激光三角法测量钢板厚度光学系统设计

时间:2019-05-12 11:31:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《激光三角法测量钢板厚度光学系统设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《激光三角法测量钢板厚度光学系统设计》。

第一篇:激光三角法测量钢板厚度光学系统设计

光学系统设计论文

目 录

摘 要…..........................................................................................................................第一章 引言..................................................................................................................1.1研究的背景和意义...........................................................................................1.2 国内外研究现状................................................................................................1.2.1 国外发展现状.............................................................................................1.2.2 国内发展现状...............................................................................................第二章 测量原理及方案论证.....................................................................................2.1 设计任务分析.....................................................................................................2.2 测厚技术简述....................................................................................................2.3 激光三角法测量原理...........................................................................................2.3.1激光三角法测量的类型和区别....................................................................2.3.2激光三角法测量的基本原理........................................................................2.4 沙姆条件…………………………………………………................................2.5 测量模型及方案论证…………………………………………...........................第三章 光学系统设计....................................................................................................3.1总体结构布局.......................................................................................................3.2光源......................................................................................................................3.3聚焦系统与成像系统...........................................................................................第四章 误差与精度分析................................................................................................4.1 误差分析...............................................................................................................4.1.1光学系统误差分析.........................................................................................4.1.2随机误差分析................................................................................................4.2 精度分析.............................................................................................................第五章 总结....................................................................................................................参考文献.........................................................................................................................摘要

在科学技术迅速发展的今天,外形尺寸的测量一直是工业生产中的一个重要环节,厚度测量更是人们关注的焦点。在测厚领域里,采用激光三角法这一典型的非接触式测量方法对物体的厚度进行绝对测量不仅能满足测量的实时性,还能保证测量的高精确度,这种测量方法已经成为工业生产的发展趋势。本文所提出的基于激光三角法厚度在线测量技术采用双光路半导体激光技术与直射型激光三角法相结合,同时对平板物体进行厚度的在线测量。

文中主要包括总体方案的设计和由此涉及的关键技术、测量原理、精度与误差、实验等几个部分,本课题提出的基于激光三角法厚度绝对测量研究,是集机、电、光、计算机等技术于一体的精密测量方法,它的主要组成部分是:激光器、聚焦系统和成像系统、光电转换器件CCD及计算机数据处理部分。这里由于是只对光学系统进行设计,所以本文主要论述的是光学系统部分的任务分析,测量原理的理论分析和计算方法,并对光学系统可能产生的误差进行分析,并对于个别误差提出相对应的解决措施,以提高测量精度和测量速度。全文的主要内容分为四章:

第一章:引言,主要介绍了钢板测厚的重要性,由于主要采用的是激光三角法进行测量所以主要介绍以及激光三角法在非接触测量中国内外的发展现状及应用前景。

第二章:测量原理,激光三角法测量的不同类型,通过对比,进行选型;简述激光三角法的测量原理,我们所设计的光学系统的测量模型和方案论证。

第三章:首先介绍了总体结构的布局,然后对光学系统的光源、聚焦系统及成像系统进行设计。

第四章:对光学系统在测量过程中可能产生的误差进行了分析,并对一些误差提出了解决方案以提高测量的精度及速度。

第五章:总结,文章的最后进行了全文的总结,并提出了在设计过程中的不足之处,讲述了自己在设计过程中的心得体会。

第一章 引言

§1.1研究背景和意义

现如今,工业发展的水平可以近似直接代表着国民经济的整体实力水平,因此工业的生产技术水平对国民发展有着重要的意义。钢板是造船、桥梁、机械、汽车行业中不可缺少的原材料,在轧钢生产过程中钢板尺寸是很重要的参数,直接决定着钢板的成材率。传统的检测方法是采用检测头与待测钢板直接接触来测量,这种测量方法检测效率低,劳动强度大,而且会使测量仪器的检测头发生磨损,从而造成仪器的测量精度下降。因此,在现代板材生产中,不论是轧制过程中还是最终产品的调整中,为获得较高的板材命中率和最佳的轧制过程及剪切效果,板材尺寸测量系统已成为生产线上不可缺少的设备之一。宽度偏差每减少1mm,成材率就可以提高0.1%左右,因此尺寸控制技术可显著提高经济效益和产品竞争力。

目前,我国大部分企业仍在延用传统的测量方法,采用接触式的测量方式,技术相对落后,而且在处理复杂的零件时显得无从下手。这种情况严重地影响了工作的效率与工作的质量,为此应加大力度地发展测量的新技术来解决传统测量方式不能处理的问题,以适应现代生产发展的需要。随着工业生产技术的不断提高与更新,这种非接触式的测量方法能够满足对测量所要求的精确度与实时性,己经成为这一领域的发展趋势。再加上电子技术与光学技术的飞速发展,光电检测这种综合多种技术的测量方法成为非接触式测量的重要手段。本文所提出的激光三角法是光电检测技术其中的一种。这种方法在检测长度、距离以及三维形貌的用途中因其具有结构简单、响应速度快、实时处理能力强、使用灵活方便等优点显得更具优势。这种方法已经在测量位移、表面形貌等检测工作中取得了很好的效果,并且会扩展更广阔的使用空间,发挥其优势,推动工业检测技术的发展。

§1.2国内外研究现状

自上个世纪60年代激光测微仪的诞生,这种商品被大力的发展与生产,性能得到不断的改善,应用领域也被扩展的更加广泛,成为一种重要的非接触式检测仪器。国内外也有不少企业在做这方面的技术,一般分为直射式与斜射式两种形式。直射式的产品有基恩士公司生产的LS系列和LK系列,德国Micro-Epsilon

公司的optoNCDT系列,美国MT公司的MicroTRAK系列等多种型号;斜射式的激光位移传感器以日本Keyence公司的LK系列最为突出。表1-1列出了目前市场上常见的几种激光三角位移传感器的技术指标[6]。

表1-1 激光三角位移传感器的技术指标

[8]

1.2.1国外发展现状

在欧洲以及美国等发达国家很早就致力于激光三角法测量平板厚度的基础理论研究及测量仪器的研制,并且己经为此投产,生产出了一系列相对比较完善光电检测产品,尤其是在日本和德国,光电子技术的发展的速度非常快,应用也相对的更为广泛一些,所以国外在厚度检测这一方面的发展有着很迅猛的速度,拥有光源照明技术和光电检测元件的种类非常齐全,光电检测技术也很成熟。例如:日本的Mot1toshiAndo等人运用光三角方法印制线路板的线条检测,用这种方法还可以检验出工件表面的划痕和裂痕;英国剑桥大学的Roert Johnes等人将该方法用于涡轮叶片及飞机机翼断面检测,在10mm范围内精度可达2-

5;西德早已报道把激光光学三角测量技术和装置用于随线控制,它既可测量钢板的厚度,又可测量钢水的高度;日本的安立一岩通公司推出的通用型激光厚度位移计ST-370型的1、2、3系列。国外各大公司在光电检测技术中的突出表现代表了目前光电检测技术的一个发展程度,同时也预示着光电检测技术更广阔的发展空间。

