边界,否则在计算的频率边缘难以保证计算精度;其次,辐射边界的大小和问题的具体形状密切相关,如果物体的外部轮廓可以装在一个球或并不过分的椭球中时,宜采用立方体边界——简单有效,如果问题的外部轮廓较为复杂或者椭球2 轴差距太大,以采用相似形边界或圆柱边界,对于辐射问题,如果估计问题的增益较低(比如2dB),那么边界宜采用球形,此时为了得到结果准确也只好牺牲时间了;另在 HFSS 8 中提供了一种新的吸收边界——PML 边界条件,对于这种边界,笔者并不是很满意,尽管其有效距离为八分之一个中心波长——是老边界的一半,可以减少计算量,然而这种边界由程序自己生成,为一个立方体的复杂结构,对于一些特殊的复杂问题,这种边界内部有很多的空间是无用的,此时还不如使用老边界灵活。
5、关于开孔
有些问题需要在壁上开孔,此时可以采用2 种办法,其一是老老实实的在模型上挖空;其二是采用H/Natrue 边界条件,通常,如果是在面上开孔,将会采用后者,简单,便于修改。
6、关于网格划分
对于一般问题,让软件自动划分比较省心,但对大型问题和复杂问题,让软件自己划分可能需要很好的耐性来等待。根据实际经验,在大型模型的结构密集区域或场敏感区域使用人工划分可以得到很好的效果,有些问题的计算结果开始表现为收敛,但进一步提高精度,却又反弹,问题就在于开始时场敏感区域的网格划分不够仔细,导致计算结果的偏差。
7、关于所需要的精度
计算问题时,一般需要给定一个收敛精度和计算次数以避免程序“陷入计算而无法自拔”,当对模型熟悉后,可以单单靠给定次数。在问题之初,建议的计算精度不要太高,实际中曾见到有操作者将问题的S 参数精度设定为0.00001,其实这是完全没有必要的,一般S 参数的精度设定为0.02 左右就已经可以满足绝大部分问题的需要(此时应该注意有无收敛反弹的情况)。如果是计算次数,对于密闭问题,建议是设定为8~12 次,对于辐射问题,一般计算6~8 次左右即可观察结果,如果不够再决定是否继续计算。
8、关于扫描
HFSS 提供一个扫描功能,分3 种方式:快速、离散和插值。其中离散扫描只保留最后一个频点的场结果,其计算时间是单个频点计算时间之和;对快速扫描,将可以得到所计算的频率范围内的所有频率场结果,但是其计算速度和频点多少关系不大,基本
别需要关心所有的场情况,建议选用离散扫描,对于特别巨大的问题,则是以快速扫描为宜。而插值方式比较少用。
9、关于问题的规模
HFSS 所能计算的问题规模与计算机硬件关系很大,其次是所使用的操作系统。在 HFSS8 里,问题描述矩阵的阶基本和网格数正比,对于四面体上10 万的问题也能游刃有余(只要机器够好),然而这并非是指实际问题的电尺寸,实际上,要精确计算一个计算机网络电缆接头(RJ45)所需要的时间和资源并不比计算一个有一个波长电尺寸的一般辐射问题少多少,所以实际上其计算规模的主要约束是问题的复杂程度,而复杂程度里面包含了电尺寸、结构复杂度等要素。由此提醒我们建模时应该尽量简化模型。一般来说,除了在激励区,当结构电尺寸比二十分之一波长还小时,可以忽略它的存在而不会引入明显的误差,这一点在解决问题之初很有效,可以迅速发现问题的关键;当问题的主要要求满足 后,再将模型细化以获得更加精确的结果。
HFSS学习小结2
HFSS近两个月了,想用于材料电磁场屏蔽的设计和计算,不知是否可行,now have followed the example _heat sink in the chapter 9.0 _ EMC/EMI in full book 10.0 成功的做出了个结果,现在把看到别人的、自己知道的做一下总结:The main process : building 3D solid modeling;set boundaries and excitations;analyze the result Before we build the modeling, we should think about what kind of method we use, there are three kinds of solution type: driven model;driven terminal;eigenmode 模式驱动(Driven)------计算以模式为基础的S参数.根据波导模式的入射和反射功率表示S参数矩阵的解,波导,天线等用这个模式多终端驱动(Driven Terminal)------计算以终端为基础的多导体传输线端口的S参数。此时,根据传输线终端的电压和电流表示S参数矩阵的解----微带类用这个比较多!