数字信号心得体会[合集五篇]

时间:2019-05-12 14:38:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数字信号心得体会》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数字信号心得体会》。

第一篇:数字信号心得体会

数字信号分析心得体会

数字信号分析技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科,因此受到人们的普遍关注, 在通信、雷达、语音分析、图象分析、声学、地震学、地质勘探、气象学、生物医学工程、核工程、航天工程等领域中都离不开随机数字信号分析。对于我们本专业遥感来说,更是离不开数字信号的传输、分析、存储、显示和利用,可以说,数字信号就是遥感信息的载体。数字信号的主要任务是研究数字信号分析理论的基本概念和基本分析方法,通过建立数学模型和适当的数学处理分析,来展示这些理论和方法的实际应用。

本学期在黄鹰老师的带领下,我们首先学习了离散时间信号与系统,掌握了序列及其相关运算和线性移不变系统,并了解了常系数线性差分方程,为以后数字信号分析的学习打下了良好的基础。

第二章学习了z变换与离散时间傅里叶变换。Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散系统的差分方程转化为简单的代数方程,使其求解大大简化。因此,对求解离散时间系统而言,z变换是一个极重要的数学工具。在本章中深刻理解了z变换的定义与z 反变换及z变换的基本性质和定理,理清了序列的z变换与连续信号的拉普拉斯变换、傅里叶变换的关系,并对序列傅里叶变换、周期性傅里叶变换的定义及其基本性质有了深刻认识,在本章的最后学习了离散系统的系统函数及系统的频率响应。

第三章的内容是离散傅里叶变换。离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法即快速傅里叶变换也就是我们第四章要学习的部分,因而离散傅里叶变换在各种数字信号分析的算法中起着核心作用。在这一章中,我们首先了解了傅里叶变换的几种可能形式,即连续时间连续频率的傅里叶变换,连续时间离散频率的傅里叶级数,离散时间连续频率的序列的傅里叶变换,离散时间离散频率的离散傅里叶变换,并主要掌握了离散傅里叶级数及其相关性质和离散傅里叶变换及其相关性质,最后了解了抽样z变换------频域抽样理论。

第四章主要学习的是快速傅里叶变换。傅立叶变换(DFT)作为数字信号分析中的基本运算,发挥着重要作用。特别是快速傅立叶变换(FFT)算法的提出,减少了当N很大的时候DFT的运算量,使得数字信号分析的实现和应用变得更加容易,因此对FFT算法及其实现方法的研究具有很强的理论和现实意义,且实际价值不可估量。通过这一学期对数字信号分析课程的学习,使我对数字信号分析的方法有了进一步的了解,加深了对基本理论和概念的领悟程度,课程所涉及到的很多算法和思想对自己的研究方向有很大的启发,在今后的学习中将继续钻研相关理论和算法,尽早与科研实际相结合,实现学有所用。最后,感谢老师孜孜不倦的讲解,为我们引入新的思想,帮助我们在更广的领域学习。

第二篇:数字信号处理学习心得体会

数字信号处理学习心得

一、课程认识和内容理解

《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。

数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下:

第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。

第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。

第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。

第四单元的课程我们重点理解基2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。

第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。

第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。

第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器

二、专业认识和未来规划

通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。

对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的基础知识。

我选择了这个专业,在这里读了三年关于通信知识的书,我还是想以后毕业能够从事这个方面的工作,现在学了通信原理、数字信号处理这些很有用的专业课,所以,我在以后的学习中,我会把这些方面的知识学扎实,从事技术这一块要能吃苦,我也做好了准备,现在还很年轻,年轻的时候多吃点苦没什么,为了我自己美好的将来,我会努力学好这个专业的。

数字信号处理课程属于专业基础课,所涵盖的内容主要有:离散时间信号与系统的基本概念及描述方法,离散傅立叶变换及快速傅立叶变换,数字滤波器结构及设计等。对于电气信息类专业的学生来说,这些内容是学习后续专业课程的重要基础,也是实际工作中必不可少的专业基础知识。目前几乎所有的高等院校都在电子工程类、信息工程类、通信工程类、电子技术类、自动控制类、电气工程类、机电工程类、计算机科学类等工科电类及其他相关专业的本科生中开设了该门课程。随着计算机技术、微电子技术、数字信号处理理论和方法的发展,半个世纪以来,尤其是最近的三十来年里,数字信号处理的方法和应用得到了飞跃式的发展,数字信号处理的地位和作用变得越来越重要。因此,加强该课程的建设具有重要的意义。

