第一篇:二元一次方程组习题课教案(学案)
变式:已知2ab2,2ba4,求(ab)22(ab)3的值
变式:在等式ykxb中,当x1时,y2;当x2时,y7,则当x2时,求y的值
变式:对于有理数,规定一种新运算:xyaxbyxy,其中a、b是常数,等式右边是加法和乘法运算,已知217,(3)33,求
3、若
16的值 3x2mx2y10是的解,试求m-n的值.y2nx2y6变式1:若
变式2:若
x2mxny10是的解,试求m的值.y22mxny8x2x4与是mx+ny=10的解,求m、n的值.y2y1x2x4mxny10变式3:已知:中正确解出,乙把a看错了,解出了,试求出y2ax2y6y1m、n的值。
变式4:已知关于x、y的方程组
3x2y10bx2ay8与同解,求ab的值.axby10x2y6x2ax2y10a(mn)2(mn)103、已知:的解是,试求的解。
y2b(mn)2(mn)6bx2y6
类型四:整数解问题
例:试求二元一次方程3x+2y=10的正整数解
变式1:若
变式2:若 3x2y10有正整数解,求m的值.x2y93m3x2y10m有正整数解,求m的值.x2y93m
第二篇:二元一次方程组习题课教案(学案)学生用
二元一次方程组习题课
类型一:二元一次方程的概念
1、已知方程①2x+y=0; ②x—x+1=0; ③2x+y-3z=7; ④2x-
212
=1; ⑤xy=1; ⑥x=y ⑦x+2y=7;其y中是二元一次方程的是
m-
12、当m为 时,方程3x+2y=10是二元一次方程。
变式1:当m n 时,方程(m-1)x+(2-n)y=2是二元一次方程。变式2:当m= n= 时,方程(2m-6)x2、若x2m-
1m2+(n+2)yn1=20是二元一次方程。
+5y3n-2m=7是二元一次方程,则m=,n=,m+n-7已知方程 3xm-n-1-5y = 4 是二元一次方程,则m+n=
7、已知方程8x-7y=10,用含x的式子表示y,则y=_______.14、已知甲种物品每个重4kg,乙种物品每个重7kg,现有甲种物品x个,乙种物品y个,共重76kg.(1)列出关于x,y的二元一次方程;(2)若x=12,则y=________;
(3)若乙种物品有8个,则甲种物品有______个;
(4)请你用含x的代数式表示y,然后再写出满足条件的x,y的全部整数解.类型二:二元一次方程的解
x2x
21、是mx+2y=10的解,则m= 变式:是mx+ny=10的解,则m、n满足的条件是
y2y2方程x+2y=7在正整数范围内的解有()A 1个 B 2个 C 3个 D 无数个
类型三:二元一次方程组的解
1、关于x、y的二元一次方程组axbyc(1),下列对此方程组的解说法正确的是()mxnyp(2)A、方程(1)的解是方程组的解 B、方程(2)的解是方程组的解 C、方程组的解是方程(1)的解同时也是方程(2)的解 D、方程组的解只满足方程(1)或只满足方程(2)
2、解方程组(1) y1x3x2y10(2)
3x2y52x3y10变式:已知:3x2y10(2x3y10)0,试求x、y 的值.变式:已知2ab2,2ba4,求(ab)2(ab)3的值
变式:在等式ykxb中,当x1时,y2;当x2时,y7,则当x2时,求y的值
变式:对于有理数,规定一种新运算:xyaxbyxy,其中a、b是常数,等式右边是加法和乘法运算,已知217,(3)33,求
3、若
变式1:若
变式2:若
2216的值 3x2mx2y10是的解,试求m-n的值.y2nx2y6x2mxny10是的解,试求m的值.y22mxny8x2x4与是mx+ny=10的解,求m、n的值.y2y1x2mxny10x4变式3:已知:中正确解出,乙把a看错了,解出了,试求出m、n的值。
y2ax2y6y1x2,axby2,x1,18.甲、乙两人同时解方程组甲正确解得乙因为抄错c的值,错得求a,b,c的cx3y2.y1;y6.值.
9.若2x-5y=0,且x≠0,则6x5y的值是______.
