第一篇:圆锥的体积教学设计和反思2
圆锥的体积教学设计
北师大教材六年级下p11-13 教学目标:
1、进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。
2、提高自己运用所学知识解决实际问题的能力和动手操作的能力。
3、感受数学与实际生活的密切联系。
教学重点:理解和掌握圆锥体积的计算公式。
教学难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
教学关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。教学过程:
一、复习导入
1、说出圆柱和圆锥各部分的名称及特征:
3、圆柱的体积如何求?求下面圆锥的体积。
二、学习新知,在解决问题中,体
1、情境导入。
两个商店里出售品质一样的蛋糕,蛋糕有圆柱形和圆锥形两种。
甲商店的圆柱形蛋糕:底面积16平方厘米,高20厘米,单价:60元一个; 乙商店的圆锥形的蛋糕;底面积16平方厘米,高60厘米,单价:60元一个。到哪家买蛋糕划算呢?
学生猜想后,得出如何求圆锥的体积。
2、动手实验
1)出示实验思考的问题
①圆柱和圆锥的底面积和高有着怎样的关系? ②说说你是怎样实验的?比比谁的发现现最多? ③你会求圆锥的体积吗?能用一个公式表示出来吗? 2)分组实验
3)在小组内思考
4)全班反馈
①你是怎么做的实验呢? ②完成实验报告
在理解的基础上读一读实验的结论,思考后质疑。
3、初步练习理解运用公式
11)思考:要求圆锥的体积,必须知道哪两个条件?为什么要乘?
32)尝试完成书中的“算一算”
教师重点指导学生如何运用公式和计算的问题。(板演与齐练)
三、巩固练习
(一)试一试看谁算的又对又快。(板演与齐练)
评讲时重点指导学生解题思路和计算技巧。
(二)综合运用与检测
1、等底等高根据左图体积填写右图体积
通过此题进一步检验等低等高圆柱与圆锥的关系。清晰实验过程。
2、判断
1)圆柱体积一定大于圆锥的体积。()
2)圆锥体积是圆柱体积的——。()3)把一个圆柱型的木材削成一个最大的圆锥体,削去部分的体积是10立方分 米,削成的圆锥木材的体积是5立方分米。()
3、解答(只列式不计算)1)教师启发:如何理解做一个最大的圆
锥?
2)如图:
评讲:再求质量的时候,最好列综合算式,计算可能变得简单。
四、提高
只列式不计算:如左图旋转直角三角形能得到圆锥,求圆锥的体积。
五、小结
板书:
圆锥的体积
教学反思:
圆锥的体积,是北师大版第十二册第一单元的教学内容,重点是使学生了解圆锥的体积公式的推导过程,并会应用。好多次上过这节课了,本次上课之前我很难有所突破。静下心来我思考。如何才能算高效?是不是满足学生常规的考试就算高效呢?是不是要求学生熟练记忆公式、熟练套用公式做题就算高效呢?困惑之余翻开《课程标准》,似乎有所感悟,其一,是不是所有的学生都不清楚圆锥的体积计算公式呢?是不是所有的学生都知道公式的导出过程呢?如何设计练习才能提高同学们对公式的理解呢?如何才能提高同学们的问题意识和求知欲望呢?如何才能引导学生“真诚”的做中学呢?带着这些想法设计做了这节课,一节课下来,我静心思考,有以下几点反思:
一、学生动手操作,激发兴趣,培养了学生自主学习的精神。
我在教学圆锥的体积计算公式时,首先让学生在课前自己动手做实验,加深学生对圆柱和圆锥的认识,在课堂上改教师演示为学生分组动手实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式,这样就有一种水到渠成的感觉。同时也培养学生观察、操作、讨论、归纳、整理等技能,形成良好的学习习惯和认真操作的态度。二、激发学生的求知欲。
新课一开始,我就让在一个具体的实际问题中感受到求圆锥体积的必要性。激发学生的学习兴趣,使学生明确学习目标。并在自学看书的基础上提出了质疑,引导学生像一个研究者一样去严谨的在试验中进行验证。再设计实验报告时,不仅关注顺向的思维,同时引导从一个实验中得出反向的结论。深化对公式的理解。
在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功 的喜悦。
三、全体学生的积极参与,突出学生的主体作用。
由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。
总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到了探究成功的喜悦,进行了探究失败的深刻反思,有利于从小树立科学的实验观。我思考:如果长期在这样的探究中去学习知识,学生就会变成有思想、会思考、会研究、会学习的人。这样的教学我认为是有效的。
第二篇:《圆锥体积》教学反思
对于《圆锥体积》的教学,我前些年按传统的教法:用空心圆柱、圆锥装沙的实验,得出圆锥体积的计算公式,的确有不妥之处,其一用“容积”偷换“体积”的概念,淡化了学生对“体积”的理解。其二在实验中,把“容积”看作近似地等于“体积”有失科学的严密性,对培养学生严谨的科学态度不利。由于自己的守旧,一直没能突破,没想到今日的突破收到意想不到的效果。也引发我的进一步思考:
1、在日常的教学中,我们教师常常提醒学生,学习不能死守书本、不知变化、人云我云,要不拘泥、不守旧。那么我们教师自己更应该打破条条框框、突破教材、创造性的灵活地使用教材。
2、陶行知先生倡导“手脑联盟”,他说“人生两个宝,双手和大脑”就是要学生手脑并用。在小学数学教学中,如果我们教师能给学生创造人人参与,既动手又动脑的情景,就能最大限度的激发学生的学习兴趣,激发学生的创新思维。让不同的学生在活动中得到不同的发展。
3、实验后的交流是培养学生思维的有力的催化剂。在交流中,学生通过比较、思考,加深了对公式的理解,不仅理解了圆柱体和圆锥体之间的关系,而且培养了学生的思维能力、表达能力、概括能力。