三、课程评价和建议

我们的数字信号处理课是罗老师教的,罗老师有丰富工作的经验,对于这门课的实际用途很了解,另外罗老师本身就很幽默,对于这门课采用多种教学方法,丰富教学内容,偶尔给我们讲些生活上的问题,吸引学生对课程的关注。利用实验课让我们来编程做仿真,体会信号处理课程的乐趣,这样子激发了学生的兴趣、提高了教学的效果。因此,我们班的同学在这一个学期的学习中,我们都感觉比较轻松。另外我个人观点是大学主要是培养自己的自学能力,老师只是个引导者,所以学习效果如何关键看自己的对学习的态度和付出程度。

数字信号处理课程的特点是课程本身理论性强、公式推导较多、概念比较抽象,使我们感到有枯燥难学之感。近年来,国外及国内有些学校对一般电类专业该课程的教学主要强调应用性学习,主要介绍数字信号处理的用途和用法,而对其深奥的理论推导仅做一般介绍,并给学生提供进行实验的机会,以激发学生对该课程的兴趣和学习主动性。

对该课程的改革思想主要是课程内容要适应数字信号处理技术的发展现状,淡化枯燥的数学推导,辅助以现代化教学手段,并开设相应的实验课。结合专业现状,将课堂教学一部分变为多媒体教学,尽量将一些理论分析用图形手段展示出来,以增强我们的感性认识。实验课主要是以MATLAB为平台,充分利用MATLAB的数字信号处理各种功能让学生亲自动手将课堂所学进行仿真实现。实验课还可以通过用DSP试验箱实现数字信号处理的功能向学生进行演示。

第三篇:数字信号实验报告

科目:

数字信号处理

姓名:

殷超宇

班级:

14060142 学号:

1406014226

实验题目:Z Z 变换及离散时间系统分析

指导教师:

张志杰

分数:

实验题目:

Z 变换及离散时间系统分析

实验目的:

1、通过本实验熟悉 Z 变换在离散时间系统分析中的地位和作用。

2、掌握并熟练使用有关离散系统分析的 MATLAB 调用函数及格式,以深入理解离散时间系统的频率特性。

实验内容:

给定系统)8.0 /(2.0)(2   z z H,编程并绘出系统的单位阶跃响应 y(n),频率响应)e(jwH,并给出实验数据与代码。

参考代码:

详见《数字信号处理上机实验指导》(班群里有)

实验代码(代码从 B MATLAB)

软件复制粘贴于此处,教师检查重点): :

clear;

x=ones(100);% x(n)=1,n=1~100;

t=1:100;% t 用于后面的绘图;

b=[0,0,-0.2];% 形成向量 b;

a=[1,0,0.8];% 形成向量 a;

y=filter(b,a,x);% 求所给系统的阶跃响应;

plot(t,y,“k-”);grid on;

ylabel(“ y(n)”)

xlabel(“n”)

实验数据(图像或表格复制粘贴于此处,教师检查重点):

实验心得与收获(可手写):

a,b 两个向量转化成符合的格式。这是一个震荡衰减的信号,信号越来越弱,通过实验,对 matlab 的使用,有了进一步的了解。

第四篇:《数字信号处理》课程教学的心得体会

对《数字信号处理》课程教学的认识

“业精于勤而荒于嬉,行成于思而毁于随。”这是我的座右铭。我也一直用它来指导我学习《数字信号处理》这门课程课程。我是湖南涉外经济学院电气与信息工程学部通信工程0801班的谭星云。这学期在罗志年博士的讲授下,学习了《数字信号处理》这门课,采用的教材是程佩青教授主编清华大学出版社出版的《数字信号处理教程》(第三版)。通过这门课的学习,让我理解了信号分析和处理的基本原理、方法和技巧。数字信号可以通过对连续信号进行采样和量化(或离散数字化)后得到,再利用离散傅里叶变换(DFT)对其进行频谱分析。但是,离散傅里叶变 换(DFT)处理数字信号时,计算量太大,不便于实时计算,在计算时应采用快速傅里叶变换(FFT),快速傅里叶变换不是一种新的变换,而是离散傅里叶 变换的快速算法。学习的意义和重要性在于学习过程本身学习的意义和学习除了能掌握相关理论知识外,更重要的是我们在学习过程中我们的思考和得到的启示。