6x5yxy1,axby1,11.已知方程组与方程组的解相同,则a=______,b=______.
xy3axby2
变式4:已知关于x、y的方程组3x2y10bx2ay8与同解,求ab的值.axby10x2y6
16.已知:关于x,y的方程组 3xy5,axby8,与的解相同.求a,b的
4ax5by220x3y5x2a(mn)2(mn)10ax2y103、已知:的解是,试求的解。
y2b(mn)2(mn)6bx2y6
类型四:整数解问题
例:试求二元一次方程3x+2y=10的正整数解 13.若方程组(A)2 2xmy4,的解为正整数,则m的值为().
x4y8(B)4
(C)6
(D)-4
3、将方程5x-2y+12=0写成用含x的代数式表示y的形式_________.4、用代入消元法解方程组2x7y8,(1)可以由____得_______(3)
y2x4.(2),把(3)代入__________中,得一元一次方程___________________,解得_________,再把求得的值代入(3)中,求得_________,从而得到原方程组的解为______________.4、方程组3a2b11,3(xy)2(xy)11,a3,的解为则由可以得出x+y 4a3b94(xy)3(xy)9b1.=_____,x-y =_____,从而求得
5、用简便方法解方程组
*探索研究
x____,y____.3(xy)2(xy)36,2(xy)3(xy)24.6、已知方程组3x2y4,2mx3ny19,与有相同的解,求m,n的值。
mxny75yx34x3y7,17.如果关于x,y的方程组k1的解中,x与y互为相反数,求k的值.
xyk3215.已知使3x+5y=k+2和2x+3y=k成立的x,y的值的和等于2,求k的值.
6、已知x2y5,①2xy6.②则x-y 的值是 _____.2x3ym,12、如果方程组的解满足x+y=12,求m的值.3x5ym2
课堂学习检测
一、填空题
1.若载重3吨的卡车有x辆,载重5吨的卡车比它多4辆,它们一共运货y吨,用含x的式子表示y为______. 2.小强有x张10分邮票,y张50分邮票,则小强这两种邮票的总面值为______. 3.一个长方形周长是44cm,长比宽的3倍少10cm,则这个长方形的面积是______.
4.如果一个两位正整数的十位上的数字与个位上的数字的和是6,那么符合这个条件的两位数的个数是______.
二、选择题
5.用4700张纸装订成两种挂历500本,其中甲种每本7张纸,乙种每本13张纸.若甲种挂历有x本,乙种挂历有y本,则下面所列方程组正确的是(). xy500,(A)
13x7y4700.xy500,(C)
13x7y4700.
xy500,(B)
7x13y4700.xy500,(D)
7x13y4700.
6.甲、乙两数和为42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x,乙数为y,则下列方程组正确的是(). xy42,(A)
4x3y.4x3y42,(C)
3x4y
xy42,(B)
3x4y3x4y42,(D)
4x3y
三、列方程组解应用题
7.某单位组织了200人到甲、乙两地旅游,到甲地的人数比到乙地的人数的2倍少10人.到两地参加旅游的人数各是多少?
8.一种口服液有大小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.大盒、小盒每盒各装多少瓶?
9.某车间工人举行茶话会,如果每桌12人,还有一桌空着;如果每桌10人,则还差两个桌子.此车间共有工人多少名? 12.出境旅游者问某童:“你有几个兄弟、几个姐妹?”答:“有几个兄弟就有几个姐妹。”再问其妹有几个兄弟、几个姐妹,她答:“我的兄弟是姐妹的2倍。”试问:他们兄弟姐妹的人数各是().(A)兄弟4人,姐妹3人(B)兄弟3人,姐妹4人(C)兄弟2人,姐妹5人(D)兄弟5人,姐妹2人
三、列方程组解应用题
13.为了保护环境,某校环保小组成员收集废电池.第一天收集1号电池4节,5号电池5节,总重460克;第二天收集1号电池2节,5号电池3节,总重240克.试问1号电池和5号电池每节分别重多少克?
14.某工厂一车间人数比二车间人数的数的4还少30人,若从二车间调10人去一车间,则一车间人数为二车间人53.求两个车间原来的人数. 41.一个两位数,十位上的数字为x,个位上的数字为y,这个两位数为______;若将十位与个位上的数字对调,新的两位数是______.
2.一个两位数,个位数和十位数数字之和为8,个位与十位互换后,所得的新数比原数小18,则这个两位数是______.
3.梯形的面积是42cm2,高是6cm,它的下底比上底的2倍少1cm,则梯形的两底分别为_______.
4.某铁路桥长1000米,一列火车从桥上通过,从上桥到离开桥共用1分钟,整列火车全在桥上的时间为40秒钟,则火车的长度为______,火车的速度为______.
二、列方程组解应用题
5.足球比赛的积分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛负5场共得19分,那么这个队胜了多少场?
6.某校七年级(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如下表:
表格中捐款2元和3元的人数被墨水污染了.问:捐2元和3元的人数各是多少?
7.一条河流经甲、乙两地,两地相距280千米,一船在其间航行,顺流用14小时,逆流用20小时.求船在静水中的速度和水速.
8.某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?
9.学校组织数学知识竞赛,甲班、乙班共12人参加,其中甲班学生的平均分是70分,乙班学生的平均分是60分,这两班学生的总分为740分.问:甲、乙两班各有多少学生参加竞赛?
