第一篇:商的近似数教学设计(已修改)
商的近似数教学设计
大仓镇小河小学教师:字焱芬
教学内容 :
教材第23页的例7和“做一做”中的题目。
教学目标:
1、理解用“四舍五入”法求商的近似数的方法。
2、会用“四舍五入”法求商的近似数。
3、了解商的近似数在日常生活中的应用价值,提高学生的比较、分析、判断的能力。
教学重点和难点:
重点:掌握用“四舍五入”法求商的近似数的方法。
难点:会用“四舍五入”法求商的近似数。
教学过程 :
一、复习导入新课
1.按“四舍五入法”,将下列各数保留一位小数。
6.03 7.98 2.按“四舍五入”法,将下列各数保留两位小数。
8.785 7.602 4.003 5.897 3.996 做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉。
3.计算0.38×1.14(得数保留两位小数)
二、讲授新课
1.教学例7.爸爸给王鹏新买了1筒羽毛球(一打装),用了19.4元,一个大约多少钱?(一打是12个)
分析及解法 如何使用修师出示例6,口述图意, 再列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书.教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)
我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点? 订标记?
2.想一想:“怎样求商的近似值?”
3.练习
第23页“做一做”。
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)教师问:你解题时用了什么技巧?
三、巩固练习
1、求下面各数的近似数:
3.81÷7
32÷42
246.4÷13
2、P26 10.四、小结
请学习小组讨论,组间交流,师生共同订正。说明:删除“五拓展练习”在教学中,本节课时间不够
六、课后反思:
通过这节课,你学会了什么?
本以为求近似数是教学难点,所以在新授前安排了大量相关知识的复习.但在实际教学中才发现计算才是真正的教学难点, 由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时, 许多学生装都忘记了“一看, 二移”的步骤.所以在设计巩固练习时应增加小数除以小数的练习.其次我根据学情补充介绍了一种求商近似数的简便方法.即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。
2012年9月26日
第二篇:《商的近似数》教学设计
商的近似数
教学内容 :教科书第32页的例6和“做一做”。教学目的 :
1.使学生学会根据实际需要用“四舍五入”来求小数的近似数. 2.提高学生的比较、分析、判断的能力。教学重难点:
能根据实际需要用“四舍五入”来求小数的近似数.
教学过程 :
一、复习
1.按“四舍五入法”,将下列各数保留一位小数.
3.72 4.18 5.25 6.03 7.98 2.按“四舍五入”法,将下列各数保留两位小数. 1.483 8.785 2.864 7.602 3.996 做完题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
二、新课
1.教学例6。课件出示例6:爸爸给王鹏新买了一筒羽毛球,一筒有12个羽毛球,共19.4元,每个羽毛球大约多少钱?
要求根据书上提出的信息列式计算:19.4÷12 当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)
教师问:保留一位小数,应该等于多少?表示计算到“角”。教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”。)
2.完成第32页“做一做”。
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数。)
教师问:你解题时用了什么技巧?
三、巩固练习:
1.求下面各数的近似数:
3.81÷7
32÷42
246.4÷13
第三篇:商的近似数教学设计
《商的近似数》教学设计
岚皋县城关二小 冯仕梅
教学内容:
义务教育人教版五年级数学上册课本第32页,第三单元第六课时:商的近似数。
教材分析:
在小数除法中经常会出现除不尽或者商的小数位数较多的情况。但在实际生活和工作中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。通过学习学生可以根据具体情况灵活处理商,因此,这部分内容的教学很重要。同时,根据这部分内容与生活的紧密联系,一方面进一步巩固了小数除法,另一方面培养了学生灵活解决问题的能力,使学生真正体会到了学有所用。
在学习了求积的近似数的方法、小数除法后,学生再来学习求商的近似数,不会感到太困难。应把本节课的重点放在引导学生能根据实际情况进行正确地分析,选择正确的方法取商的近似数。
教学目标:
1.使学生掌握求商的近似数的方法,能根据实际情况和要求求商的近似数。
2.提高学生的比较、分析、判断的能力,培养学生的实践能力和思维的灵活性。
3.让学生感受数学与现实生活密切相关,培养学习数学的兴趣,学好数学并应用于生活,让生活因为数学而精彩。
教学重点:
让学生学会用“四舍五入”法取商的近似数。
教学难点:
结合实际情况和要求来求商的近似数。教学过程: 一.复习导入
1、复习旧知:用“四舍五入”法求近似数,强调求近似数的方法。
2、师:在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,我们今天这节课就来一起研究求商的近似数。(板书课题:商的近似数)
二.探究新知
(一)、引导发现新知。1.教学例6:
课件出示例题:爸爸给王鹏新买了1筒羽毛球。一筒羽毛球有12个,共19.4元,一个羽毛球大约多少钱?