理论验证性实验的内容中应设置问题让学生思考。鼓励学生通过重新编写MATLAB程序验证个人答案。对于设计性实验,课程讲完之后要求学生根据课堂内容,编写相应的设计程序,当然对于用到的主要MATLAB函数要进行汇总和说明。设计工作完成后要编程验证设计的正确性。要引导学生学会利用MATLAB工具箱所提供的不同设计手段进行设计。比如FIR数字滤波器的设计,最常用的是窗函数设计法,学生可根据设计指标选择不同的窗函数和长度,在理想滤波器上加窗函数就可得到所需要的滤波器的单位脉冲响应,所设计的滤波器正确与否,要通过验证程序,有两种验证方法:求出所设计滤波器的频谱上的边界频率处的衰减;求时域信号通过滤波器时的响应。由于FIR滤波器的最大特点是实现线性相位特性,故还应检查滤波器对有效信号有无失真。通过该实验学会对FIR数字滤波器的设计方法及应用方法。从而为进一步的硬件设计打好基础。

罗老师将学生的需求、学生将来的发展方向等列为教学的首要目的,真正体现了以人为本的思想,这一点很多高校并没有做到,也值得很多高校借鉴和学习。现在很多高校或课程组为了自身的利益申请精品课程,指示从申报材料体现了自身的特点,但实际

中并没有做到这一点;很多高校为了数量上的要求,让能开双语教学的课程都开双语教学,根本不考虑老师自身的业务水平和学生的接受能力;很多老师为了自身的名誉或评职称的需要出书,根本没考虑书的质量;很多学校为了开设实验而开设实验,并没有考虑学生真正需要的是什么,最终搞的只不过是往上申报材料的一个砝码,学生并没有从实验中受益,甚至根本不知道目的何在。我觉得我们学校的数字信号处理课程教学的模式,从实际出发提高学生的能力,但有些还是需要不断地改进,不单单只是数字信号处理这个课程,不是为了形式上的需求而双语教学,真正做到了解学生所需,让学生有更多的机会学习前沿知识,参与到现实的数字信号处理过程中。当然要完成这一点并不是一个老师、一个课程组的努力就可以了,需要学校政策的支持、教学氛围的完善以及长期不懈的努力。

一直以来,我对信号课程的教学也是提倡概念的理解、分析方法的掌握,计算是次要的,如在滤波器设计部分,我让学生掌握设计的方法、过程和注意的要点。但是在实际教学中有时也很迷茫,因为考试的时候需要考计算,如果不通过计算学生是得不到练习,也没办法掌握方法。通过本学期《数字信号处理》和上学期《信号与系统》课程的学习,从罗老师和董老师得到很大的启发,通过淡化计算,注重概念的分析和理解以及该部分内容教学的目标,这样学生在学习过程中思路会更清楚,当然掌握的也更快、效果也更好。

在学习期间,罗志年博士就本课程的应用和地位内涵、精品课程的建设、双语教学、课程教学的基本要求和大纲以及如何让学生更佳受益和实践教学等方面做了详细的讲解。通过罗老师的指导,我得到很大的启发,通过淡化计算,注重概念的分析和理解以及该部分内容教学的目标,这样学生在学习过程中思路会更清楚,当然掌握的也更快、效果也更好。通过学习和交流,让我对《数字信号处理》这门课程和信号处理学科有了新的认识,新的见解。

第五篇:数字信号处理课程设计..