综合、运用、诊断
一、填空题
10.甲、乙二人同时从A地出发到B地,甲的速度是a千米/时,乙的速度是b千米/时,二人出发后2小时都未到达B地,这时他们相距______. 11.工人甲原来每天生产零件x个,改进技术后,每天产量提高25%,这时工人乙每天生产的零件比甲现在的还少5个,乙每天生产的零件数是______.
二、选择题
12.一船顺流航行速度为a千米/时,逆流航行速度为b千米/时(a>b),则水流速度为().
(A)a+b千米/时(B)a-b千米/时
(C)
ab千米/时 223(D)
ab千米/时
2三、列方程组解应用题
13.一、二两班共有95人,体育锻炼的平均达标率(达到标准的百分率)是60%.如果一班的达标率是40%,二班的达标率是78%,则一班、二班各有多少人?
14.一批零件共1100个,如果甲先做5天后,乙加入合作,再做8天正好做完;如果乙先做5天后,甲加入合作,再做9天也恰好完成.问两人每天各做多少个零件?
15.随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展.某区2004年和2005年小学入学儿童人数之比为8∶7,且2004年入学人数的2倍比2005年入学人数的3倍少1500人.某人估计2006年该区入学儿童数将超过2300人,请你通过计算,判断他的估计是否符合当前的变化趋势.
16.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲种服装按50%的利润定价,乙种服装按40%的利润定价.在实际出售时,应顾客要求,两种服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元?
拓展、探究、思考
17.为满足用水量不断增长的需求,某市最近新建甲、乙、丙三个水厂.这三个水厂的日供水量共计11.8万m3,其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m3.(1)求这三个水厂的日供水量各是多少万m3?(2)在修建甲水厂的输水管道工程中要运走600吨土石,运输公司派出A型、B型两种载重汽车,用A型车6辆,B型车4辆,分别运5次,或者A型车3辆,B型车6辆,分别运5次,可把土石运空,问每辆A型汽车和B型汽车各运土石多少吨?
18.某商场计划拨款9万元从厂家购进50台电视机.已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场每销售一台甲、乙、丙电视机可分别获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?
xy1,1.若yz2,则x+y+z=__________________.
xz3.xy7,2.方程组xyz5,的解是________________.
xyz1x5,xyz0,3.判断y10,是否是三元一次方程组2xyz15,的解______.
z15x2yz40
二、解下列三元一次方程组
x1y,3xy7,a:b:c3:4:5,4.xyz14, 5.
6.y4z3,abc36.xy2z5.2x2z5.
第三篇:二元一次方程组教案
二元一次方程组教案1
学习目标 :会运用代入消元法解二元一次方程组.
学习重难点:
1、会用代入法解二元一次方程组。
2、灵活运用代入法的技巧.
学习过程:
一、基本概念
1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。
2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。
3、代入消元法的步骤:
二、自学、合作、探究
1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的.式子表示y,则y=______,当x=0时,y=________ 。
2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。
3、若 的解,则a=______,b=_______。
4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。
5、用代人法解方程组 ①②,把____代人____,可以消去未知数______。
6、已知方程组 的解也是方程组 的解,则a=_______,b=________ ,3a+2b=___________。
7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。
8、当k=______时,方程组 的解中x与y的值相等。
9、用代入法解下列方程组:
⑴ ⑵ ⑶
二、训练
1、方程组 的解是( )
A. B. C. D.
2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。
3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。
4、对于关于x、y的方程y=kx+b,k比b大1,且当x= 时,y= ,则k、b的值分别是( )
A. B.2,1 C.-2,1 D.-1,0
5、用代入法解下列方程组
⑴ ⑵
6、如果(5a-7b+3)2+ =0,求a与b的值。
7、已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m
8、若方程组 与 有公共的解,求a,b.
二元一次方程组教案2
教学目标
1、弄懂二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解;
2、学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越性,感受数学的乐趣.
教学难点弄懂二元一次方程组解的含义。
知识重点二元一次方程、二元一次方程组及其解的含义。
教学过程(师生活动)
设计理念
创设情境
导入课题幻灯:古老的“鸡兔同笼问题”
“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”
师:这是我国古代数学著作《孙子算经》中记载的数学名题.它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣.怎样来解答这个问题呢?
学生思考自行解答,教师巡视.最后,在学生动手动脑的基础上,班级集体讨论给出各种解决方案.
方案一:算术方法
把兔子都看成鸡,则多出94-35×2=24只脚,每只兔子比鸡多出两只脚,故,由此可先求出兔子有24÷2=12只,
进而鸡有35-12=23只.
或类似的也可以先求鸡的数量.