1.2.2国内研究现状

虽然国内在光电检测技术上的起步较晚,但是鉴于传统的接触式测量技术有

着较大局限性,行内的技术人员早已注重了对于新型测量方式—非接触式测量技术的研究,使其技术在国内迅速发展,并且取得了一些相对比较好的成果。例如:1987年8月由电子工业部第二十五研究所的陈为民、卞海洋等人研制成功的激光测厚仪采用激光双三角测量原理,由激光器!视频信号处理器、微机等组成;1991年,中国科技大学的金泰义、李胜利等人开发研制出了JW—1型CCD激光测微仪,它以半导体激光器为光源,通过CCD进行信号接收,接受的数据送入计算机进行处理。这种测微仪是光、机、电一体化的典型事例,是光电检测方面研制的比较早的CCD激光测厚仪,采用光电藕合器件CCD实现,整体系统的技术水平在当时的国内己经体现了检测技术的最高水平;长春光机所研制的基于光学三角测量原理的激光非接触探头结构简单,体积小,重量轻,测量精度高,速度快;安徽工业大学电信学院的章小兵在研究了板材在线测厚时就用的激光三角法并叙述了激光三角法测厚的原理[1],对板材在线测厚系统进行了硬件设计和软件设计并给出了系统测量指标。与此同时,例如计算机视觉测试技术等新型技术都是在以激光三角法为理论基础的研究上发展起来的。

§1.3展望

通过大量的检索查新国内国外文献资料,可以发现目前我国光电检测仪器与工业发达的国家相比,我国的光电检测的仪器产业还不够成熟。我国主要报导的多,实际设计应用的少。从减小测量误差、提高测量有效速率方面与发达国家的产品设计还是存在一定的差距的。特别是本文涉及的以激光技术激光三角检测技术、光学系统设计和计算机技术相结合对平板进行绝对测厚的技术在国内鲜少报道。

第二章 测量原理和方案论证

§2.1设计任务分析

由于在生产线从加热炉出来,经轧辊机轧制的钢板,温度很高,一般在900℃左右,呈现红色或暗红色。为了更快更准确的获得钢板尺寸数据,得到最佳的轧制过程及剪切效果,需要实时在线采集钢板尺寸信息,并及时显示出来,以便于操作工人及时调整轧机或者印制尺寸标识。所以我们根据实际应用需求,要求所设计的测量系统必须可以进行非接触式的在线测量,为了简化设计难度,在设计要求中假设是在钢板冷却后再进行测量。所需测试的钢板的厚度为5±0.05mm,精度要求为±1%。

§2.2测厚技术简述

测厚技术通常都是以非接触式检测方法为主,按照测量原理和使用的传感器类型来分,大致可分为激光三角法、电容法、射线法、超声法等。这里我们选用的是激光三角法测厚度,所以其他测量方法就不做过多的赘述。

激光三角法利用探头中的激光器发射出激光,入射到电荷藕合器件CCD或位置检测器PSD作为接收器,通过在接收面上的像点经过位移变化,再通过计算公式计算出被测面的位移。本系统就是采用这种双激光三角法进行厚度测量,其原理示意图如图2.1所示。

图2.1双激光三角法厚度测量原理示意图

激光三角法在测厚领域里已经日趋发展成熟,通过光学系统、机械系统、电路系统三者有机的结合,已经有一系列的测厚仪器问世;同时在近几年中,应用激光三角法,结合电荷耦合器件CCD,应用两个探头同时进行厚度测量,使测厚技术己经逐步向于动态、实时化测量,自动、程序化数据处理方向高速发展。

§2.3激光三角法测量原理

根据前文所述的任务分析,我们选择采用具有分辨力高、测量精度高、稳定性好、非接触测量、可实现在线检测、测量仪器体积小等特点的激光三角法,来实现位移测量的。尽管常用的微位移检测的方法有很多种,例如机械法、电学法、光学法等,但都无法与激光三角法匹敌,激光三角法是位移检测方法的发展趋势,具有广阔的应用前景。

2.3.1激光三角法测量的类型及区别

(1)反射型与投射型

激光三角法光路按检测方式分为反射型与透射型本系统采用的就是反射型的激光三角法,通过激光在被测对象的表面发生反射,接收到被测信息。而对于一些特殊材料的被测工件如透明物质,由于其表面非常光滑,用反射型会对测量产生一定的影响,则可以采用透射式激光三角法,通过激光器发出的光线透过被测工件再投射在光敏面上而获取测量信息。(2)单束光和片光

按入射光束的形态来分,又可分为单束光和片光。顾名思义,若单束光入射的话,光斑小、光的强度高,但是广度不够,如果片光入射则需要采用激光透射光条与一个面阵探测器组成,通过光切法,也称结构光图像法,能一次获取一条扫描线上的数据。本系统采用的是单束光入射测量。(3)直射型和斜射型

若按入射光线与被测工件表面法线的关系来分,可分为直射式和斜射式。对于直射式,就是光束垂直入射到被测物表面,采用漫反射光进行测量,当物体纵向移动时,所测的始终是同一个被测点;斜射式的入射光束则与被测物表面形成一定的角度。

斜射型:如下图2.2所示,入射光束与被测物面成一夹角,利用反射到探测器件CCD的像点位置变化测量物体的位置厚度,当物体纵向移动时,所测的被测点会随移动发生改变,当测量平滑物体如玻璃、镜面时要比直射型的测量精度高很多。斜射式入射光照射在物体的不同位置,当被测物体移动时,光点的位移不能直接得到,要通过角度计算得出。斜射式分辨率很高,但测量范围较小、体积较大、光斑较大,所以在此不符合本系统体积的要求。

图2.2斜射型示意图

直射型:如下图2.3所示,激光器发出的入射光束垂直于成像透镜光轴O,光敏面与成像物镜O平行,被测点的位移与光电探测器上光斑的位移为线性关系,可用于测量相对或绝对位移,但其光敏面要求很大,而且被测点在成像面的像并不清晰,因此测量精确度不高。光斑较小,光强集中,体积较小,并且不会因被测面不水平而扩大光斑是直射型三角法的最大优点。但由于直射型接收的是散射光,当测量到较为平滑的被测面时,散射性能较差,使光电探测器件CCD接收到的散射光光强小,对测量产生影响,令测量过程受到阻碍,测量精度受到影响。

图2.3直射型示意图

2.3.2激光三角法测量的基本原理

通过上述对激光三角法测量的类型及区别的论述,及我们设计任务需求的分析,综合考虑我们选择了单束光入射,光路检测方式为反射型,光束垂直入射到被测物表面,采用漫反射光进行测量的直射型激光三角法对钢板厚度进行测量。(1).传统的激光三角法

传统的激光三角法基本原理如图2.4所示,采用直射型,光电探测器采用的是CCD,当散射光通过成像透镜时,如果将CCD以垂直于激光束入射的位置进行安装耦合,则成像到CCD上的光点会由于没有完全聚焦而出现弥散斑,测量并不完全。

图2.4 激光三角法的基本原理图

于是为了光点所成的像在接收器表面上每一点都清晰,则要求透镜光轴与接收面之间必须形成一定的夹角,所以我们选用CCD接收器为倾斜式的方式,即完全聚焦的激光三角法测量,如图2.5所示。

图2.5完全聚焦的激光三角法示意图

图中PO为入射光源,光线经准直透镜后垂直入射到物体表面,反射后经过成像透镜中心点M成像在CCD接收面上,入射光PO与反射光以的夹角为θ,反射光OA与CCD成像平面的夹角为,P点成像于CCD平面上的B点,O点成像于CCD平面上的A点,由图中可知,P点与O点高度不同,所成的像投射到光敏面上的位置也是不同的,设O点所在平面为基准面,A为CCD成像平面上的成像基准点,则光线PO上的点与CCD平面上的投影点是一一对应的。因此,只要知道光线PO上的任何一点在CCD成像面上的位置就可以求出该点的高度信息。由图2.5,可列出以下关系式

(2.1)

由公式(2.1)可推出

(2.2)式中:

PO一一物点的高度信息;AB一一P点在CCD成像平面的成像点与成像基准点A的偏移量 OM一一O点成像PO物距;MA一一O点成像像距;激光束垂直投射到被测物面,所形成的漫反射光斑作为传感信号,用透镜成像将收集到的漫反射光会聚到像平面的光接收器上形成像点。当被测物面移动时,入射光斑也会随之移动,像点也会在光接收面上做相应的移动,根据像移大小和系统结构参数可以确定被测物面的位移量,从而还可以获取其它方面信息。本系统中,为使光接收器上的像点不存在盲点,光接收器的光敏面必须与成像光轴成一夹角。这样既可以保证入射光斑与其像斑位移具有的关系精确,还可以使成像点最小,有利于提高测量精度。同时为了提高测量精度,和θ必须满足沙姆

(Seheimpflug)条件,即,如图2.6所示[5]:

图2.6物一像位移轨迹图

图中d0为基准点的物距,di为基准点的象距,O’为O经成像透镜的像点,A、B分别为a、b经成像透镜的像点,θ为光入射角, 为成像角,l为成像透镜,焦距为F。

当激光光束照射到a点时,由图3.7可知:

由相似三角形△ao1l△l得:

令 则由式(2.3),同理可推得,当物面由O至b时

(2.3)

(2.4)

(2.5)

(2.6)

可化简为

(2.7)

(2.8)

(2.10)(2.9)

(2.4)

综合上面可得, 式中,符号“+”对应于图2.6由o移至b,符号“─ ”对应物面由o移至a。式中,符号“+”对应于图2.6由o移至a,符号“─ ”对应物面由o移至b。

(2.12)

(2.11)由Z-I关系公式可得Z-I关系曲线,图2.7所示。从图中可以看出I该曲线为非线性曲线,只有当物面在O点附近较小范围移动时,上述曲线可近似按线性关系处理。

图2.7 Z-I非线性关系曲线

§2.4 Scheimpflug Condition(沙姆条件)被测物表面,镜头平面和影像的平面在一个共同点上相交的光学状态称沙姆条件,即在直射型激光扫描测量中,当入射光斑沿激光束方向位移时,其成像点在像平面内沿直线轨迹移动,则激光束轴线!成像透镜主面及CCD像平面三者交于一点,满足高斯条件,这是激光三角测量传感器实现精密测量的前提条件。

§2.5测量模型及方案论证

本课题采用直射式三角法,测量模型的的基本组成有激光器、聚

焦物镜、成像物镜及光敏阵列线阵。CCD其测量原理为激光器发出光的轴线与聚焦物镜的主平面两者同处一个平面上,并与CCD垂直。当激光器发出一束平行光,经由聚焦物镜聚焦在待测物的表面,产生的散射光通过成像透镜成像在CCD光敏面上。CCD将像信号转换为电信号测出其像点的位置。当被测物体沿着法线方向移动时,其表面上光斑会随着聚焦物镜的位置变化而发生改变,相应地,像点在光敏器件CCD上的位置也要发生变化,精确地测量像点在CCD上的位移x,就可以得到被测物体的位移量。由于是绝对测量,所以采用激光上下表面双三角法,准确的测量运动物体的厚度。如下图5.1所示,图中a为散射光接收角,θ是成像角,d0为参考点处的物距,di为像距,d为上下两参考面之间的距离,x是物位移,x’为像位移。

图2.8 激光三角法测厚原理图[2]

(2.13)由上图可得光学关系式: 式中 β一一成像透镜的放大倍数

上、下物面相对的移动距离为x1和x2,两CCD上的像点移动至x’11和x’21,像点移动距离 ,。根据几何关系,有

因此,(2.14)由于上下探头完全对称,同理可得

(2.15)

其中

在后,C1与下探测头测得像点位移量件的位移量x1、x2,物件厚度为

探头参数确定C2为定值,当上

后,按公式(2.14)、(2.15)式计算便可得到物

第三章 光学系统设计

§3.1总体结构布局

3.1.1系统的组成

系统由以下几大部分组成:激光发射器,光三角位移检测系统,计算机数据处理系统,工作台。

图3.1 测量系统方框图

1.激光测头部分

由激光发射器组成的光源系统、聚焦光源的准直系统、接收光信号的激光成像系统构成,由于本设计测量为绝对厚度,所以我们采用两个激光探测头。2.光三角位移检测系统

本文采用激光三角法原理设计的测厚系统,用线阵CCD作为光电接收器件,通过物面的位移由此检测出在感光面上成像点的位移,通过计算得出厚度。3.计算机、实时数据处理与控制系统

计算机数据处理系统是将接收到的光信息转化为数据输入计算机,通过计算机的内部编程结构计算出所求厚度,并显示出测量结果、存贮及打印。4.工作台

对所测物件进行固定,并使其可按照一定规律、方向、有速度的平稳运动。这种系统主要是由基座、滑台、导向、传动、定位与夹紧结构等组成的。

2.3.2总体结构布局

基于激光三角法原理设计的测厚系统,是通过上述的激光探头系统发出光源,照射在被测物体上,通过光三角位移系统作为信息载体,接收并反馈出所需信息,并经过计算机控制系统进行数据确定,对工件进行测量,则被测工件的绝对厚度可以确定了。根据系统组成,总体结构布局如下图3.1

图3.1总体结构布局

§3.2 光源

目前,激光作为一种新型能源[6],具有单色性好,光亮度极高,方向性强等优点,它在测量,加工等多种领域都有很广泛的应用。在众多的激光器中,氦氖气体激光器和半导体激光器应用尤为广泛。其中氦氖气体激光器具有连续输出激光的能力、结构简单,但体积较大,而半导体激光器具有体积较小、效率较高、驱动功率小等优点,尤其适用于测距。于是为了本设计要求,本文选取了半导体激光器。半导体激光器发出的激光,由于空间相干性好,投射点也相应的变得很小,辐射能量就越小,分辨率就越高,能量密度也随之增大。文中选用的是波长为688nm半导体激光器。在实验中发现,由于选用的激光器发出的激光光强较大,使投射到光电探测器CCD上像点的光斑也随之增大,影响测量系统的分辨率。解决的方法是在聚焦透镜后面放置一块偏振片,通过调节偏振片,改变其旋转方向,对激光器所发出的线偏振光进行过滤,使光束中心光强较强的光束通过过滤,滤除边缘较弱的光,使光束细化,则CCD上像点的光斑减小,提高仪器的测量精度。

§3.3聚焦系统及成像系统

在光路设计中,聚焦系统和成像系统是本设计中的关键环节。整个系统的可靠性在很大程度上取决于聚焦系统和成像系统的准确性。

3.3.1聚焦透镜

激光器光源发出的光尽管光束较细,发散角较小,但仍存在一定的直径,在CCD的光敏面上形成的是一个小光斑,测量精度会由于覆盖光敏面上的光敏元离散而受到影响。另外,当物体表面随法线方向进行移动,位移发生变化时,像点在CCD的光敏面上也作出相应的位置移动,如果像点过大,而CCD光敏面量程一定会影响测量效果,则应尽量缩小投射在CCD光敏面上的像点直径,减小孔径,使像差较小。在本系统中,聚焦透镜的设计不是本文研究的主要重点,则设计中我们采取了结构相对简单、准直效果较好的单透镜聚焦系统。

3.3.2成像透镜

本系统的成像透镜是根据测量系统的分辨率、测量范围、工作距离等要求光

电转换器件CCD本身特性进行设计的。系统测量范围很大时,要求散射光在CCD面上的成像点不能过大。如果测量范围很大,当被测物体移动到测量范围边缘时,光强会随移动而逐渐衰减,所以要根据实际情况调节放大倍率刀的大小。