2、引导学生分析题目中的条件和问题,说一说应该怎样列式?为什么这样列式?
3、指名分析等量关系,并列式。
(教师板书)19.4÷12 然后师生一起列竖式板演。
4、发现除不尽时,思考该怎么办? 强调计算钱的时候,一般保留两位小数,表示精确到分;在我们这个小城市,一般需要保留一位
小数,只需要精确到角。
5、回顾一下,刚刚在求商的近似数时,在计算时需要注意什么? 小结,课件出示:求商的近似值时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
(二)、应用新知。
1、课件出示课本32页“做一做”。分别指名上黑板板演。
2、班内汇报小结求商的近似数需要注意地方:要计算到比保留的小数位数多一位,然后再用“四舍五入“法取近似数。
三、巩固提高:
1、进行闯关游戏。
2、强调求商的近似数和积的近似数有何区别;结合生活实际体会用进一法和去尾法取商的近似数。
3、全课小结。
4、自学知识延伸。
板书设计:
求商的近似数
19.4÷12≈1.62(元)
19.4÷12≈1.6(元)
竖式 17÷5≈ 4(条)
37÷1.8≈ 20(套)
教学反思:
本节课的知识是在学习了小数除法的基础上教学的。在小数除法中经常出现除不尽,或者商的小数位数较多的情况,但是在实际生
活和工作中,并不总是需要求出很多位小数的商,这就需要求商的近似数了。
成功之处:
1、创设情境,突出取近似值的意义。在例6的教学中,主要解决这样两个问题:一是体会求商的近似数的必要性;二是掌握取商的近似值的方法。学生通过计算每个羽毛球大约多少钱,计算的结果是1.616元,可以让学生体会到计算到这里计算的是钱数,实际生活中不需要三位小数,最多可以保留两位小数,表示精确到分,而在超市付钱时可以保留一位小数,表示精确到角。由此可以使学生想到:解决问题时,即使能除尽,有时也需要根据实际情况取近似值,如价钱、人数、个数等。
2、联系旧知,横向比较。在学习商的近似值时联系积的近似值,找出它们的相同点,都是把比保留的小数位数多一位的数进行四舍五入。
不足之处:
学生在计算中还是存在计算速度慢,计算不准确的现象,特别是商中间有0的除法计算出错率特别高。
再教设计:
在教学小数除法时还是需要复习试商的方法,特别是特殊的数。在学习商的近似值时,也可以根据学生的学习程度,适当介绍简便方法,也就是除到要保留的小数位数后,不用再继续除,只要把余数同除数比较,若余数比除数的一半小,就说明求出下一位的商小于5,直接舍去;若余数等于或大于除数的一半,就说明求出下一位的商等于或大于5,就在已经求得的商的末位上加1。
第四篇:《商的近似数》教学设计
商的近似数
一、教学内容:
人教版五年级上册教科书P23~26例7。
二、教学目标:
1.使学生经历解决实际问题的过程,掌握用“四舍五入”法正确求出商的近似数,能应用所学知识解决生活中简单的实际问题。
2.在探究学习的过程中,培养学生灵活解决问题的能力。3.进一步体会数学与现实生活的密切联系。
三、教学重点:用“四舍五入”法求商的近似数。
四、教学难点:会根据实际需要求商的近似数。
五、教法要素:
1.已有的知识经验:(1)小数除法的计算(2)四舍五入法(3)求积的近似数。
2.原型:19.4÷12≈__(元)3.探究的问题:
(1)计算钱数时,如果算到“分”,需要保留几位小数?除的时候怎么办?如果算到“角”,需要保留几位小数?除的时候怎么办?