35×4-94=46,46÷2=23
方案二:列一元一次方程解
设有x只鸡,则有(35-x)只兔.根据题意,得
2x十4(35-x)=94.
(解方程略)
教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?以古老的数学名题引入,可以增强学生的民族自豪感,激发学好数学的感情
能用方案本来解的学生算术功底比较好,应给予高度赞赏.
方案二既是对一元一次方程的复习与巩固,又为二元一次方程组的引出做好铺垫在。
分析问题(一)讨论二元一次方程、二元一次方程组的概念
师:上面的问题可以用一元一次方程来解,还有其他方法吗?(若学生想不到,教师要引导学生,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数,列方程)
方案三:设有x只鸡,y只兔,依题意得
x+y=35,①
2x+4y=94.②
针对学生列出的这两个方程,提出如下问题:
(1)、你能给这两个方程起个名字吗?
(2)为什么叫二元一次方程呢?
(3)什么样的方程叫二元一次方程呢?
结合学生的`回答,教师板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程.
师:在上面的问题中,鸡、兔的只数必须同时满足①②两个方程.把①②两个二元一次方程结合在一起,用花括号来连接.我们也给它起个名字,叫什么好呢?
定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.
(二)讨论二元一次方程、二元一次方程组的解的概念
探究活动:满足x+y=35的值有哪些?请填入表中:
教师启发:
(1)若不考虑此方程与上面实际问题的联系,还可以取哪些值?
(2)你能模仿一元一次方程的解给二元一次方程的解下定义吗?
(3)它与一元一次方程的解有什么区别?
定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为
师:那么什么是二元一次方程组的解呢?
学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程.即:既是方程①又是方程②的解.
定义4:二元一次方程组的两个方程的公共解叫做二元一次方程组的解.
比如:从方案一,我们知道,x=23,y=12使方程组中每一个方程成立.所以我们把x=23,y=12叫做
的解记为:
注意:二元一次方程组的解是成对出现的,用花括号来连接,表示“且”.
议一议:将上述“鸡兔同笼”问题的三种方案进行优劣对比,你有哪些想法呢?
引导学生利用一元一次方程进行知识的迁移与奚比,让学生用原有的认知结构去同化新知识,符合建构主义理念
通过探究活动得出结论:
1、二元一次方程的解是成对出现的;2、二元一次方程的解有无
数多个.这与一元一次方程有显
著的区别.
通过对比,让学生体脸到从算术方法到代数方法是一种进步.而当我们遇到求多个未知量,而且数量关系较复杂时,列二元一次方程组比列一元一次方程容易,它大大减轻了我们的思维负担.
巩固新知例1下列各对数值中是二元一次方程x+2y=2的解是
ABCD
解法分析:
将A、B,C,D中各对数值逐一代人方程检验是否满足方程,选A,B,C.
变式:其中是二元一次方程组解是()
解法分析:
在例1的基础上,进一步检验A、B、C中各对值是否满足方程2x+y=-2,使学生明确认识到二元一次方程组的解必须同时满足两个方程.
例2(教材102页练习)
解答过程略
本例先检验二元一次方程的解,再检脸二元一次方程组的解,符合从简单到复杂的认知规律.使学生更深刻地理解二元一次方程组的解的概念.
目的在于培养分析等量关系并列方程组的能力;培养观察估算能力;使学生进一步熟悉二元一次方程组及其解的概
小结提高在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行.
本节课学习了哪些内容?你有哪些收获?
(什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?)发挥学生主体意识,培养学生归纳小结的能力。
布置作业1、必做题:教科书102页习题8.1第1、2题.
2、选做题:教科书102页习题8.1第3题.
3、备选题:
(1)根据下列语句,列出二元一次方程:
①甲数的一半与乙数的的和为11
②甲数和乙数的2倍的差为17
(2)方程x+2y=7在自然数范围内的解()
A有无数个B有一个C有两个D有三个
(3)若mx+y=1是关于x,y的二元一次方程,那么m
的值应是()
A.m≠OB.m=0C.m是正有理数D.m是负有理数
(4)李平和张力从学校同时出发到郊区某公园游玩,两人从出发到回来所用的时间相同,但是,李平游玩的时间是张力骑车时间的4倍,而张力游玩的时间是李平骑车时间的5倍,请问他俩人中谁骑车的速度快?
不同层次的学生根据自身的需要选择不同的备用题,实现不同的人在数学上获得不同的发展的教学理念.
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本课的设计是从提出“鸡兔同笼”的求解问题人手,激发学生的学习兴趣与民族自豪感,让学生经历从不同角度寻求不同的解决方法的过程,体现出解决问题策略的多样性,激发了学生的学习兴趣.以算术的方法衬托出方程解法的优越性,以列一元一次方程解法衬托出列二元一次方程组解法的优越性,更使学生感到二元一次方程组的引人顺理成章.