课程设计报告

课程名称: 数字信号处理 课题名称: 语音信号的处理与滤波

姓 名: 学 号: 院 系: 专业班级: 指导教师: 完成日期: 2013年7月2日

目录

第1部分 课程设计报告………………………………………3 一.设计目的……………………………………………3 二.设计内容……………………………………………3 三.设计原理……………………………………………3 四.具体实现……………………………………………5 1.录制一段声音…………………………………5 2.巴特沃斯滤波器的设计………………………8 3.将声音信号送入滤波器滤波…………………13 4.语音信号的回放………………………………19 5.男女语音信号的频谱分析……………………19 6.噪声的叠加和滤除……………………………22 五. 结果分析……………………………………………27 第2部分 课程设计总结………………………………28 一. 参考文献……………………………………………28

第1部分 课程设计报告

一.设计目的

综合运用本课程的理论知识进行频谱分析以及滤波器设计,通过理论推导得出相应结论,并利用MATLAB作为工具进行实现,从而复习巩固课堂所学的理论知识,提高对所学知识的综合应用能力,并从实践上初步实现对数字信号的处理。

二.设计内容

录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换法设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;换一个与你性别相异的人录制同样一段语音内容,分析两段内容相同的语音信号频谱之间有什么特点;再录制一段同样长时间的背景噪声叠加到你的语音信号中,分析叠加前后信号频谱的变化,设计一个合适的滤波器,能够把该噪声滤除;

三.设计原理

1.在Matlab软件平台下,利用函数wavrecord(),wavwrite(),wavread(),wavplay()对语音信号进行录制,存储,读取,回放。

2.用y=fft(x)对采集的信号做快速傅立叶变换,并用[h1,w]=freqz(h)进行DTFT变换。

3.掌握FIR DF线性相位的概念,即线性相位对h(n)、H()及零点的约束,了解四种FIR DF的频响特点。

4.在Matlab中,FIR滤波器利用函数fftfilt对信号进行滤波。

5.抽样定理

连续信号经理想抽样后时域、频域发生的变化(理想抽样信号与连续信号频谱之间的关系)

理想抽样信号能否代表原始信号、如何不失真地还原信号即由离散信号恢复连续信号的条件(抽样定理)

理想采样过程描述: 时域描述:

ˆa(t)xa(t)T(t)xa(t)(tnT)xa(nT)(tnT)xnnT(t)频域描述:利用傅氏变换的性质,时域相乘频域卷积,若

n(tnT)ˆa(t)Xa(j)xXa(j)xa(t)T(j)T(t)

则有

ˆ(j)1X(j)(j)XaaT2121ˆXa(j)Xa(jjk)Xa(jjks)TkTTkˆ(j)与X(j)的关系:理想抽样信号的频谱是连续信号频谱的Xaa

周期延拓,重复周期为s(采样角频率)。如果:

X(j)Xa(j)a0s/2s/2即连续信号是带限的,且信号最高频率不超过抽样频率的二分之一,则可不失真恢复。

奈奎斯特采样定理:要使实信号采样后能够不失真还原,采样频率必须大于信号最高频率的两倍:s2h 或 fs2fh

四.具体实现

1.录制一段声音

1.1录制并分析

在MATLAB中用wavrecord、wavread、wavplay、wavwrite对声音进行录制、读取、回放、存储。

程序如下:

Fs=8000;%抽样频率 time=3;%录音时间 fprintf('按Enter键录音%ds',time);%文字提示 pause;%暂停命令 fprintf('录音中......');x=wavrecord(time*Fs,Fs,'double');%录制语音信号 fprintf('录音结束');%文字提示 fprintf('按Enter键回放录音');pause;%暂停命令

wavplay(x,Fs);%按任意键播放语音信号

wavwrite(x,Fs,'C:UsersacerDesktop数字信号sound.wav');%存储语音信号

N=length(x);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(2);subplot(2,1,1);plot(x);%录制信号的时域波形 title('原始信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格

y0=fft(x);%快速傅立叶变换 figure(2);subplot(2,1,2);plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 title('原始信号的频谱图');%加标题

grid;%加网格

图1.1 原始信号的时域与频谱图

1.2滤除无效点

针对实际发出声音落后录制动作半拍的现象,如何拔除对无效点的采样的问题: 出现这种现象的原因主要是录音开始时,人的反应慢了半拍,导致出现了一些无效点,而后而出现的无效的点,主要是已经没有声音的动作,先读取声音出来,将原始语音信号时域波形图画出来,根据己得到的信号,可以在第二次读取声音的后面设定采样点,取好有效点,画出滤除无效点后的语音信号时域波形图,对比可以看出。这样就可以解决这个问题。

x=wavread('C:UsersacerDesktop数字信号sound.wav', 7

[4000,24000]);%从4000点截取到24000结束 plot(x);%画出截取后的时域图形 title('截取后的声音时域图形');%标题 xlabel('频率');ylabel('振幅');grid;%画网格