总之,我们教师只有在教学活动中,努力创造条件,让学生主动参与、发现和揭示数学原理和方法,我们的数学课堂就一定能生成更多的精彩!
第三篇:圆锥的体积教学设计及反思
《圆锥的体积》教学设计与反思
教学目的:使学生初步掌握圆锥体积的计算公式。
并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
教学难点:圆锥的体积应用
学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件
教学时间:一课时
教学过程:
一、复习
1、圆锥有什么特征?(课件出示)
使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
二、导人新课
出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。
板书课题:圆锥的体积
三、新课
1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
学生分组实验。
汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。
圆柱里装满沙子,倒入与他等底等高的圆锥,三次正好倒完。
接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3 ×圆柱体积
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?
引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积= 1/3 ×底面积×高
师:用字母应该怎样表示? 然后板书字母公式:V=1/3 Sh
师:在这个公式里你觉得哪里最应该注意?
教学例1一个圆锥的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
1/3×19×12=76((立方厘米))
答:这个零件体积是76立方厘米。
做一做:课件出示,学生回答后,教师订正。
1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?
2、已知圆锥的底面半径r和高h,如何求体积V?
3、已知圆锥的底面直径d和高h,如何求体积V?
4、已知圆锥的底面周长C和高h,如何求体积V?
5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?
例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
判断:课件出示,学生回答后,教师订正。
1、圆柱体的体积一定比圆锥体的体积大()
2、圆锥的体积等于和它等底等高的圆柱体积的()。
3、正方体、长方体、圆锥体的体积都等于底面积×高。()
4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米()
四、教师小结。
这节课我们学习了哪些知识?你还有什么问题吗?
五、作业。课本练习
六、板书
圆柱的体积=底面积×高 字母公式:V圆柱= S·h 圆锥的体积=圆柱的体积=底面积×高 字母公式:V圆锥= S·h 教学反思
这节课是六年级圆柱和圆锥的内容,主要是求圆柱和园锥体的体积。就小学现有的知识,把圆锥体积转化为体积相等的其它物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱相同,采用“转化”的思想。因而这节课首先学习圆柱的体积公式及推导方法,让学生从图画直观上感受——圆锥体的体积比等底等高的圆柱体体积小。在此直观的基础上,做实验,汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。圆锥的体积等于与它等底等高的圆柱体积的三分之一。
这里除了培养学生的自主探究、发现的能力,还让学生在操作实验的过程中,各种能力得到锻炼,同时还让学生在实验中感受数学的严密性,感受数学的内在魅力,激发学生对数学的热爱。学生学识的关键还在于会不会运用,因而,在学生探索好后,让学生用自己探索到的结论,解决生活中的一些实际问题,让他们真正感受到数学的用处——生活中处处离不开数学。最后让学生谈谈收获,巩固这节课的重点,加深印象。
第四篇:圆锥的体积教学设计及反思
《圆锥的体积》教学设计与反思
教学目的:使学生初步掌握圆锥体积的计算公式。
并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
教学难点:圆锥的体积应用
学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件
教学时间:一课时
教学过程:
一、复习
1、圆锥有什么特征?(课件出示)
使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
二、导人新课
出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。
板书课题:圆锥的体积
三、新课
1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
学生分组实验。
汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。
圆柱里装满沙子,倒入与他等底等高的圆锥,三次正好倒完。
接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3 ×圆柱体积
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?