本课内容是在学生已经掌握了一元一次方程的基础知识,初步具有提取数学信息、解决实际问题的能力后展开的.根据建构主义理念,学生完全有能力利用自己原有的知识去同化新知识,主动地将其纳人自己的知识体系中.所以本课的通篇整体设计,突出了一元一次方程的样板作用,让学生在类比中,主动迁移知识,建立起新的概念.使得基础知识和基本技能在学生头脑中留下较深刻的印象是很有必要的。
二元一次方程组教案3
教学目标
知识与技能
掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。
过程与方法
能根据方程组的特点选择合适的方法解方程组;并能把相应问题转化为解方程组
情感、态度与价值观
培养学生分析问题,解决问题的能力,体验学习数学的快乐。
重点:
掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。
难点:
选择合适的方法解方程组;并能把相应问题转化为解方程组。
教学手段
多媒体,小组评比。
教学过程
一、知识梳理
以小组为单位讨论二元一次方程组已经学了哪些知识?
1、什么是二元一次方程?什么是二元一次方程的解?
2、什么是二元一次方程组?什么是二元一次方程组的`解?
3、解二元一次方程组的基本思想是什么?消元的方法有哪些?
设计意图:知识回顾,掌握知识要点,为顺利完成练习打下基础
二、基础训练
教学手段与方法:每小组必答题,答对为小组的一分,调动学习的积极性。
设计意图:
基础知识达标训练。
教学手段与方法:
毎小组选代表讲解为小组加分,充分调动学生的积极性。学生讲解不到位的老师补充。
设计意图:
对二元一次方程组解法的灵活应用。
二元一次方程组教案4
一 内容和内容解析
1.内容
二元一次方程, 二元一次方程组概念
2.内容解析
二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。直接设两个未知数,列方程,方程组更加直观,本章就从这个想法出发引入新内容.
本节课一以引言中的问题开始,引导学生思考“问题中包含的等量关系”以及“设两个未知数后如何用方程表示等量关系”.继而深入探究二元一次方程, 二元一次方程组的解.
本节课的教学重点是:二元一次方程, 二元一次方程组的概念
二、目标和目标解析
1.教学目标
(1)会设两个未知数后用方程表示等量关系列二元一次方程, 二元一次方程组.
(2)理解解二元一次方程, 二元一次方程组的解的概念.
2. 教学目标解析
(1)学生能掌握设两个未知数后,分析问题中包含的等量关系”以及“用方程表示等量关系”.
(2)要让学生经历探究的过程.体会二元一次方程组的解, 二元一次方程组的解是实际意义.
三、教学问题诊断分断
1.学生过去已遇到二元问题,但只设一个未知数,再表示出另一个未知数,用一元一次方程解决. 现在如何引导学生设两个未知数。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现一元一次方程向二元一次方程组转化的思路
2.结合一元一次方程的解向二元一次方程, 二元一次方程组的解转化,学习知识的迁移.
本节教学难点:
1.把一元向二元的转化,设两个未知数.结合实际问题进行分析,列二元一次方程, 二元一次方程组.
2.二元一次方程组的解的意义
四、教学过程设计
1.创设情境,提出问题
问题1 篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?
师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16
x=6,则胜6场,负4场
教师追问:你能根据两个问题中的等量关系设两个未知数列出二个反映题意的方程吗?
师生活动:学生回答:能。设胜x场,负场。根据题意,得x+=10 , 2x+=16.
教师归纳:像这样,每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1的`方程叫做二元一次方程。
设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,转变思路,再列二元一次方程,为后面教学做好了铺垫.
问题2:对比两个方程,你能发现它们之间的关系吗?
师生活动:通过对实际问题的分析,认识方程组中的两个x,都是这个队的胜,负场
数,它们必须同时满足这两个方程,这样,连在一起写成
就组成了一个方程组 。这个方程组中每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1,像这样的方程组叫做二元一次方程组 。
设计意图:从实际出发,引入方程组的概念,切合学生的认知过程。
问题3 : 探究
满足了方程①,且符合问题的实际意义的x,的值有哪些?把它们填入表中
x
(3) 当 =12时,x的值
师生活动:小组讨论,然后每组各派一名代表上黑板完成.
设计意图:借助本题,充分发挥学生的合作探究精神通过比较,进一步体会二元一次方程及二元一次方程的解的意义.