第四章 误差与精度分析

§4.1误差分析

基于激光三角法的厚度绝对测量试验系统是一个由机械、光学、电子和计算机组成的一个有机的整体,因此在测量实验中所得到的结果中所包含的误差也是由多种误差因素引起的。在这些误差中,有些通过具体计算就可以得到,而有些则需要通过实验标定的方法来进行估算,并且在某些情况下只能求出误差的变动范围,这就是误差极限值。这里主要介绍光学系统的误差分析[4]。4.1.1光学系统误差分析

在本测量系统中,光学系统的误差主要是指采用的激光器、光学透镜产生的,从测量原理上看,光源方面我们需要采用一种体积小、驱动功率小、使用方便的光源发生器,同时还需要光源的空间相干性好,这样才可以使投射到测量物体上的光斑小,光斑越小分辨率就越高,但是如果光斑非常小,辐射能量就不会很大,导致接收灵敏度就要降低。所以,为了在通过光学系统聚焦后产生较高的能量密度,系统采用了半导体激光器作为光源,这样才能使探头小型化。但是半导体激光器本身也会产生误差[7]。

(l)激光束输出功率的不稳定及噪声影响。激光的功率不稳定将造成光强分布不稳定及激光线宽;噪声影响有很多因素,直接影响测量精度。

(2)激光投影质量的影响。由于被测物体的表面特性、测量环境等因素的影响,激光投影质量也会产生误差。在光学元件方面,被测物体方向与成像系统光轴存在一定的夹角,虽然在实际装调过程中调节,但并不能达到理想角度,所以会产生各种象差(彗差、像散、畸变等轴外像差)使实际成像点偏离理想成像点而产生误差。4.1.2随机误差分析

基于激光三角法厚度绝对测量的实验系统的随机误差可以主要归纳为以下几个方面:(l)测量装置方面的因素:测量装置采用的CCD探测器在采集信号及电信号处理时会造成随机噪声,在重复测量过程中,会产生离散化采样误差、每次测量时量块的装夹位置也不一致。

(2)测量环境方面的因素:测量主机所在的平台会有外界所带来的轻微的低频震动;仪器所在的实验室气流和温度会有波动,以及空气中尘埃的漂浮等。

(3)操作人员方面的因素:尽管仪器自动采集与处理数据,但测量标准样件是由操作人员装夹并调整操作的,会使被采集的图像分辨质量差、造成较大的离散化采样误差;以及工作人员可以被当做热源引起气流的扰动。

随机误差是一种随机变量,它具有随机变量固有的统计分布规律。设被测量值的真值为x0,各次测量值为xi,若xi中不含有系统误差,则根据对随机误差δi的定义有:

δ

i

= xi-x0

对于一组测量数据,往往用标准差来表述这组数据的分散性。如果这组数据是来自于某测量总体的一个样本,则该组数据的标准差是对

总体标准差的一个估计,称其为样本标准差。

其中该公式中的Vi = Xi−X0定义为残余物差即残差。

§4.2精度分析

本系统采用的是精度很高的传感器,但理论上,仪器的内部还会存在测量误差。这里同样主要介绍光学系统方面[3]。1.测量系统方面

(1)光学系统的像差会使物体上任一点发出的光束通过光学系统后,不能汇聚在同一点,而是形成一个弥散斑并不能表现出原物的形状。相应的改进方法是在接受透镜的设计中要考虑像差的因素。(2)光信号的输入与电信号的输出之间呈非线性,相应的改进方法是采取较优的标定方法,之后得到具体的物体位移值。2.被测物体方面

(l)被测表面的粗糙会对测量精度产生影响,相应的改进方法是多选取几块标准量块进行多次测量,对于有时被测表面产生的阴影和死区,采取两个激光探头发出的激光从相对的两个方向同时对被测物进行扫面,使用单光源、双检测器,最后通过计算融合数据。

(2)由于被测物不总是标准量块,表面会有孔或者缝,使得传感器不能很好的接收反射光。相应的改进方法是采取对称性的光学三角传感器。

(3)被测表面会有材料、光学性质的差异,如透明物体,物体对光的反射或吸收程度会不同于半透明的物体,也不同于不透光的物体,反射率与折射率等因素会引起成像光斑有像差。改进的方法是使传感器的入射透镜和接收透镜的光轴所成的平面与待测表面平行,接受足够的光强,这有利于提高测量分辨率。如果是高度镜面反射则需要采用线偏振光作为光源,利用线偏振光的参数随镜面反射改变。3.环境影响方面

在温度方面,只能人为的保持周围环境温度稳定,在使用仪器时进行预热;在气流运动方面,使用保护罩保护测量头或者使用风扇更强的搅动测量部分与工件之间的空气;同时在灰尘与污物方面,采取小心的清洁。为了减小环境对系统的影响,要在接收物镜和线阵CCD之间安置一滤光片(激光器发出的红光波长为650nm,其透过率可达百分之九十多,而其它波段的光几乎可以全部滤掉)。同时在激光器和聚光镜之间安置孔径光阑,以减小光斑直径。本系统采用上下探头同时测量,可以消除测量过程中盲区的出现。当被测面有一定的倾斜角,也可以通过两个探头对测量进行补偿,这种测量方法就可明显提高传感器的测量精度。

第五章 总结

激光三角法是本系统采用的基础方法,在现代工业发展的今天,激光三角法是非接触测量中最常用的方法,具有很广的应用范围。应用此种方法可对各种类型物体进行诸如物体表面形貌、厚度、三维等微位移的测量。由于激光三角法具有结构简单、测试速度快、实时处理能力强、使用灵活方便等优点,所以在这里我们将激光三角法作为本系统所采用的基础方法对钢板进行非接触式在线测量进行光学系统的设计,同时对光学系统在测量过程中可能产生的误差进行了表述,并对一些可能影响测量精度的问题提出了修改方法和意见。

不足之处,由于时间紧迫并没有搭建试验装置进行模拟测量,并对测量数据进行误差分析,提出改善方案。并没有通过Zemax等软件设计对光学系统的聚焦透镜和成像透镜进行模拟光路的设计。

体会:光学仪器设计在设计时需要整体的结构考虑,不能只是一味的进行光学系统的设计,在仪器的设计中通过模拟软件或装置模拟搭建来获取数据进行误差分析也是光学系统中非常重要的一部分,通过对测量数据的误差分析我们还需要进一步的对所设计的仪器装置,系统部件参数选择进行优化,以更好的实现设计任务要求。在设计时我们要因地制宜,对要设计加工的对象,作业环境,操作流程特点进行分析,这样才能使我们所设计的系统更具有实用性,高精度和高稳定性等特点。

参考文献

[1] 章小兵.激光三角法测厚研究.中国科学院安徽光学精密机械研究所硕士学位论文,1999 [2] 王晓嘉.高隽.王璐.激光三角法综述.仪器仪表学报,2004 [3] 王军红.江虹.毛久兵.一种提高激光三角法薄板在线厚度测量精度的方法,2011 [4] 黄战华.蔡怀宇.李贺桥.张以谟.三角法激光测量系统的误差分析及消除方法,2002 [5] 迟桂纯.激光三角法微位移测量技术[J].工具技术.1997 [6] 周炳昆,高以致.激光原理[M].北京:国防工业出版社,2000

[7] 黄战华,蔡怀宇,三角法激光测量系统的误差分析及消除方法,光电工程,2002 [8]汤思佳,基于激光三角法厚度绝对测厚技术研究.[硕士学位论文].长春理工大学.2010

第二篇:椭圆偏振法测量薄膜厚度实验的小结和心得(写写帮整理)