引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积= 1/3 ×底面积×高
师:用字母应该怎样表示?
然后板书字母公式:V=1/3 Sh
师:在这个公式里你觉得哪里最应该注意?
教学例1一个圆锥的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
1/3×19×12=76((立方厘米))
答:这个零件体积是76立方厘米。
做一做:课件出示,学生回答后,教师订正。
1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?
2、已知圆锥的底面半径r和高h,如何求体积V?
3、已知圆锥的底面直径d和高h,如何求体积V?
4、已知圆锥的底面周长C和高h,如何求体积V?
5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?
例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
判断:课件出示,学生回答后,教师订正。
1、圆柱体的体积一定比圆锥体的体积大()
2、圆锥的体积等于和它等底等高的圆柱体积的()。
3、正方体、长方体、圆锥体的体积都等于底面积×高。()
4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米()
四、教师小结。
这节课我们学习了哪些知识?你还有什么问题吗?
五、作业。课本练习
六、板书
圆柱的体积=底面积×高 字母公式:V圆柱= S·h 圆锥的体积=圆柱的体积=底面积×高 字母公式:V圆锥= S·h 教学反思
这节课是六年级圆柱和圆锥的内容,主要是求圆锥体的体积。就小学现有的知识,把圆锥体积转化为体积相等的其它物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱相同,采用“转化”的思想。因而这节课首先复习圆柱的体积公式及推导方法,让学生从图画直观上感受——圆锥体的体积比等底等高的圆柱体体积小。在此直观的基础上,让学生亲自动手实验,这里除了培养学生的自主探究、发现的能力,还让学生在操作实验的过程中,各种能力得到锻炼,同时还让学生在实验中感受数学的严密性,感受数学的内在魅力,激发学生对数学的热爱。学生学识的关键还在于会不会运用,因而,在学生探索好后,让学生用自己探索到的结论,解决生活中的一些实际问题,让他们真正感受到数学的用处——生活中处处离不开数学。最后让学生谈谈收获,巩固这节课的重点,加深印象。
第五篇:圆锥的体积教学设计及反思
《圆锥的体积》教学设计及反思
刘国兰
【教具准备】
圆柱,圆锥若干,沙子,容器若干,铅锤,多媒体课件,展示台
【教学过程】
一、引出问题
师:今天老师给大家带来了神秘的礼物,想看看吗?教师出示铅锤,问这是什么? 它的形状像什么?为什么?
师:想一想,我们有没有办法知道这个铅锤的体积有多大呢?
师:这说明排水法有一定的局限性,那怎么才能知道像这样圆锥形物体的体积呢?师:好,那我们就需要学习一种一般性的,普遍的方法来计算圆锥的体积,今天我们就来学习圆锥的体积(板书)
二、引导学生独立思考,提出各种猜想
师:在这以前,我们学习过哪些图形的体积计算?
师:请同学们回忆一下,在学习圆柱体积公式推导的过程中,我们是怎样研究的? 师:请同学们猜一猜:你认为圆锥的体积可能和什么图形的体积有关呢? 师:每个小组的桌子上有一个圆柱和一个圆锥,观察:他们两个的体积可能有什么关系?
三、实验探索,验证猜想 1、开展实验收集数据。
师:到底是不是这样的呢?想不想动手验证一下?请看:这是我们的实验记录单 师:教师投影出示试验纪录单 实验纪录单:
实验次数 选择一个圆锥和圆柱比较,我们发现:实验结果它们体积之间的关系 第1次
第2次
结果说明什么?
我们需要通过实验来验证我们的猜想是否正确,请看,请一个同学来读一读,选择一个圆锥和圆柱比较什么?师:第1次实验先用圆锥装满沙子往圆柱里倒,看有什么结果。第2次实验用圆柱装满沙子往圆锥里倒,看又有什么结果,注意填写实验纪录单。生实验,教师指导 2、分析数据,作出判断(1)观察全班的实验结果 各组汇报实验结果(2)总结结论
师:以上的实验结果说明什么?
只有在等底等高的情况下圆锥的体积是和它等底等高的圆柱体积的1/3。只有在等底等高的情况下圆柱的体积是和它等底等高的圆锥体积的3倍。不等底不等高的圆锥和圆柱体积之间没有这样的关系。等底不等高的圆锥和圆柱体积之间也没有这样的关系。
只有在等底等高的情况下圆锥的体积是和它等底等高的圆柱体积的1/3。只有在等底等高的情况下圆柱的体积是和它等底等高的圆锥体积的3倍。不等底不等高、等底不等高则没有这样的关系。
师:出示圆柱和圆锥,这个圆柱和这个圆锥等底、等高,那它们体积之间存在什么样的关系呢?