3加深认识,巩固提高
练习: 一条船顺流航行,每小时行20 ,逆流航行,每小时行16 .求船在静水中的速度和水的流速。
师生活动:分两小组讨论.一组用一元一次方程解决,另一组尝试列方程组(不要求求解),为解二元一次方程组埋下伏笔。然后每组各派一名代表上黑板完成。
设计意图:提醒并指导学生要先分析问题的两个未知数关系,尝试结合题意,寻找到两个等量关系,列方程组。体会直接设两个未知数,列方程,方程组更加直观,
4归纳总结
师生活动:共同回顾本节课的学习过程,并回答以下问题
1.二元一次方程, 二元一次方程组的概念
2.二元一次方程, 二元一次方程组的解的概念.
3.在探究的过程中用到了哪些思想方法?
4.你还有哪些收获?
设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.
5. 布置作业
教科书第90页第3,4题
五、目标检测设计
1.填表,使上下每对x,的值是方程3x+=5的解
x
2.选择题
二元一次方程组的解为( )
A. B. C. D.
设计意图:考查学生二元一次方程组的解的掌握情况.
二元一次方程组教案5
一、内容和内容解析
1.内容
代入消元法解二元一次方程组
2.内容解析
二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,
在平面直角坐标系中求两直线交点坐标等.
解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。
本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元.
二、目标和目标解析
1.教学目标
(1)会用代入消元法解一些简单的二元一次方程组
(2)理解解二元一次方程组的思路是消元,体会化归思想
2.教学目标解析
(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,
(2)要让学生经历探究的过程.体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想
三、教学问题诊断分析
1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路
2.解二元一次方程组的'步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。
本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。
四、教学过程设计
1.创设情境,提出问题
问题1
篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?
师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16
x=6,则胜6场,负4场
教师追问:你能根据问题中的等量关系列出二元一次方程组吗?
师生活动:学生回答:能.设胜x场,负y场.根据题意,得
我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4.显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?
这节课我们就来探究如何解二元一次方程组.
设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫.
问题2 对比方程和方程组,你能发现它们之间的关系吗?
师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。
师生活动:根据上面分析,你们会解这个方程组了吗?
学生回答:会.
由①,得y=10-x ③
把③代入②,得2x+(10-x)=16 x=6
设计意图:共同探究,体会消元的过程.
问题3 教师追问:你能把③代入①吗?试一试?
师生活动:学生回答:不能,通过尝试,x抵消了.
设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点.
教师追问:你能求y的值吗?
师生活动:学生回答:把x=6代入③得y=4
教师追问:还能代入别的方程吗?
学生回答:能,但是没有代入③简便
教师追问:你能写出这个方程组的解,并给出问题的答案吗?
学生回答:x=6,y=4,这个队胜6场,负4场
设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。
师生活动:先让学生独立思考,再追问.在这种解法中,哪一步最关键?为什么?
学生回答:代入这一步
教师总结:这种方法叫代入消元法。
教师追问:你能先消x吗?
学生纷纷动手完成。
设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫.
2. 应用新知,拓展思维
例 用代入法解二元一次方程组
师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。
设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法.
3.加深认识,巩固提高
练习用代入法解二元一次方程组
设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组.
4.归纳总结,知识升华
师生活动,共同回顾本节课的学习过程,并回答以下问题
1. 代入消元法解二元一次方程组有哪些步骤?
2. 解二元一次方程组的基本思路是什么?
3.在探究解法的过程中用到了哪些思想方法?
4.你还有哪些收获?
设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.
5. 布置作业
教科书第93页第2题
五、目标检测设计
用代入法解下列二元一次方程组
设计意图:考查学生对代入法解二元一次方程组的掌握情况.
二元一次方程组教案6
知识要点
1、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做~
2、二元一次方程的解:适合二元一次方程的一组未知数的值叫做这个二元一次方程的一个解;
3、二元一次方程组:由几个一次方程组成并含有两个未知数的方程组叫做二元一次方程组
4、二元一次方程组的解:适合二元一次方程组里各个方程的一对未知数的值,叫做这个方程组里各个方程的公共解,也叫做这个方程组的解(注意:①书写方程组的`解时,必需用“”把各个未知数的值连在一起,即写成的形式;②一元方程的解也叫做方程的根,但是方程组的解只能叫解,不能叫根)
5、解方程组:求出方程组的解或确定方程组没有解的过程叫做解方程组
6、解二元一次方程组的基本方法是代入消元法和加减消元法(简称代入法和加减法)
(1)代入法解题步骤:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解
(2)加减法解题步骤:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)
一、例题精讲
分别用代入法和加减法解方程组
解:代入法:由方程②得:③
将方程③代入方程①得:
解得x=2
将x=2代入方程②得:4-3y=1
解得y=1
所以方程组的解为
加减法:
例2.从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以每小时12公里的速度下山,以每小时9公里的速度通过平路,到学校共用了55分钟,回来时,通过平路速度不变,但以每小时6公里的速度上山,回到营地共花去了1小时10分钟,问夏令营到学校有多少公里?