椭圆偏振法测量薄膜厚度实验的小结和心得

摘要:椭圆偏振测量是一种通过分析偏振光在待测薄膜样品表面反射前后偏振状态的改变来获得薄膜材料的光学性质和厚度的一种光学方法。由于椭圆偏振测量术测量精度高,具有非破坏性和非扰动性,该方法被广泛应用于物理学、化学、材料学、摄影学,生物学以及生物工程等领域。

关键词:误差、改进、小结、实验感受

引言:椭圆偏振法是根据测量其反射光的偏振来确定薄膜厚度及各种光学参数。这种方法已成功应用于测量介质膜、金属膜、有机膜和半导体膜的厚度、折射率、消光系数和色散等。本实验是采用消光型的椭圆偏振测厚仪,具有简单、精度高、慢等特点。

正文:

1、实验目的和原理

通过实验,了解椭偏法的基本原理,学会用椭偏法测量纳米级薄膜的厚度和折射率,以及金属的复折射率。椭偏法测量的基本思路是,起偏器产生的线偏振光经取向一定的1/4 波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光。根据偏振光在反射前后的偏振状态变化(包括振幅和相位的变化),便可以确定样品表面的许多光学特性。

2、实验的误差来源

通过实验,我们发现本实验最大的误差是来源于对消光位置的判定。实验中,由于仪器不能完全被消光,所以消光位置的确定就显得有些困难。虽然经过多次调节光路,到最后确定位置的时候也不能确定完全消光,这会直接影响实验的精度,给实验带来较大误差。除此之外,由于本实验中,各种状态的判定均靠人眼判断,例如:样品台是否水平、消光状态、起偏器和检偏器的位置读数等,使实验存在较多的人为误差,这些都是不可避免的。

3、实验的改进

由上述的误差分析,我们可以知道实验的主要误差来源。对于最主要的误差“消光位置的确定”,是由于靠人眼来判断消光位置的所致的。因此,我们在实验中应该尽量避免更多的不确定因素,我们可以使光学量通过电学量来表示,即可以在仪器的末端安装一个光电接收电流表,通过电流表的读数可以直观地反映出仪器的消光状况,使得测量更加精确。虽然电流表的读数也是靠人眼来读取,但是通过这种方式会减少误差。还有一些关于次要误差的减少,例如:我们在调节载物台水平时,可以用精度高一些的水平仪,以确保我们实验的条件更加好。而且,我们应该尽量多地读取更多组数据,以便求平均值来减少误差。

4、实验小结

本实验是光学实验。对于光学实验,最为重要的是光路的调节,光路的调节准确与否,直接影响了实验的精度。因此,在实验前要准确调节光路,使起偏器和检偏器保持光线同轴。

学习本实验中简化问题的方法。从实验原理看,本实验中,实际计算的量很多,而且需要求解很烦的超越方程。但通过适当的变换以及光学仪器的运用可使问题简化。如通过1/4波片之后,光变成等幅椭圆偏振光,使得

|EEE/E1,使得tg|EErprsis||ipis变为tg|EErs|,计算可以大大简

rpip化。通过调整仪器,使反射光成为线偏光,即

rp0或(),则

rs( ip)或,可使问题简化。()isipis5、近代物理实验课的感受

上完这个学期的近代物理实验课,我们大学阶段的物理实验课就结束了。这个学期的实验课,和以往一样都是那么的生动有趣。一方面是,这学期的物理实验课教学方法与上一个学期一样。在做实验之前,老师不仅要求我们课前要预习,还要求我们做实验之前要小组讨论,而且要讨论得激烈。我很喜欢这种上课的模式,因为虽然实验前同学们都有预习,但仍然存在一些不明白的知识,在讨论的过程中,同学们可以通过对彼此的观点的思考与辨别,更加深入地了解与掌握本实验的原理和知识点,再结合实验中的动手过程,就让我们更加地认识到实验的原理。另一方面,这个学期的物理实验课,让我们接触到一些放射性的物质,虽然有一点危险,不过更多的是有趣。因为这些关于核的实验可以让我更加地了解放射性的性质,帮我揭开了关于核的神秘面纱。

在本学期的近代物理实验课上,我们做了关于近代物理的实验,让我受益菲浅。其中很多知识在平时的学习中都是无法学习到的,其中很多实验都开阔了我们的视野,让我们获得了许多平时课堂上得不到的知识。

通过一个学期的物理实验,我觉得实验是物理学的基础,我们学到的许多理论都来源于实验,也学到了许多物理课上没有教到的理论。很多实验都是需要花费许多心思去学习的,也是非常复杂的。我们学习理科的同学,更加要重视实验课,因为理论与实践结合是最重要。

在每次试验之前,我们都要做预习报告,通过实验手册和自己参阅资料,得知本次实验的目的、原理、所需仪器、实验步骤、实验中的要求及注意事项等问题。经过一个学期的实验课我们可以知道预习报告是非常重要的,只有在实验前认真做好预习,才能在实验课上更快、更好地完成实验,同时也能收获更多知识。

实验操作当然是物理实验的核心。经过了一个学期的实验,我发现做实验有许多需要注意的地方,掌握了这些技巧才能讓实验结果变的更加准确和方便。做实验的时候,一定要集中精神,例如在做盖革—米勒计数管的特性及放射性衰变的统计规律实验的时候,我们要集中精神地看着电压和计数率的变化情况,因为电压要控制在一定的范围,当我们稍不留神,电压就会超出观察的范围,从而造成仪器的损坏或者实验的失败,因此集中注意力是相当重要的。其次,做实验时要有足够的耐心和定力。就像做椭偏法测薄膜厚度这个实验一样,需要测多组数据,而且不一定测出来的每一组数据都能成功,还要在电脑上通过查表之后才能确定,这就需要足够的耐心和一定的动手能力。最后,一定要知道实验的注意事项,什么是不能做的,就像做核实验时,我们就不能随便去碰那些放射源,在拿取时必须要用镊子拿,不然会对人造成危险。当然做完实验之后一定要还原好实验器材,不能做完了就拍拍屁股走人,这是一名大学生应有的素质。总之在实验中需要注意的事情还有很多,这些事情让我们体会到,物理实验需要严谨的思维,需要认真思考,每一步都要严谨,不然就会产生不该产生的误差影响最终的数据结果,或导致实验失败。

实验完成之后自然是数据处理和实验报告。实验数据是对实验定量分析的依据,是探索、验证物理规律的第一手资料。在系统误差一定的情况下,实验数据处理得恰当与否,会直接影响偶然误差的大小。所以对实验数据的处理是实验的重要内容之一。这学期的近代物理实验的数据都是比较多和比较繁琐的,而且要求图文并茂,这更加要求我们处理数据的时候要细心。还有需要一些软件帮助处理数据和画图,我们在输入数据的时候就要更加认真谨慎。

经过这一年的大学物理实验课的学习,让我收获多多。想要做好物理实验容不得半点马虎,它培养了我们的耐心、信心和恒心。当然,我也发现了自己存在很多不足的地方。我的动手能力还不够强,理论知识还不够扎实,当有些实验需要比较强的动手能力的时侯我还不能从容应对,实验就是为了让你动手做,去探索一些你未知的或者是你尚不是深刻理解的东西。现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台让我们去锻炼自己的动手能力。我的学习方式还有待改善,当面对一些复杂的实验时我还不能很快很好地完成。伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。唯有实验才是检验理论正确与否的唯一方法。为了要使你的理论被人接受,你必须用事实来证明,让那些怀疑的人哑口无言。虽然我们的大学物理实验只是对以前的实验的一种再现,但是对于一个普通的大学生来说,这些事情也并不是一件容易的事情。我的数据处理能力还得提高,数据处理的是否得当将直接影响你的实验成功与否。当实验得出一大堆复杂数据的时侯我的处理方式和能力还不足,有时候会算错结果,有时候会无从下手,有时候会绕远路用复杂的方式去处理数据。经过这一年,我学会了一些处理数据的方法,相信这同样也能对我其它的课程的学习起到帮助作用。