图1.2 去除无效点

2.巴特沃斯滤波器的设计

2.1设计巴特沃思低通滤波器

MATLAB程序如下。滤波器图如图3.3所示。

%低通滤波

fp=1000;fs=1200;Fs=22050;rp=1;rs=100;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;Fs1=1;wap=2*tan(wp/2);was=2*tan(ws/2);[N,wc]=buttord(wap,was,rp,rs,'s');[B,A]=butter(N,wc,'s');[Bz,Az]=bilinear(B,A,Fs1);figure(1);[h,w]=freqz(Bz,Az,512,Fs1*22050);plot(w,abs(h));title('巴特沃斯低通滤波器');xlabel('频率(HZ)');ylabel('耗损(dB)');gridon;9

图2.1 巴特沃思低通滤波器

2.2设计巴特沃思高通滤波器

MATLAB程序如下。滤波器图如图3.5所示。%高通滤波

fp=4800;fs=5000;Fs=22050;rp=1;rs=100;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;T=1;Fs1=1;wap=2*tan(wp/2);was=2*tan(ws/2);10

[N,wc]=buttord(wap,was,rp,rs,'s');[B,A]=butter(N,wc,'high','s');[Bz,Az]=bilinear(B,A,Fs1);figure(1);[h,w]=freqz(Bz,Az,512,Fs1*22050);plot(w,abs(h));title('巴特沃斯高通滤波器');xlabel('频率(HZ)');ylabel('耗损(dB)');grid on;

图2.2巴特沃思高通滤波器

2.3设计巴特沃思带通滤波器

MATLAB程序如下。滤波器图如图3.7所示。%带通滤波

fp=[1200,3000];fs=[1000,3200];Fs=8000;rp=1;rs=100;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;T=1;Fs1=1;wap=2*tan(wp/2);was=2*tan(ws/2);[N,wc]=buttord(wap,was,rp,rs,'s');[B,A]=butter(N,wc,'s');[Bz,Az]=bilinear(B,A,Fs1);figure(4);[h,w]=freqz(Bz,Az,512,Fs1*1000);plot(w,abs(h));title('巴特沃斯带通滤波器');xlabel('频率(HZ)');ylabel('耗损(dB)');grid on;12

图2.3巴特沃思带通滤波器

3.将声音信号送入滤波器滤波

x=wavread('C:UsersacerDesktop数字信号sound.wav');%播放原始信号

wavplay(x,fs);%播放原始信号 N=length(x);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(4);subplot(4,2,1);plot(x);%录制信号的时域波形

title('原始信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格

y0=fft(x);%快速傅立叶变换 subplot(4,2,3);plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 title('原始信号的频谱图');%加标题 grid;%加网格

3.1低通滤波器滤波 fs=8000;beta=10.056;wc=2*pi*1000/fs;ws=2*pi*1200/fs;width=ws-wc;wn=(ws+wc)/2;n=ceil(12.8*pi /width);h=fir1(n,wn/pi,'band',kaiser(n+1,beta));[h1,w]=freqz(h);

ys=fftfilt(h,x);%信号送入滤波器滤波,ys为输出 fftwave=fft(ys);%将滤波后的语音信号进行快速傅立叶变换 figure(4);subplot(4,2,2);%在四行两列的第二个窗口显示图形 plot(ys);%信号的时域波形

title('低通滤波后信号的时域波形');%加标题 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 grid;%网格

subplot(4,2,4);%在四行两列的第四个窗口显示图形 plot(f, abs(fftwave(n1)));%绘制模值 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义

title('低通滤波器滤波后信号的频谱图');%标题 grid;%加网格

wavplay(ys,8000);%播放滤波后信号

3.2高通滤波器滤波 fs=8000;beta=10.056;ws=2*5000/fs;wc=2*4800/fs;