本征模(Eignemode)-----计算某一结构的本征模式或谐振.本征模解算器可以求出该结构的谐振频率以及这些谐振频率下的场模式!Eignemode solver does not use ports and don’t support radiation boundaries.After launching the software, we should set tool options, included HFSS option and 3D modeler option Select the menu item tool >option we can see those options Software will open a project by default First step is select solution type HFSS>solution type Set the units 3D modeler>units 单位可以在其它状态下改变3D modeler 包括了与模型有关的操作和设置Set default material 在set 一次
modeler 都是在此material 下的 在default 的情况下 history 的列表中按材料的种类进行分类建立模型过程中使用相对坐标会很方便,3D modeler>coordinate system > create> relative CS >Offset , 在建模过程中可能要使用很多相对坐标,在set相对坐标的时候,offset是相对于当前CS的位移,在3D Modeler>coordinate system>set working CS 可以选择使某个坐标为当前工作坐标,在history 的coordinate system 的列表中显示所有的坐标系,当前工作坐标将有个W的标记。在模型复杂的时候需要用适当的方式进行选择某些面、体进行编辑,在edit 里提供了多种方式,常用 edit>select>by name 在选择后可以set boundary 等一些操作同样可以在history里双击某项名字从而edit property,设置好boundary和excitation 就可以进行analysis setup HFSS>analysis setup>add solution setup 其中包括最大迭代次数maximum number of pass 每两步迭代之间的误差,看来上的数值分析还是有用的在analyze 之前运行一下model validation select the menu item HFSS>validation check 运行check 以后虽然没出现问题,也不能说明,模型正确,一定能计算出结果,只是说明完成了建模过程中的每个步骤,由message 窗口,得到信息,以便修改Analyze HFSS>analyze all 在message 窗口中可以知道analyze 的完成情况;从solution data 中有三个标签,其中主要可以从convergence中看出迭代计算的收敛情况;同样可以看到场的分布状况 首先选择model 某个
部位,HFSS>fields>fields从这个菜单中可以选择要显示电场或者磁场例子中选择的是地平面 edit>select>by name>ground 显示某个部位的场分布HFSS>fields>fields> 可以看到关于显示电场 磁场的选择下图是heat sink 的 ground configuration 的ground 的电场分布
HFSS学习小结3 Ansoft HFSS 边界条件 讲解
这一章主要介绍使用边界条件的基本知识。边界条件能够使你能够控制物体之间平面、表面或交界面处的特性。边界条件对理解麦克斯韦方程是非常重要的同时也是求解麦克斯韦方程的基础。§2.1 为什么边界条件很重要
用Ansoft HFSS求解的波动方程是由微分形式的麦克斯韦方程推导出来的。在这些场矢量和它们的导数是都单值、有界而且沿空间连续分布的假设下,这些表达式才可以使用。在边界和场源处,场是不连续的,场的导数变得没有意义。因此,边界条件确定了跨越不连续边界处场的性质。
作为一个 Ansoft HSS 用户你必须时刻都意识到由边界条件确定场的假设。由于边界条件对场有制约作用的假设,我们可以确定对仿真
果。