结束语: 总之,大学物理实验课让我收获颇丰,也发现了自身的许多不足的地方。我会将在实验中学习到的东西发挥到更多的地方去,也将在今后的学习和工作中不断提高、完善自我。在今后的学习、工作中取得更大的收获,在将来毕业的时候能够成为一个对社会有更大贡献的人才。

参考文献:

[1] 吴先球 熊予莹主编.近代物理实验教程.科学出版社 [2] 母国光、战无龄.光学.北京,人民教育出版社,1978 [3] 黄佐华,何振江,杨冠玲等.多功能椭偏测厚仪.光学技术 [4] 吴思诚.近代物理实验[M].北京:人民教育出版社,1972.[5] 莫党.椭圆偏振法-----测量薄膜与研究表面的新方法.电子科学技术

第三篇:相位法激光测距的理论设计(综合最新版)

相位法激光测距的理论设计

摘要

本文介绍了半导体激光技术,并在传统的相位法激光测距原理的基础上, 参考激光测距光学系统设计,运用数字相关检测的测量方法,提出一种把直接数字频率合成(DDS)技术和数字信号处理(DSP)技术相结合的新的相位激光测距理论设计,这种设计有助于简化电路、提高相位测距的精度。

关键词: 相位激光测距,数字相关检测,数字信号

Phase Type Laser Ranging Theoretical Design This article introduced the semiconductor laser technology, and in the traditional phase laser ranging principle foundation, the reference laser ranging optical system design, Using digital correlation detection measuring technique,proposing one kind the new phase laser ranging theoretical design which(DDS)technical and the digital signal processing(DSP)the technology unifies the direct digital frequency synthesis, for could overcome in the traditional phase range finder method the precision to enhance, the measuring range with difficulty difficulty with increases, the electric circuittoo is complex and so on the shortcoming provides has been possible to supply the reference the theoretical design.Key word:PHASE LASER RANGING,DIGITAL CORRELATION DETECTION,DIGITAL SIGNAL

目录

第一章 引言.....................................................................................................................4 第二章 国内外研究状况.................................................................................................5 第三章 激光测距光学系统.............................................................................................7 3.1 激光测距仪的系统结构.........................................................................................7 3.2光学系统图示..........................................................................................................8 3.3 光学系统设计主要部件功能与作用.....................................................................9 3.4 主要参考性能数据...............................................................................................10 第四章 数字相关检测技术改进方法设计...................................................................11 4.1 激光相位式测距的基本原理.............................................................................11 4.2 数字信号处理(DSP)的简述.................................................................................13

4.2.1 数字信号处理的主要研究内容....................................................................14 4.2.2 测试信号数字化处理的基本步骤................................................................14 4.2.3 数字处理信号的优势....................................................................................15 4.3 直接数字频率合成技术.......................................................................................15

4.3.1 DDS的基本工作原理....................................................................................16 4.4 改进的数字测相的框图设计...............................................................................16 第五章 小结...................................................................................................................22 参 考 文 献.............................................................................................................23 致谢.................................................................................................................................24

第一章 引言

第一章 引言

激光,是一种自然界原本不存在的,因受激而发出的具有方向性好、亮度高、单色性好和相干性好等特性的光。物理学家把产生激光的机理溯源到1917年爱因斯坦解释黑体辐射定律时提出的假说,即光的吸收和发射可经由受激吸收、受激辐射和自发辐射三种基本过程[1]。

所谓激光技术,就是探索开发各种产生激光的方法以及探索应用激光的这些特性为人类造福的技术的总称。30多年来,激光技术得到突飞猛进的发展,利用激光技术不仅研制了各个特色的多种多样的激光器,而且随着激光应用领域不断拓展,形成了激光唱盘唱机、激光医疗、激光加工、激光全息照相、激光照排印刷、激光打印以及激光武器等一系列新兴产业。激光技术的飞速发展,使其成为当今新技术革命的先锋!

激光和普通光的根本不同在于它是一种有很高光子简并度的光。光子简并度可以理解为具有相同模式(或波型、位相、波长)的光子数目,即具有相同状态的光子数目。这些特性使激光具有良好的准直性及非常小的发散角,使仪器可进行点对点的测量,适应非常狭小和复杂的测量环境。激光测距仪就是利用激光良好的准直性及非常小的发散角度来测量距离的一种仪器。激光在A、B 两点间往返一次所需时间为t, 则A、B 两点间距离D 可表示为: D = c²t /2,式中, c为光在大气中传播的速度。由于光速极快, 对于一个不太大的D 来说, t是一个很小的量。如:假设D =15km, c = 3 ³105 km / s,则t = 5 ³10-5 s。由测距公式可知,如何精确测量出时间t的值是测距的关键。

由于测量时间t的方法不同,便产生了两种测距方法:脉冲测距和相位测距。其中相位测距更加精确[1]。

广东技术师范学院本科毕业论文(相位法激光测距的理论设计)

第二章 国内外研究状况

相位式激光测距技术的研究起始于20 世纪60年代末,到80 年代中期陆续解决了激光器件、光学系统及信号处理电路中的关键技术,80 年代后期转入应用研究阶段,并研制出了各种不同用途的样机,90年代中期,各种成熟的产品不断出现,预计近期将是其应用产品大发展的阶段,在中、近程激光测距应用方面有取代YAG激光的趋势。随着激光技术的发展, 应用激光作精密光波测距系统的光源, 是现代测量仪器的一个显著特点。

据近年的资料, 国外用于大地测量、城市和工程测量的各类光电测距仪约15000多台。其中, 长程及中程各占1/4, 短程测距仪占1/2。许多工业发达国家已把各种激光测距仪红外测距仪作为标准设备, 装备测量作业队。

近年来,中长程激光测距仪的技术发展有以下特点:(1)普遍采用He-Ne激光光源, 功率为1~5mW;(2)普遍采用新颖的高效调制器, 如ADP(磷酸二氢铵NH4H2PO4), KDP(磷酸二氢钾(KH2PO4)), KD*P(磷酸二氘钾(KD2PO4))等;(3)向自动化和数字化方向发展。中远程激光测距仪的精度主要是受到比例误差的限制, 这是值得注意的。如美国的Geodolit-3G远程激光测距仪, 其数字测相的分辨力达±0.03 mm, 其固定误差为±0.03 mm, 但它的比例误差仍有1 mm/km[2]。为获得测线的平均气温, 气压、湿度误差影响£1mm/km,还需要用飞机沿测线作气象测定, 这对作业无疑是不方便的。对比之下, ±0.03 mm的测相分辨力, 对于单色激光的远程测距, 并不必需。

短程的光波测距仪通常以砷化镓半导体(GaAs)红外波段激光源的红外测距仪为主, 实用上也有少量采用He-Ne激光作光源。这类仪器普遍在向自动化、数字化与小型化、一机多能的方向发展。按仪器的功能可分为单测距仪器, 测角与测距相结合的仪器, 测距、测角与计算三结合仪器(电子速测仪)及高精度的短程测距仪这四类。