width=ws-wc;wn=(ws+wc)/2;n=ceil(12.8*pi/width);h=fir1(n,wn/pi, 'high',kaiser(n+2,beta));[h1,w]=freqz(h);ys=fftfilt(h,x);%将信号送入高通滤波器滤波 subplot(4,2,5);%在四行两列的第五个窗口显示图形 plot(ys);%信号的时域波形 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 title('高通滤波后信号的时域波形');%标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%网格

fftwave=fft(ys);%将滤波后的语音信号进行快速傅立叶变换 subplot(4,2,7);%在四行两列的第七个窗口显示图形 plot(f,abs(fftwave(n1)));%绘制模值 axis([0 1 0 50]);xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义

title('高通滤波器滤波后信号的频谱图');%标题 grid;%加网格

wavplay(ys,8000);%播放滤波后信号

3.3带通滤波器 fs=8000;beta=10.056;wc1=2*pi*1000/fs;wc2=2*pi*3200/fs;ws1=2*pi*1200/fs;ws2=2*pi*3000/fs;width=ws1-wc1;wn1=(ws1+wc1)/2;wn2=(ws2+wc2)/2;wn=[wn1 wn2];n=ceil(12.8/width*pi);h=fir1(n,wn/pi,'band',kaiser(n+1,beta));[h1,w]=freqz(h);ys1= fftfilt(h,x);%将信号送入高通滤波器滤波 figure(4);subplot(4,2,6);%在四行两列的第六个窗口显示图形 plot(ys1);%绘制后信号的时域的图形 title('带通滤波后信号的时域波形');%加标题 xlabel('频率w/pi');ylabel('幅值/A');%显示纵坐标表示的意义 grid;%网格

fftwave=fft(ys1);%对滤波后的信号进行快速傅立叶变换 subplot(4,2,8);%在四行两列的第八个窗口显示图形

plot(f, abs(fftwave(n1)));%绘制模值 axis([0 1 0 50]);xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 title('带通滤波器滤波后信号的频谱图');%加标题 grid;%网格

wavplay(ys1,8000);%播放滤波后信号 图形如下:

原始信号的时域波形幅值/A0-1012x 10原始信号的频谱图34幅值/A1低通滤波后信号的时域波形0.50-0.5012频率w/pi3400.51频率w/pi高通滤波后信号的时域波形幅值/A0幅值/A0幅值/Ax 10高通滤波器滤波后信号的频谱图5012频率w/pi34幅值/A0.20-0.2幅值/A2001000x 10低通滤波器滤波后信号的频谱图200100000.51频率w/pi带通滤波后信号的时域波形0.50-0.501234频率w/pix 10带通滤波器滤波后信号的频谱图50幅值 00.5频率w/pi1000.5频率w/pi1

分析:三个滤波器滤波后的声音与原来的声音都发生了变化。其中低

通的滤波后与原来声音没有很大的变化,其它两个都又明显的变化

4.语音信号的回放

sound(xlow,Fs,bits);%在Matlab中,函数sound可以对声音进行回放,其调用格式: sound(xhigh, Fs,bits);%sound(x, Fs, bits);sound(xdaitong, Fs,bits);5.男女语音信号的频谱分析

5.1 录制一段异性的声音进行频谱分析

Fs=8000;%抽样频率 time=3;%录音时间 fprintf('按Enter键录音%ds',time);%文字提示 pause;%暂停命令 fprintf('录音中......');x=wavrecord(time*Fs,Fs,'double');%录制语音信号 fprintf('录音结束');%文字提示 fprintf('按Enter键回放录音');pause;%暂停命令 wavplay(x,Fs);%按任意键播放语音信号

wavwrite(x,Fs,'C:UsersacerDesktop数字信号sound2.wav');%存储语音信号

5.2 分析男女声音的频谱

x=wavread(' C:UsersacerDesktop数字信号sound2.wav ');%播放原始信号,解决落后半拍

wavplay(x,fs);%播放原始信号 N=length(x);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;

f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(1);subplot(2,2,1);plot(x);%录制信号的时域波形

title('原始女生信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格

y0=fft(x);%快速傅立叶变换 subplot(2,2,2);plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始女生信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 grid;%加网格

[y,fs,bits]=wavread(' C:UsersacerDesktop数字信号sound.wav ');% 对语音信号进行采样

wavplay(y,fs);%播放原始信号 N=length(y);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 subplot(2,2,3);plot(y);%录制信号的时域波形

title('原始男生信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格

y0=fft(y);%快速傅立叶变换

subplot(2,2,4);%在四行两列的第三个窗口显示图形 plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始男生信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 grid;%加网格