(2)怎样求商的近似数?
(3)求商的近似数和求积的近似数有什么相同点和不同点?
六、教学过程:
(一)唤起与生成
1.出示题目:按要求计算下面各题。1.2×2.8(得数保留一位小数)0.82×1.1(得数保留两位小数)
让学生独立完成,集体订正。订正时,让学生说一说怎样求积的近似数。2.切入:刚才同学们用“四舍五入”法求出了积的近似数,那么在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。那怎样求商的近似数呢?这节课我们一起来探究如何求商的近似数。板书课题:商的近似数。
(二)探究与解决
1.出示例7,让学生理解题意。(1)列式计算。
教师巡视学生做题情况:学生发现这个除法算式除不尽1.616666666„。教师说明:在实际计算钱数时,有时只算到“分”,有时只算到“角”。(2)提出问题:要求一个羽毛球大约多少钱?
如果算到“分”,需要保留几位小数?除的时候怎么办? 如果算到“角”,需要保留几位小数?除的时候怎么办?(3)独立思考。
(引导学生结合生活经验和求积的近似数的方法去独立思考。)(4)小组讨论。
(5)展示汇报。(教师将重点部分板书在黑板上)
算到“分”:要保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数。
19.4÷12≈1.62﹙元﹚
↑ 1.616 算到“角”:要保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。
19.4÷12≈1.6﹙元﹚
↑ 1.61(6)师生小结:如果算到“分”,需要保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;如果算到“角”,需要保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。
(7)补充事例,举一反三。出示:P23“做一做”。
让学生独立解决,集体订正。订正时,让学生说一说它们不同的近似数分别是怎样求的。重点让学生说说近似数的末尾有0的,是怎样处理的。
(8)归纳概括:求商的近似数的方法。
求商的近似数时,首先要根据实际需要或题目的要求,确定应该保留几位小数;其次,求商时,要除到比需要保留的小数位数多一位,然后再按照“四舍五入”法求商的近似数。
2.比较求商的近似数和求积的近似数的异同点。
(1)提出问题:求商的近似数和求积的近似数有什么相同点和不同点?(2)独立思考,同桌交流。(3)全班交流。
(4)共同小结:它们的相同点都是按“四舍五入法”求近似数。不同的是,求商的近似数只要计算时比要保留的小数位数多除出一位就可以了;而求积的近似数时则要计算出整个积的值以后再取近似数。
(三)训练与应用
1.练习四第10题。
这是一道求商的近似数的题目,由于商是近似数,用乘法验算,不好说明结果正确与否,用再除一遍的方式验算,又要两次笔算,为了减轻学生的负担,同时体会计算器的作用,这里可以要求用计算器验算。
2.练习四第11题。
要求学生独立解决,集体订正。
(四)小结与提高
1.总结学习收获:为什么要求商的近似数、怎样求商的近似数、求商的近似数和求积的近似数的异同点等等。
2.评价学习表现。
3.课外延伸:求商的近似数有没有更简便的方法?课下有兴趣的同学可以搜集、查阅有关资料。
第五篇:32页商的近似数 教学设计
五年级上册《商的近似数》教学设计 教学内容
人教版五年级上册第32页例6。教学目标 1.知识与能力:
(1)结合具体情境,让学生掌握用“四舍五入”法正确的按题意求商的近似数。2.过程与方法:
(1)能根据实际情况进行求近似数。
(2)根据实际情况,帮学生从计算过程中理解根据需要保留上的位数的方法。
(3)通过自主探究交流,让学生掌握求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。