当边界条件被正确使用时,边界条件能够成功地用于简化模型的复杂性。事实上,Ansoft HSS 能够自动地使用边界条件来简化模型的复杂性。对于无源RF 器件来说,Ansoft HSS 可以被认为是一个虚拟的原型世界。与边界为无限空间的真实世界不同,虚拟原型世界被做成有限的。为了获得这个有限空间,Ansoft HSS使用了背景或包围几何模型的外部边界条件。
模型的复杂性通常直接与求解问题所需的时间和计算机硬件资源直接联系。在任何可以提高计算机的硬件资源性能的时候,提高计算机资源的性能对计算都是有利的。
§2.2 一般边界条件
有三种类型的边界条件。第一种边界条件的头两个是多数使用者有责任确定的边界或确保它们被正确的定义。材料边界条件对用户是非常明确的。
1、激励源 波端口(外部)集中端口(内部)
2、表面近似 对称面
辐射表面 背景或外部表面
3、材料特性 两种介质之间的边界 具有有限电导的导体 §2.3 背景如何影响结构
所谓背景是指几何模型周围没有被任何物体占据的空间。任何和背景有关联的物体表面将被自动地定义为理想的电边界(Perfect E)并且命名为外部(outer)边界条件。你可以把你的几何结构想象为外面有一层很薄而且是理想导体的材料。
如果有必要,你可以改变暴露于背景材料的表面性质,使其性质与理想的电边界不同。为了模拟有耗表面,你可以重新定义这个边界为有限电导(Finite Conductivity)或阻抗边界(Impedance boundary)。有限电导边界可以是一种电导率和导磁率均为频率函数的有耗材料。阻抗边界默认在所有频率都具有相同的实数或复数值。为了模拟一个允许波进入空间辐射无限远的表面,重新定义暴露于背景材料的表面为辐射边界(Radiation Boundary)。
背景能够影响你怎样给材料赋值。例如,你要仿真一个充满空气的矩形波导,你可以创建一个具有波导形状特性为空气的简单物
波导表面自动被假定为良导体而且给出外部(outer)边界条件,或者你也可以把它变成有损导体。
§2.4 边界条件的技术定义
激励(Excitation)——激励端口是一种允许能量进入或导出几何结构的边界条件。
理想电边界(Perfect E)——Perfect E是一种理想电导体或简称为理想导体。这种边界条件的电场(E-Field)垂直于表面。有两种边界被自动地赋值为理想电边界。
1、任何与背景相关联的物体表面将被自动地定义为理想电边界并且命名为outer的外部边界条件。
2、任何材料被赋值为PEC(理想电导体)的物体的表面被自动的赋值为理想电边界并命为smetal边界。
理想磁边界(Perfect H)——Perfect H是一种理想的磁边界。边界面上的电场方向与表面相切。
自然边界(Natural)——当理想电边界与理想磁边界出现交叠时,理想磁边界也被称为Natural边界。理想磁边界与理想电边界交叠的部分将去掉理想电边界特性,恢复所选择区域为它以前的原始材料特性。它不会影响任何材料的赋值。例如,可以用它来模拟地平面上的同轴线馈源图案。
有限电导率(Finite Conductivity)边界——有限电导率边界将使你把物体表面定义有耗(非理想)的导体。它是非理想的电导体
你应提供以西门子/米(Siemens/meter)为单位的损耗参数以及导磁率参数。计算的损耗是频率的函数。它仅能用于良导体损耗的计算。其中电场切线分量等于Zs(n xHtan)。表面电阻(Zs)就等于(1+j)/(ds)。其中,d是趋肤深度;导体的趋肤深度为
w是激励电磁波的频率.s是导体的电导率
µ 是导体的导磁率
阻抗边界(Impedance)——一个用解析公式计算场行为和损耗的电阻性表面。表面的切向电场等于Zs(n xHtan)。表面的阻抗等于Rs + jXs。其中,Rs是以ohms/square为单位的电阻
Xs 是以ohms/square为单位的电抗
Layered Impedance)边界——在结构中多层薄层可以模拟为阻抗表面。使用分层阻抗边界条件进一步的信息可以在在线帮助中寻找。
集总RLC(Lumped RLC)边界 ——一组并联的电阻、电感和电容组成的表面。这种仿真类似于阻抗边界,只是软件利用用户提供的R、L和C值计算出以ohms/square为单位的阻抗值。
无限地平面(Infinite Ground Plane)——通常,地面可以看成是无限的、理想电壁、有限电导率或者是阻抗的边界条件。如果结构中使用了辐射边界,地面的作用是对远区场能量的屏蔽物,防止波穿过地平面传播。为了模拟无限大地平面的效果,在我们定义理想电边界、有限电导或阻抗边界条件时,在无限大地平面的框子内打勾。