5.3男女声音的频谱图

原始女生信号的时域波形0.50-0.5-1150100原始女生信号的频谱图幅值/A幅值 012345000x 10原始男生信号的时域波形0.50.5频率w/pi原始男生信号的频谱图1300200幅值/A0幅值 012x 1034100-0.5000.5频率w/pi1

图5.3男女声音信号波形与频谱对比

分析:就时域图看,男生的时域图中振幅比女生的高,对于频谱图女生的高频成分比较多

6.噪声的叠加和滤除

6.1录制一段背景噪声

Fs=8000;%抽样频率 time=3;%录音时间 fprintf('按Enter键录音%ds',time);%文字提示 pause;%暂停命令 fprintf('录音中......');x=wavrecord(time*Fs,Fs,'double');%录制语音信号

fprintf('录音结束');%文字提示 fprintf('按Enter键回放录音');pause;%暂停命令 wavplay(x,Fs);%按任意键播放语音信号 wavwrite(x,Fs,'C:UsersacerDesktop数字信号噪音.wav');%存储语音信号

6.2 对噪声进行频谱的分析

[x1,fs,bits]=wavread(' C:UsersacerDesktop数字信号噪音.wav ');%对语音信号进行采样

wavplay(x1,fs);%播放噪声信号 N=length(x1);%返回采样点数 df=fs/N;%采样间隔

n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(5);subplot(3,2,1);plot(x1);%信号的时域波形 title('噪声信号的时域波形');grid;ylabel('幅值/A');y0=fft(x1);%快速傅立叶变换

subplot(3,2,2);plot(f,abs(y0(n1)));%噪声信号的频谱图 ylabel('幅值');title('噪声信号的频谱图');

6.3原始信号与噪音的叠加

fs=8000;[x,fs,bits]=wavread(' C:UsersacerDesktop数字信号sound.wav ');%对录入信号进行采样

[x1,fs,bits]=wavread(' C:UsersacerDesktop数字信号噪音.wav ');%对噪声信号进行采样

yy=x+x1;%将两个声音叠加

6.4叠加信号的频谱分析:

wavplay(yy,fs);%播放叠加后信号 N=length(yy);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(5);subplot(3,2,3);plot(yy,'LineWidth',2);%信号的时域波形

title('叠加信号的时域波形');xlabel('时间/t');ylabel('幅值/A');grid;y0=fft(yy);%快速傅立叶变换 subplot(3,2,4);plot(f,abs(y0(n1)));%叠加信号的频谱图 title('叠加信号的频谱图');xlabel('频率w/pi');ylabel('幅值/db');grid;

6.5 设计一个合适的滤波器将噪声滤除 fs=18000;%采样频率 Wp=2*1000/fs;%通带截至频率 Ws=2*2000/fs;%阻带截至频率 Rp=1;%最大衰减 Rs=100;%最小衰减

[N,Wn]=buttord(Wp,Ws,Rp,Rs);%buttord函数(n为阶数,Wn为截至频率)

[num,den]=butter(N,Wn);%butter函数(num为分子系数den为分母系数)

[h,w]=freqz(num,den);%DTFT变换

ys=filter(num,den,yy);%信号送入滤波器滤波,ys为输出 fftwave=fft(ys);%将滤波后的语音信号进行快速傅立叶变换 figure(5);subplot(3,2,5);plot(ys);%信号的时域波形

title('低通滤波后信号的时域波形');%加标题 ylabel('幅值/A');%显示标表示的意义 grid;%网格 subplot(3,2,6);plot(f, abs(fftwave(n1)));%绘制模值 title('低通滤波器滤波后信号的频谱图');%标题 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 grid;%加网格

wavplay(ys,8000);%播放滤波后信号 grid;图形如下:

噪声信号的时域波形1100噪声信号的频谱图幅值/A0-1幅值0123450000.5叠加信号的频谱图1x 10叠加信号的时域波形10-101时间/t2200幅值/db34幅值/A100000.5频率w/pi1x 10低通滤波后信号的时域波形0.5低通滤波器滤波后信号的频谱图200幅值/A0-0.5幅值/A012x 1034100000.5频率w/pi1