单测距的仪器都采用强制归心基座可与经纬仪交替使用, 以利于边角测量和导线测量的实施, 这类仪器也可采用激光光源。角、距结合的仪器有二种: 一种是测距系统作为经纬仪的附件, 积木式装在经纬仪上, 将自动测距与经纬仪测角相结合直接为水平距离并能作坐标差Dx、Dy的计算.如DI-3及DI-3S;另一种能将自动测距与光学测微器

3-广东技术师范学院本科毕业论文(相位法激光测距的理论设计)

第三章 激光测距光学系统

3.1 激光测距仪的系统结构

激光电子测距仪一般由激光光源、激光调制及发射电路、光学系统、接收单元、高频放大电路、采样积分电路、逻辑电路、振荡电路和微处理器部分组成,系统框图如图3.1所示。激光光源采用半导体激光二极管。晶振部分包括主振单元和本振单元,通过频率合成电路分别产生发射频率信号和基准混频信号。发射频率信号经过一定的波形变换和功率放大后,作用于激光二极管,进行内调制,发出调制激光信号[3]。

图3.1 激光测距仪的系统结构

Fig.3.1 laser ranging equipment system structure 激光测距光学系统设计的方案及原理为:动目标指示,目标速度分辨力8km/ h ;主动成象,帧频为100~200 帧/ s;精确测距 ;以每秒1000 次的速率编排并记录方位、仰角、距离和时间数据;进行坐标变换,以便输出高精度的实时位置数据,便于绘图和数字显示;使用程序指出方位上几个区域,保证目标或其它关键区域在安全标准范围内安全控制。

连续波(GaA1As)激光发射机;2连续波(CO2)激光发射机;4、5声光调制器;8、9-前置放大器;10散热器;12、30-测距通道探测器;13二维电荷耦合器(CCD);15调准传感器;17本振通道;19后反射器;21、22、23气体池;25栅镜;27、33四分之一波片;29分束器;34、35方 位俯仰驱动器;37广东技术师范学院本科毕业论文(相位法激光测距的理论设计)

3.3 光学系统设计主要部件功能与作用

相位(GaA1As)激光发射机的作用是用于近场广角截获跟踪目标, 并进行目标的粗测;连续波(GaA1As)激光发射系统用于精确的测距;连续波(CO2)激光发射系统用于测量速度。微调反射镜有两对,分别用于GaA1As 激光束和CO2 激光束的偏转扫描,目标截获、跟踪探测器采用二维的电荷耦合器件CCD。

电荷耦合器件的传感功能是在光致信息电荷的存储和传输两个过程完成的。如果把被测目标的光学图象聚集在电荷耦合器件图象传感器的光敏区上,则其上个点所产生的光生载流子的数量,将与各象点上的图象亮度相对应。在一般称为光积分时间的时间间隔内,这些少数光生载流子分别被收集、存储在就近的势阱里,形成一个个的信息电荷包,每一个信息电荷包所储存的信息电荷与电荷耦合器件工作表面上相应位置的光强成正比,因而成为被测光学图象的诸点取样模拟。这样,就把光学图象转变成为由信息电荷所描绘的电子图象,完成了光电转换与储存信息的过程。为了按扫描顺序取出各电荷包的信息电荷,使被接收的图象以电信号的形式再现出来,可在各个电极上依次施加有规则变化的时钟脉冲电压,各个电极下的势阱深度也将作相应的变化,从而使电荷包能够沿半导体表面作定向运动。

二维电荷耦合器件的感光单元呈二维矩阵排列,组成感光区。由于传输和读出结构方式不同,面阵图象器件有多种形式。碲镉汞器件是目前性能最优良的最有前途的光电导探测器。它的光谱响应在8~4μm 之间,为大气窗口波段,其峰值波长为1016μm 与CO2 激光器的激光波长相匹配,响应时间约为10

第三章 激光测距光学系统

3.4 主要参考性能数据

作用距离0~30 ,000m 角度测量准确度< ±110″ 分辨距离0.115m 角度覆盖范围180° 扫描角速度2°/ ms 角度偏转范围0~20°

连续波(GaA1As)激光器波长 0185μm 连续波CO2 激光器波长 1016μm 相位(GaA1As)激光器波长 01905μm 峰值功率

15W 输出功率

15mW 重复频率

90pps(每秒钟的周期数)接收探测器 硅雪崩光电二极管 接收镜孔径 18~100mm

本文的相位测距数字检测系统是根据激光测距的工作原理及由激光测距原理继而发展的相位式激光测距的原理,并参考在激光领域所做的相关的光学系统而设计的。

广东技术师范学院本科毕业论文(相位法激光测距的理论设计)

第四章 数字相关检测技术改进方法设计

相位法激光测距是利用发射的调制光与被测目标反射的接收光之间光强的相位差所含的距离信息来实现对被测目标距离的测量。由于采用调制和差频测相技术, 具有测量精度高的优点, 广泛用于有合作目标的精密测距场合。激光相位式测距仪由于其测量精度高而被广泛地应用于军事、科学技术、生产建设等领域。相位式测距仪的基本原理是通过测量连续调幅信号在待测距离上往返传播所产 生的相位延迟,来间接地测定信号传播时间,从而求得被测距离.因此,信号相位测量的精度也就决定了激光测距仪的精度[6]。

测距仪相关检测技术是信号检测领域里一种重要工具,它能在低信噪比的情况下提取出有用的信号,具有较强的抗噪声的能力,如同频域里的谱分析一样,时域里的相关分析几乎在信号的所有领域里都有应用,例如图像处理、卫星遥感、雷达及超声探测、医学和通信工程等。

在此本文设计一种新型的激光相位式测距仪,它将现代数字信号处理技术应用于测距系统,利用数字信号处理芯片的强大的数据运算功能,对采集的信号进行数字相关运算,计算出测量信号与参考信号的相位差,继而得到距离值。

4.1 激光相位式测距的基本原理

传统的相位法激光测距机,为了提高测量精度,通常需要把激光调制频率提高到几十兆甚至几百兆;为了增大量程,通常把激光调制频率降低到几兆甚至更低;为了提高测量相位的精度,通常把发射信号和回波信号与本振混频进行移相和鉴相测相。如要同时实现高精度和大量程,则需要多组激光调制频率,且随着测量精度的提高,调制频率会不断的提高,这些对电路性能要求会越来越高,电路的复杂度也会随之增大,各个信号之间的串扰会随之严重,这给高精度激光测距机的设计和制造带来很大的困难。为了克服这些困难,本文提出了一种把直接数字合成(DDS)技术与数字信号处理器(DSP)相结合的激光测距方法,利用DSP强大的实时信号处理的特点和DDS 器件能在一定带宽内产生任意频率的特点,只需把调制频率限制在10兆赫兹以内就可以达到很高的测量精度和很大的量程,而且在工作量提供了一定的理论设计[6]。本文就其基本原理, 系统框图和误差分析

第四章 数字相关检测技术改进方法设计

做详细的论述。

光以速度c 在大气中传播,在A、B 两点间往返一次所需时间与距离的关系可表示为:L= ct/2。

上式中L ─— 待测两点A、B 间的直线距离;c ─— 光在大气中传播的速度;t ─— 光往返AB 一次所需时间。由上式可知,距离测量实质是对光在AB 间传播时间的测量。由于对时间测量不够精确,所以将对时间的测量转化为对相位差的测量。相位差的测量可以达到很高的精度,故而距离的测量也就达到了很高的精度[7]。

激光测距是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返一次所产生的相位延迟,再根据调制光的波长换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间,如图4.1所示。

图4.1 测距相位示意图

Fig.4.1 range finder phase schematic drawing 相位式激光测距一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效地反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪大多配置了被称为合作目标的反射镜。