辐射边界(Radiation)——辐射边界也被称为吸收边界。辐射边界使你能够模拟开放的表面。即,波能够朝着辐射边界的方向辐射出去。系统在辐射边界处吸收电磁波,本质上就可把边界看成是延伸到空间无限远处。辐射边界可以是任意形状并且靠近结构。这就排除了对球形边界的需要。对包含辐射边界的结构,计算的S参数包含辐射损耗。当结构中包含辐射边界时,远区场计算作为仿真的一部分被完成。
§2.5 激励技术综述
端口是唯一一种允许能量进入和流出几何结构的边界类型。你可以把端口赋值给一个两维物体或三维物体的表面。在几何结构中三维全波电磁场被计算之前,必须确定在每一个端口激励场的模式。Ansoft HFSS使用任意的端口解算器计算自然的场模式或与端口截面相同的传输线存在的模式。导致两维场模式作为全三维问题的边界条件。
Ansoft HFSS默认所有的几何结构都被完全装入一个导电的屏蔽层,没有能量穿过这个屏蔽层。当你应用波端口(Wave Ports)于你的几何结构时,能量通过这个端口进入和离开这个屏蔽层。
作为波端口的替代品,你可以在几何结构内应用集中参数端口(Lumped Ports)。集中参数端口在模拟结构内部的端口时非常有用。
§2.5.1 波端口(Wave Ports)
端口解算器假定你定义的波端口连接到一个半无限长的波导,该波导具有与端口相同的截面和材料。每一个端口都是独立地激励并且在端口中每一个入射模式的平均功率为1瓦。波端口计算特性阻抗、复传播常数和S参数。
波动方程
在波导中行波的场模式可以通过求解Maxwell方程获得。下面的由Maxwell方程推出的方程使用两维解算器求解。
其中:
是谐振电场的矢量表达式; 是自由空间的波数; 是复数相对导磁率;
是复数相对介电常数。
求解这个方程,两维解算器得到一个矢量解
形式的激励
它们就场模式。这些矢量解与和无关,只要在矢量解后面乘上变成了行波。
另外,我们注意到激励场模式的计算只能在一个频率。在每一个感兴趣的频率,计算出的激励场模式可能会不一样。§2.5.2 模式(Modes)
对于给定横截面的波导或传输线,特定频率下有一系列的场模式满足麦克斯维方程组。这些模式的线性叠加都可以在波导中存在。
模式转换
某些情况下,由于几何结构的作用像一个模式变换器,计算中包括高阶模式的影响是必须的。例如,当模式1(主模)从某一结构的一个端口(经过该结构)转换到另外一个端口的模式2时,我们有必要得到模式2下的S参数。
模式,反射和传播
在单一模式的信号激励下,三维场的解算结果中仍然可能包含由于高频结构不均匀引起的高次模反射。如果这些高次模反射回激励源端口,或者传输到下一个端口,那么和这些高次模相关的S参数就必须被考虑。如果高次模在到达任何端口前,得到衰减(这些衰减由金属损耗或者传播常数中的衰减部分所造成),那么我们就可以不考虑这些高次模的S参数。
模式和频率
一般来说,和每种模式相关的场模式也许会随频率的改变而变化。然而,传播常数和特性阻抗总是随频率变化的。因此,需要频扫时,在每一个频率点,都应有相应的解算。通常,随着频率的增加,高次模出现的可能性也相应的增加。模式和S参数
当每个端口的定义都正确时,仿真中包括的每个模式,在端口处
S参数和波端口,将会根据不同频率下的特性阻抗进行归一化。这种类型的S参数叫做广义的S参数。
实验测量,例如矢量网络分析仪,以及电路仿真器中使用的特性阻抗是常数(这使得端口在各个频率下不是完全匹配)。
为了使计算结果,和实验及电路仿真得到的测量结果保持一致,由HFSS得到的广义S参数必须用常数特性阻抗进行归一化。如何归一化,参看波端口校准。
注解:对广义S参数归一化的失败,会导致结果的不一致。例如,既然波端口在每一个频点都完全匹配,那么S参数将不会表现出各个端口间的相互作用,而实际上,在为常数的特性阻抗端口中,这种互作用是存在的。
§2.5.3 波端口的边界条件: 波端口边缘有以下所述的边界条件:
理想导体或有限电导率边界—在默认条件下,波端口边缘的外部定义为理想导体。在这种假设条件下,端口定义在波导之内。对于被金属包裹传输线结构,这是没问题的。而对于非平衡或者没被金属包围的传输线,在周围介质中的场必须被计算,不正确的端口尺寸将会产生错误的结果。
对称面——端口解算器可以理解理想电对称面(Perfect E symmetry)和理想磁对称面(Perfect H symmetry)面。使用对称面时,需要填入正确的阻抗倍增数。
阻抗边界——端口解算将识别出端口边缘处的阻抗边界。辐射边界——在波端口和辐射边界之间默认的设置是理想导体边界。§2.5.4 波端口校准:
一个添加到几何结构的波端口必须被校准以确保一致的结果。为了确定场的方向和极性以及计算电压,校准是必要的。§2.5.5求解类型:模式驱动