师:板书:圆锥的体积=圆柱体积×1/3,师演示课件使1/3形象化,同学们回忆一下,圆柱的体积是怎么计算的?
师:那想一想,圆锥的体积应该怎样计算呢? 3、你能用字母表示出它们的关系吗? 4、加深理解
师:在1/3sh中,“sh”表示什么?为什么还要乘1/3? 师:要求圆锥的体积,必须知道什么?知道了什么条件就可以求圆锥的体积? 师:你认为计算圆锥的体积还要注意什么?
四、分层练习,巩固提高 我是细心的小法官:
1.圆柱的体积一定比圆锥的体积大。()
2.圆锥的体积等于和它等底等高圆柱体积的1/3。()
3.正方体、长方体、圆锥体的体积都等于底面积×高。
()
4.一个圆柱的体积是27立方米,和它等底等高的圆锥的体积是9立方米。
()
应用公式我最棒:(给出课前铅锤和帽子的条件,求体积。)
铅锤:底面积:20cm2
高:8.5cm
帽子:底半径:2dm
高:2dm(得数保留一位小数)解决问题我能行
工地上有一些沙子,堆起来近似于一个圆锥.底面直径是4米,高是1。2米。这堆沙子大约有多少立方米?(得数保留两位小数)
五、总结回顾,畅谈收获。
教学反思:
一、给学生足够的探究时间
学生在探究过程中需要认真地观察,反复地观察、比较、揣测、采集信息,独立地思考、归纳、分析和整理。这一切都需要时间作保证。本课改变了过去教师先引导学生复习旧知再一步步演示的做法,而是教师给学生足够的探究时间(近15分钟)。先让学生猜想圆锥的体积可能和什么图形的体积有联系?再猜一猜:和什么样的圆柱体积有关系?这样让学生猜一猜,调动了学生的学习积极性,培养了学生发现问题、提出问题的能力。接着让学生亲手做一做,验证一下自己的猜测是否正确,再根据实验的结果概括出圆锥体积的计算公式。由于有足够的探究时间,让学生经历了知识的形成过程。
二、关注学生的自主探究,努力使学生自己发现解决问题的方法 著名数学教育家波利亚指出:“学习任何知识的最佳途经是自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”小学生由于受自身能力、发展水平所限,他们的创造可能显得幼稚、粗糙,创造性水平也无法与科学家相提并论,但他们的每一个小发现都凝结着他们的思考、付出和努力;他们同样需要经历和体验与科学家的发现相似的“艰难”过程。如他们需要大胆的设计与构思,学会与他人合作寻求支持;需要反思自己的思维方式并作出分析与修正等等。在本节课中,首先由现实生活问题引入,复习圆锥的特征,接着选定求“圆锥的体积”这个问题,为解决这个问题,教师先安排了“尝试猜测”这个环节,尝试猜测可以看作解决问题的第一步。既然可能圆锥的体积是和它等底等高的圆柱体积的1/3,再让学生讨论、实验,从而受到科学探究方法的熏陶。在学生独立思考、自主探究的基础上,组织学生进行实验,是本节课的重点环节。由于问题是学生自己提出的,实验时的注意事项也是学生提出的,因此,学生乐此不疲地去发现、尝试、对比、讨论、交流,在合作交流中互相启发、互相激励、共同发展。教师最后引导学生及时进行反思、总结。并发现实验中的误差。这样不仅使学生掌握了圆锥的体积公式,而且在不同观点、创造性思维火花的互相碰撞中,学生发现问题、探索问题、解决问题的能力不断得到增强,合作能力不断提高。
三、体验成功,感受自主探究的乐趣
心理学认为:一个人只要体验一次成功,便会激起无休止地追求意念和力量。因此,在学生获取知识的探究过程中,要让学生体验成功的愉悦,感受自主探究的乐趣。本课在数学课上做实验耳目一新,学生兴趣浓厚,在学生实验中,不是让学生埋头实验,而是让学生在实验中交流自己的所得和成功,先进行同桌交流实验的发现,再分小组交流实验所得,最后上台全班汇报实验结果,并进行答辩、质疑。这样为学生提供了展示成功的广阔舞台,同时,使学生学会做实验的步骤、方法,明确做实验的要求,养成良好的做实验的习惯。当学生回顾探究过程,寻找自己的发现,欣赏自己的成果时,脸上都表现出喜悦的神情,在自主探索中体验实验后的成功满足感,体现了愉快学习的理念,同时使学生学会解决问题,养成自主解决问题的习惯,感受自主探究的乐趣。