分析:路程分为两段,平路和坡路,来回路程不变,只是上山和下山的转变导致时间的不同,所以设平路长为x公里,坡路长为y公里,表示时间,利用两个不同的过程列两个方程,组成方程组
解:设平路长为x公里,坡路长为y公里
依题意列方程组得:
解这个方程组得:
经检验,符合题意
x+y=9
答:夏令营到学校有9公里二、课堂小结:
回顾本章内容,总结二元一次方程组的解法和应用。
三、作业布置:
P25A组习题
二元一次方程组教案7
教学目标
1.使学生会用加减法解二元一次方程组。
2.学生通过解决问题,了解代入法与加减法的共性及个性。
重点:探寻用加减法解二元一次的方程组的进程。
难点:消元转化的过程
教学方法:讲练结合、探索交流课型新授课教具投影仪
教师活动:学生活动
情景设置:
小明买了两份水果,一份是3kg苹果、2kg香蕉,共用去13.2元;另一份是2kg苹果、5kg香蕉,共用去19.8元。设苹果x元/kg,香蕉y元/kg.列出方程。
新课讲解:
列出方程组
1.解方程组
分析:关键的出方程〈1〉中的2y与方程〈2〉中的-2y互为相反数。想象出如果相加两个方程,会是什么结果?
板演:
解:〈1〉+〈2〉得:
4x=6
x=
把x= 代入〈1〉得
+2y=1
解出这个方程,得
y=
所以原方程组的解是
2.解方程组
通过议一议,让学生都有感觉消去含x或y的.项都可以,但哪个更简便?
解:〈1〉 3,得
15x-6y=12 〈3〉
〈2〉 2,得
4x-6y=-10 〈4〉
〈3〉-〈4〉,得
11x=22
x=2
将x=2代入〈1〉,得
5 2-2y=4
y=3
所以原方程组的解是
加减消元法:把方程组的两个防城(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。
练一练:
解方程组
小结:
加减消元法关键是如何消元,化二元为一元。
先观察后确定消元。
教学素材:
A组题:解下列方程组:
(1)
(2)
(3)
(4)
(5)
B组题:运用转化的思想方法,你能解下面的三元一次方程组吗?
(1)
(2)
学生读题,议一议
学生想一想,如感到困难则看道简单题。
由学生观察,如何求出x,y的值,学生再讨论。
试一试。学生口述。
老师板演
得到一元一次方程
学生再观察,议一议
①消去哪个未知数
②怎样消去?
P112 1(1)(2)(3)(4)
作业习题11.3 P112 1(3)(4) 3 , 4
二元一次方程组教案8
教学目标:
1.会用加减消元法解二元一次方程组.
2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.
3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的'转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法.
教学重点:
加减消元法的理解与掌握
教学难点:
加减消元法的灵活运用
教学方法:
引导探索法,学生讨论交流
教学过程:
一、情境创设
买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?
设苹果汁、橙汁单价为x元,y元.
我们可以列出方程3x+2y=23
5x+2y=33
问:如何解这个方程组?
二、探索活动
活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?
2、这些方法与代入消元法有何异同?
3、这个方程组有何特点?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解这个方程得:y=4
把y=4代入③式
则
所以原方程组的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解这个方程得:x=5
把x=5代入①式,
3×5+2y=23
解这个方程得y=4
所以原方程组的解是x=5
y=4
把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法.
三、例题教学:
例1.解方程组x+2y=1①
3x-2y=5②
解:①+②得,4x=6
将代入①,得
解这个方程得:
所以原方程组的解是
巩固练习(一):练一练1.(1)
例2.解方程组5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
②×3,得
4x-6y=-10④
③—④,得:
11x=22
解这个方程得x=2
将x=2代入①,得
5×2-2y=4
解这个方程得:y=3
所以原方程组的解是x=2
y=3
巩固练习(二):练一练1.(2)(3)(4)2.
四、思维拓展:
解方程组:
五、小结:
1、掌握加减消元法解二元一次方程组
2、灵活选用代入消元法和加减消元法解二元一次方程组
六、作业
习题10.31.(3)(4)2.
二元一次方程组教案9
教学目标
1.使学生会用代入消元法解二元一次方程组;
2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;
3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.
教学重点和难点
重点:用代入法解二元一次方程组.
难点:代入消元法的基本思想.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?
2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?
3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组
对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考)教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解.
问题:从上面一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步引导学生找出它的解法) (1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?
(4)能否由方程组中的方程②求解该问题呢?
(5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解.
由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y用(50-x)来代换,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30.
将x=30代入方程③,得y=20.
即鸡有30只,兔有20只.
本节课,我们来学习二元一次方程组的解法.