对于模式驱动的仿真,波端口使用积分线校准。每一条用于校准的积分线线都具有以下的特性:
阻抗:作为一个阻抗线,这条线作为Ansoft HFSS在端口对电场进行积分计算电压的积分路径。Ansoft HFSS利用这个电压计算波端口的特性阻抗。这个阻抗对广义S参数的归一化是有用的。通常,这个阻抗指定为特定的值,例如,50欧姆。
注意:如果你想有能力归一化特性阻抗或者想观察Zpv或Zvi的值就必须在端口设定积分线。
校准:作为一条校准线,这条线明确地确定每一个波端口向上或正方向。在任何一个波端口,时的场的方向至少是两个方向中的一个。在同一端口,例如圆端口,有两个以上的可能的方向,这样你将希望使用极化(Polarize)电场的选项。如果你不定义积分线,S参数的计算结果也许与你的期望值不一致。
提示:也许你需要首先运行端口解(ports-only solution),帮助你确定如何设置积分线和它的方向。
为了用积分线校准一个已经定义的波端口,要做一下操作:
1.在项目树(Project Tree)中打开激励(Excitations),并双击被校准的波端口。
2.选择模型(Modes)列表。
3.从列表中为第一个模型选择积分线(Integration Line)一列。然后,选择新线(New Line)。
4.使用下列方法中的一种进行位置和长度的设置:
直接输入线段起点和终点相对工作坐标系的x,y和z坐标。关于坐标系更多的信息,请参阅XX章。
在绘图窗口的点击。这条线显示为矢量,指明了方向。如需要改变线段的方向,在积分线(Integration Line)一列,选择切换终点(Swap Endpoints)。
5.重复3、4步,设置该端口其它模式的积分线。6.完成积分线定义后点击OK。
7.重复1-6步,设置其它波端口的积分线。
关于阻抗线
Ansoft HFSS开始计算的S矩阵值是对每个端口的阻抗进行归一化的结果。然而,我们经常希望计算对某一个特定阻抗如50欧姆归一化的S矩阵。为了将广义S矩阵转化成归一化S矩阵,Ansoft HFSS需要计算各端口的特征阻抗。计算特征阻抗的方法有很多种(Zpi, Zpv, Zvi)。
Ansoft HFSS始终会计算Zpi。这个阻抗的计算使用波端口处的功率和电流。另外两种方法 Zpv和 Zvi需要计算电压的积分线。利用每一个模式的积分线,可以计算出电压值。
阻抗线应该定义在电压差值最大方向上的两点之间。如果你要分析多个模式,由于电场方向的变化,需对每个模式分别定义不同的阻抗线。关于校准线:
在计算波端口激励的场模式时,场在ωt=0时的方向是任意的且指向至少两个方向中的一个。利用参考方向或参考起点,积分线能够校准端口。需确认每一个端口定义的积分线参考方向都与类似或相同截面端口的参考方向相同。用这种方法,试验室的测量(通过移去几何结构,两个端口连接在一起的方法校正设置)得以重现。
由于校准线仅仅确定激励信号的相位和行波,系统在只对端口解算(ports-only solution)时可以将其忽略不计。§2.5.6求解类型:终端驱动
Ansoft HFSS计算的以模式为基础的S矩阵表示了波导模式入射和反射功率的比值。上面的方法,不能准确地描述那些有多个准横电磁波(TEM)模式同时传播的问题。这种支持多个准横电磁波(TEM)模式的结构有耦合传输线或接头等。它们通常使用端口S参数。需要用终端线校准已定义的波端口:
1.在项目树(Project Tree)中打开激励(Excitations),并双击被校准的波端口。
2.选择终端(Terminals)列表。
3.从列表中为第一个模型选择终端线(Terminal Line)一列。然后,选择新线(New Line)。
使用下列方法中的一种进行位置和长度的设置:
直接输入线段起点和终点相对工作坐标系的x,y和z坐标。关于坐标系更多的信息,请参阅XX章。
在绘图窗口的点击。这条线显示为矢量,指明了方向。如需要改变线段的方向,在终端线(Terminal Line)一列,选择切换终点(Swap Endpoints)。
5.重复3、4步,设置该端口其它终端线。6.完成终端线定义后点击OK。
7.重复1-6步,设置其它波端口的终端线。
关于终端线:
终端的S参数反映的是波端口节点电压和电流的线性叠加。通过节点电压和电流端口的导纳、阻抗和赝S参数矩阵就能被确定。
对每个与导体相交的端口,Ansoft HFSS自动将模式解转变成终端解。
一般来说,一个单终端线都是建立在参考面或“地”导体与每一个端口的导体之间。