3.情感、态度、价值观:培养学生数学知识,在实际生活中灵活应用的能力。教学重难点
教学重点:掌握用“四舍五入”法取商的近似数。
教学难点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。
教学过程
一、复习导入
按照“四舍五入”法求出下面各数的近似值
保留整数
保留一位小数
保留两位小数
精确到千份位 6.0294 0.9298 9.9949 2.计算:0.38×0.14(得数保留两位小数)
二、学与探 1.学习例6。
出示例6:有个小朋友叫王鹏,他特别喜欢打羽毛球,这天他爸爸给他新买了一筒羽毛球,一筒里面装了一打羽毛球。师:那你们知道这一筒羽毛球有多少个吗?(12个)师:你怎么知道有12个?(一打就是12个)
师:如果这筒羽毛球19.4元,那你们现在能算出一个羽毛球是多少钱吗?请同学们在课堂练习本上列式计算出结果。(学生自主列式计算,老师巡视)师:好了,同学们,请大家停止计算。你们是不是遇到了什么问题了?(算式除不尽)
师:那一个羽毛球到底是多少钱呢?这个1.61666……到底是多少钱呢?是不是我们就没办法定出一个羽毛球的价钱呢?同学们,四人一小组讨论一下,你们准备怎么给这个羽毛球定价?为什么?(学生讨论并汇报)
师:同学们,这么多定价,你们觉得哪种更合理些?为什么? 师:给这个羽毛球定价1.6元和1.62元,两种定价有什么不同呢?
(定价1.6元,是保留一位小数;定价1.62元,是保留两位小数)师:如果是定价2元呢?(是保留整数)
师:那这些价格是不是一个羽毛球的最精确的价格呢?(只是接近准确价格,是近似数)
师:当用近似数作为结果的时候,应该用什么数学符号呢?(用约等于号)
教师板书:19.4÷12≈1.6(元)或19.4÷12≈1.62(元)
师:在我们的生活中,常常遇到小数除法除不尽的情况,下次遇到同样的问题,你们会解决吗?怎样解决?(用“四舍五入”法取近似数;根据不同情况保留一定的小数位数)师:现在我们来做一些题目,大家有信心吗?
设计意图:给学生充足的时间进行讨论,根据实际情况进行四舍五入,培养学生知识迁移的能力。2.研究求商的技巧。出示一道计算题:48÷23(得数保留两位小数)师:同学们计算出结果了吗?是多少?(2.08695)师:谁的比较简练?为什么? 师:为什么算到第三位就够了?
(要保留两位小数,我们只要看小数第三位上的数字是不是比5大就可以了)
师:老师现在把题目变一变,要求保留一位小数,应该计算到什么位?(计算到第二位小数)
师:谁能用一句话概括出你们的发现?
总结:当我们求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”取商的近似值。
三、练与展
1、练习见课件。(计算、判断、选择)
2、猜一猜。
师:同学们,老师买了一个毽子大约花了2元钱,你们猜猜,这个毽子多少钱?
师:仔细想一想,这个毽子的价格在什么范围内。(1.5元到2.4元之间)
师:在这个范围内,哪一段属于四舍,哪一段属于五入呢?
(1.5元到1.9元属于五入,2.1元到2.4元属于四舍。)
3、准确数与近似数:
准确数:在日常生活和生产实际所遇到的数中,有时可以得到完全准确的数,它们精确,没有误差。如,5(2)班有学生50人,这里的50是准确数。
近似数:由于实际中常常不需要用精确的数描述一个量,或不可能得到精确的数。例如:中国约有15亿人。这里的15就是近似数。
四、课堂小结
通过这节课的学习,你有什么收获呢?
总结:这节课我们学习了求商的近似数,方法是“四舍五入”法,而且计算的时候计算到比保留的数位多一位就可以了。
五、布置作业
教材第36页练习八第1题。
六、教后反思:
本节课通过复习“四舍五入”进行导入,因为“四舍五入”法是学生原有的知识,对学生来说一点也不难,但对于基础相对薄弱的学生仍然需要给学生充足的时间思考。