图6.1噪音的叠加与滤除前后频谱对比

7.结果分析

1.录制刚开始时,常会出现实际发出声音落后录制动作半拍,可在[x,fs,bits]=wavread('d:matlavworkwomamaaiwo.wav')加 窗[x,fs,bits]=wavread('d:matlavworkwomamaaiwo.wav',[100 10000]),窗的长度可根据需要定义。

2.语音信号通过低通滤波器后,把高频滤除,声音变得比较低沉。当通过高通滤波器后,把低频滤除,声音变得比较就尖锐。通过带通滤波器后,声音比较适中。

3.通过观察男生和女生图像知:时域图的振幅大小与性别无关,只与说话人音量大小有关,音量越大,振幅越大。频率图中,女生高 27

频成分较多。

4.叠加噪声后,噪声与原信号明显区分,但通过低通滤波器后,噪声没有滤除,信号产生失真。原因可能为噪声与信号频率相近无法滤除。

第2部分 课程设计总结

通过本次课程设计,使我们对数字信号处理相关知识有了更深刻的理解,尤其是对各种滤波器的设计。在设计的过程中遇到了很多问题,刚刚开始时曾天真的认为只要把以前的程序改了参数就可以用了,可是问题没有我想象中的那么简单,单纯的搬程序是不能解决问题的。通过查阅资料和请教同学收获了很多以前不懂的理论知识。再利用所学的操作,发现所写的程序还是没有能够运行,通过不断地调试,运行,最终得出了需要的结果。整个过程中学到了很多新的知识,特别是对Matlab的使用终于有些了解。在以后的学习中还需要深入了解这方面的内容。在这次的课程设计中让我体会最深的是:知识来不得半点的马虎。也认识到自己的不足,以后要进一步学习。

八.参考文献

[1]数字信号处理教程(第三版)程佩青 清华大学出版社 [2]MATLAB信号处理 刘波 文忠 电子工业出版社 [3]MATLAB7.1及其在信号处理中的应用 王宏 清华大学出版社

[4]MATLAB基础与编程入门 张威 西安电子科技大学出版社

[5] 数字信号处理及其MATLAB实验 赵红怡 张常 化学工业出版社

[6]MATLAB信号处理详解 陈亚勇等 人民邮电出版社 [7] 数字信号处理

钱同惠 机械工业出版社 29

下载数字信号心得体会[合集五篇]word格式文档
下载数字信号心得体会[合集五篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数字信号处理实验报告

    JIANGSU UNIVERSITY OF TECHNOLOGY 数字信号处理实验报告 学院名称: 电气信息工程学院专 业: 班 级: 姓 名: 学 号: 指导老师: 张维玺(教授) 2013年12月20日 实验一 离散时间信......

    数字信号处理课程设计

    目 录 摘要........................................................................................................................................... 1 1 绪论 .......

    数字信号处理实验报告

    南京邮电大学 实 验 报 告 实验名称_____熟悉MATLAB环境 ___ 快速傅里叶变换及其应用 ____IIR数字滤波器的设计_ FIR数字滤波器的设计 课程名称 数字信号处理A 班级学号_......

    数字信号处理学习心得

    数字信号处理学习心得 XXX ( XXX学院 XXX班) 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理......

    数字信号处理学习心得

    数字信号处理学习心得 通信工程 0801 赖立根 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方......

    数字信号实习报告

    数字信号上机实习报告 学院:机电学院 班级:071103-27 姓名:高玉环 指导老师:王晓莉 专题一 一、实验内容 设线性时不变(LTI)系统的冲激响应为h(n),输入序列为x(n) 1、h(n)=(......

    数字信号处理2010试卷及参考答案

    《数字信号处理》 参考答案 1. Determine the period of the sinusoidal sequence x(n)5sin(0.04n). Determine another distinct sinusoidal sequence having the same per......

    数字信号处理习题解答(范文大全)

    数字信号处理习题解答 第1-2章: 1. 判断下列信号是否为周期信号,若是,确定其周期。若不是,说明理由 (1)f1(t) = sin2t + cos3t (2)f2(t) = cos2t + sinπt 2、判断下列序列是否为......