电压的参考极性用终端线的箭头确定,头部(+)为证,尾部(—)为负。来的。如果你决定建立了终端线,你就必须在每一个端口和每端口都建立终端线。
§2.5.7 定义波断口的几点考虑
露于背景的面设定为波端口。背景已经被命名为Outer.因此,一个面如果表露于背景则它与outer相连。用户可以通过主菜单HFSSèBoundary Display(Solver View)选择所有的区域定位。从Solver View of Boundaries,点击Visibility查看outer。
内部波端口:
结构内部定义波端口,你必须在内部建立一个不存在的空间或者在已存在物体内侧选择一个面并将它的材料定义成为理想导体。内部不存 在的空间自动将边界赋值为outer。你可以创建一个整个由其它物体包围的内部空间,然后,从这个物体中剪掉这个空间。
端口平面:
端口设在单一平面。不允许端口平面弯曲。例如:一个几何体有一个弯曲的表面,该表面暴露于背景,则这个弯曲的表面不能被定义成波端口。
2.5.8 端口要求一定长度的均匀横截面
Ansoft HFSS假定你所定义的每个端口都与连接到一个于端口具有相同横截面的半无限长波导。但求解S参数时,仿真器假定其几何结构被具有这些截面的自然模式激励。下面的图将说明这些横截面。第一个图显示直接在结构外面的导体表面定义了波端口。
第二张图显示,模型结构必须添加均匀横截面部分。左边模型结构有误,原因是在模型两个端口都没有均匀横截面的部分。为了正确建模,需在每个波端口处添加一段均匀横截面的传输线,如右图所示。
这样才能保证截止模式逐渐消失。以保证仿真结果的精确。例如:如果一个截止模式由于损耗和模式截止大约经过1/8波长逐渐消逝了,这就需要构造一个长度为1/8波长的均匀波导段。否则,仿真结果中一定会包含高次谐波的影响。
在端口处附近的不连续性同样可以使截止模式传播到端口。如果端口放置在很靠近不连续性处,由于端口处的边界条件导致仿真结果与对应的真实值不同(即:系统迫使每一个端口都是你要求求解模式的线性叠加)。截止模式中的能量传播到端口将会影响主模的能量并产生错误的结果。
如果波在Z方向上传播,模式的削减可以用函数。因此,所需的距离(均匀端口长度)由模式的传播常数值决定。
当端口长度设置正确时,在端口处仿真的模为理想匹配,如同波导延伸至无穷远处一般。对仿真中没有包含的模,波端口可被看成理想导体。
§2.5.9 端口和多重传播模式
每个高次模都表现为沿着波导传播的不同的场模式。通常,仿真中应包括所有的传播模式。在大多数情况下,你可以接受默认的单模模式,但是对那些传播高次模的问题,我们需要改变默认设置,将其改变成多模模式。如果实际传播模式数比你指定指定的模式数多,就会产生错误的结果。模式的数量随端口不同而不同。传播模式
β(rad/m)并且β远大于衰减常数α(Np/meter)的模式。用下面的方法可确定那些仿真问题中应包括的模式,首先设置成不包括自适应解的多模模式问题,然后求解。在完成分析之后检验每个模的复传播常数(Gamma)γ=α+β:为了能够在完成分析之后检验每个模的复传播常数:
1.在HFSS的Analysis Setup菜单中,选择Matrix Data。2.此时会弹出一个对话框如下图所示。选择Gamma并改变显示类型为Real/Imaginary。
在端口每一个附加的模式将产生一组附加的S参数。假如,在一个3端口器件中每个端口设置2个模进行分析,其最终结果是一个6×6的S参量矩阵。一般来说,n端口的解是由所有端口的激励数、模式
数加上源的数量。
如果在仿真中不包含高次模,则需确认波端口有足够的长的均匀段,使截止模凋落且不会产生反射。§2.5.10 波端口和对称面──阻抗倍乘
当由于使用对称面使端口的尺寸减少时,为计算电压损耗和功率流需要调整端口阻抗。
理想电对称面(Perfect E Symmetry plane),阻抗倍乘因子为2。该模型的电压差和功率流只有整个结构的1/2,导致计算出的阻抗也只有整个结构的1/2。只有模型算出的阻抗乘2以后,其阻抗值才与实际结构相同。
理想磁对称面(Perfect H Symmetry plane),阻抗倍乘因子为0.5。该模型计算的电压差与整个结构相同,但功率流只有整个结构的1/2,所以,算出的阻抗为整体结构的2倍。所以,阻抗倍乘因子为0.5。
如果整体结构同时包含理想电对称面和理想磁对称面,则无需调整。也就是说,无需调整同时含有理想电边界和理想磁边界的结构输入阻抗倍乘数,因为理想磁对称面的阻抗倍乘因子为0.5,理想电对称面的阻抗倍乘因子为2。两个阻抗倍乘因子相乘等于1。