图4.2为典型的模拟测相电路的原理图[8]:

wо)t ] , E2 = Ecos[(ws

第四章 数字相关检测技术改进方法设计

经成为一个新的技术领域和独立的学科体系,当前已经形成了有潜力的产业和市场,在现代光电通信中也得到十分广泛和成功的应用。

广义来说,数字信号处理是研究用数字方法对信号进行分析、变换、滤波、检测、调制、解调以及快速算法的一门技术学科。但很多人认为:数字信号处理主要是研究有关数字滤波技术、离散变换快速算法和谱分析方法。随着数字电路与系统技术以及计算机技术的发展,数字信号处理技术也相应地得到发展,其应用领域十分广泛。数字滤波器 数字滤波器的实用型式很多,大略可分为有限冲激响应型和无限冲激响应型两类,可用硬件和软件两种方式实现。在硬件实现方式中,它由加法器、乘法器等单元所组成,这与电阻器、电感器和电容器所构成的模拟滤波器完全不同[9]。

4.2.1 数字信号处理的主要研究内容

数字信号处理主要研究用数字序列或符号序列表示信号,并用数字计算方法对这些序列进行处理,以便把信号变换成符合某种需要的形式。数字信号处理的主要内容包括频谱分析、数字滤波与信号的识别等。

数字信号处理中常用的运算有差分方程计算、相关系数计算、离散傅里叶变换计算、功率谱密度计算、矩阵运算、对数和指数运算、复频率变换及模数和数值转换等。很多数字信号处理问题,都可以用这些算法加上其它基本运算,经过适当的组合来实现[10]。

4.2.2 测试信号数字化处理的基本步骤

随着微电子技术和信号处理技术的发展,在工程测试中,数字信号处理方法得到广泛的应用,已成为测试系统中的重要部分。从传感器获取的测试信号中大多数为模拟信号,进行数字信号处理之前,一般先要对信号作预处理和数字化处理。而数字式传感器则可直接通过接口与计算机连接,将数字信号送给计算机(或数字信号处理器)进行处理[11]。

(1)预处理是指在数字处理之前,对信号用模拟方法进行的处理。把信号变成适于数字处理的形式,以减小数字处理的困难。如对输人信号的幅值进行处理,使信号幅值与A/D转换器的动态范围相适应;衰减信号中不感兴趣的高频成分,减小频混的影响;

1-广东技术师范学院本科毕业论文(相位法激光测距的理论设计)

隔离被分析信号中的直流分量,消除趋势项及直流分量的干扰等项处理。(2)A/D转换是将预处理以后的模拟信号变为数字信号,存入到指定的地方,其核心是A/V转换器。信号处理系统的性能指标与其有密切关系。

(3)对采集到的数字信号进行分析和计算,可用数字运算器件组成信号处理器完成,也可用通用计算机。目前分析计算速度很快,已近乎达到“实时”。

(4)结果显示一般采用数据和图形显示结果。

4.2.3 数字处理信号的优势

数字信号处理能广泛应用于现代光电通信中,是因为DSP与模拟信号处理相比,具有以下优点[12]:

(1)信号处理的动态范围大,有比模拟信大30dB的动态范围,因而有更高的精度。(2)数字信号处理仅受量化误差和有限字长的影响,处理过程不产生其它噪声,具有更高的信噪比。

(3)具有高度的灵活性,能够快速处理、缓存和重组,可以时分多用、并行处理,还可以灵活地改变系统参量和工作方式,并以利用系统仿真。(4)具有极好的重现性、可靠性和预见性。(5)算法具有直接的可实现性。

(6)对白噪声、非平衡干扰和多径干扰,可以有相应的最佳化的实现方法去进行特有的信号处理。

以上优点是DSP(数字信号处理)在现代光电等通信中应用的重要保证。

4.3 直接数字频率合成技术

直接数字频率合成技术(Direct Digital Frequency Synthesis,DDS),是从相位概念出发直接合成所需波形的一种新的频率合成技术。和传统的频率合成技术相比,他具有频率分辨率高、频率转变速度快、输出相位连续、相位噪声低、可编程和全数字化、便于集成等突出优点。DDS将先进的数字处理技术与方法引入信号合成领域,成为现代频率

2广东技术师范学院本科毕业论文(相位法激光测距的理论设计)

图4.4 改进的数字测相框图

Fig.4.4 The improvement numeral measures the diagram

改进的测量系统与原测量系统相比主要有以下区别:

1)主频率信号与参考频率信号都由直接数字频率合成器(简称DDS)产生,这种方法不仅输出频率的分辨率高,而且可以通过编程改变输出频率,很容易改变光尺,提高测距的精度。

2)经过混频、低通滤波器后的2 路信号进入模数转换电路(ADC),由DSP 控制在同一时刻启动2 路ADC 进行数据采集,并由DSP利用数字相关检测的方法测量相位差,得到距离值。

由于DSP 具有强大的实时处理特点和DDS 器件的宽带特性,可将DSP 和DDS 结合起来设计的一种新的激光测距方法。利用DSP 和DDS 器件产生一定带宽范围内的任意频率f ,在这任意频率中,用一定的扫频方法,找到相邻的两个使相位法激光测距的基本公式:L =mc/2f+Δφ/2πc2f 式中Δφ = 0的频率fs1整和fs2整计算L[14]。其系统结构框图为图4.5所示。

图4.5 基于DDS 和DSP 的激光测距机结构图

Fig.4.5 Based on DDS and DSP laser range finder structure drawing

415-广东技术师范学院本科毕业论文(相位法激光测距的理论设计)

图4.6 DSP 内部的软件流程图 Fig.4.6 DSP interior software flow chart

4.5 数字相关检测的原理及在本系统中的实现

互相关函数可以理解为2个信号的乘积的时间平均,这是一个很有用的统计量,一方面它可以用来了解2个未知信号之间的相似程度,或者2个已知信号的时间关系,另一方面它有很强的抗噪声能力,这是因为噪声信号的相关系数几乎为零,在微弱信号中经常使用相关检测的方法提取有用的信号[16]。信号x(t)和y(t)的互相关函数的严格定义如下:

式中: T 是平均时间,如果x(t)和y(t)是周期为T0 的周期信号,则只需要在它的1 个周期里作相关计算即可,即

, 通常直接称为时差, T 为采样时间间隔。

在本系统中为了分析方便, 先在模拟域中分析,由上面的分析可知经过混频器和低通滤波器输出的信号分别为[17]:

E1 = Dcos[(wsw0)t + φ] + n2(t)。

式中: n1(t)和n2(t)分别是随机噪声干扰项.由互相关的定义可知,信号E1 与E2 的互相关函数应是φ的函数,其表达式如下:

式中: T1 为差频信号的周期,由于随机噪声的相关性较差,由式(1)可得: R12(φ)= DEcosφ/2。(2)由式(2)可知, 要想得到相位差φ, 必须要知道D 和E 的值, D 和E 的值受外界的干扰比大,所以相关运算要做归一化处理.。经过模数转换电路的2 路信号分别表示为:

E1(n)= Dcos[(wsw0)n T + φ] + n2(n T)。在数字域内的相关函数为:

r12(φ)=1/N ∑E1(n)E2(n)。信号E1(n)和E2(n)的均方根值为:

除非输入信号幅度非常小,否则FFT运算结果可能导致溢出,为防止溢出的发生,FFT运算提供了归一化功能(可选择),就是输出结果被运算长度N所除。在FFT

71819300。

021-

下载激光三角法测量钢板厚度光学系统设计word格式文档
下载激光三角法测量钢板厚度光学系统设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