二、讲授新课例1解方程组
分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的表示y的代数式来代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.
(本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的.每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为什么能代入?
3.只求出一个未知数的值,方程组解完了吗?
4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.例2解方程组
分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(问:能否代入②中?)
2(8-3y)+5y=-21,-y=-37,所以y=37.
(问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得x= 8-3×37,所以x=-103.
(本题可由一名学生口述,教师板书完成)
三、课堂练习(投影)用代入法解下列方程组:
四、师生共同小结
在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.
五、作业
用代入法解下列方程组:
5.x+3y=3x+2y=7.
二元一次方程组教案10
教学目标知识技能
会根据行程问题、百分比问题情境及条件,列出方程组,解行程问题及百分比问题;2.使学生掌握运用方程组解决实际问题的一般步骤.
数学思考
让学生经历和体验列方程组解决实际问题的过程,进一步体会方程组是刻画现实世界的有效数学模型.
问题解决
通过列方程组解应用题,培养学生的数学应用能力,增强列方程解决实际问题的能力,进一步提高学生解二元一次方程组的技能.
情感态度
进一步丰富学生学习数学的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
教学重点
列二元一次方程组解行程问题和百分比问题.
教学难点
根据题意找出等量关系,列出方程.
授课类型新授课课时
教具多媒体课件
(续表)
教学活动
教学步骤师生活动设计意图
回顾问题1:解二元一次方程组的基本思想是________,解法有________.问题2:七年级上册我们学习了列一元一次方程解应用题,那么你还记得它的一般步骤吗?通过复习旧知,为本节课的学习做好铺垫,扫除知识障碍.
活动一:创设情境导入新课
【课堂引入】图1-3-3《孙子算经》大约产生于一千五百年前,现在传本的《孙子算经》共三卷,其中卷下第31题,可谓是后世“鸡兔同笼”题的始祖,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”问题1:“上有三十五头”的意思是什么?“下有九十四足”呢?问题2:你能解决这个有趣的.问题吗?以数学历史故事为背景,激发学生的爱国热情,感受数学在生活中的应用,吸引学生的注意力,激发学生的学习兴趣,同时为本课的学习做好铺垫.
活动二:实践探究交流新知
【探究1】鸡免同笼问题①一元一次方程解法(实物投影).解:设有鸡x只,则有兔(35-x)只.根据题意,得2x+4(35-x)=94.2x+140-4x=94.-2x=-46.x=23.35-x=12.答:有鸡23只,兔12只.②二元一次方程组解法(实物投影).解:设有鸡x只,兔y只.根据题意,得①×2,得2x+2y=70,③②-③,得2y=24,y=12.把y=12代入①,得x=23.答:有鸡23只,兔12只.你能比较两种解法的优劣吗?
【探究2】行程问题情境:小琴去县城要经过外祖母家,第一天下午她从家走到外祖母家,第二天上午,她从外祖母家出发,匀速前进,走了2小时和5小时后,离她自己家的距离分别为13千米、25千米.你能算出她的速度吗?能算出她家与外祖母家相距多远吗?问题1:你能画线段表示本题的数量关系吗?问题2:填空:(用含s,v的代数式表示)设小琴的速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时的路程是________千米,此时她离家距离是________千米;她走5小时的路程是________千米,此时她离家的距离是________千米.
【探究3】百分比问题情境:两块合金,一块含金95%,另一块含金80%,将它们与2克纯金熔合得到含金90.6%的新合金25克,计算原来两块合金的重量.问题1:设原来含金95%的合金为x克,含金80%的合金为y克.熔合后新合金中的含金量为25×90.6%,熔合前的总含金量为95%x+80%y+2,因此可以列出方程95%x+80%y+2=25×90.6%.问题2:两块合金的重量,加上2克纯金的重量等于新合金的重量,据此你能列出什么样的方程呢?引导学生体会两种解法的优点和不足,为学生建立方程组模型做铺垫.对于二元一次方程组的解法,如果学生学习存在困难,可以借助微视频讲解,或者教师设计表格,帮助学生分析等量关系.
活动三:开放训练体现应用
【应用举例】例1甲、乙两人都从A地到B地,甲步行,乙骑自行车,如果甲先走6千米乙再动身,则乙走0.75小时后恰好与甲同时到达B地;如果甲先走1小时,那么乙用0.5小时可追上甲,求两人的速度及AB两地的距离.变式训练1.两码头相距280千米,一船顺流航行需14小时,逆流航行需20小时,求船在静水中的速度和水流的速度.2.从小华家到姥姥家有一段上坡路和一段下坡路.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3 km,下坡每小时行5 km,她到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家.那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?例2革命老区百色某芒果种植基地,去年结余500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元.巩固用列二元一次方程组解应用题的思想,掌握列二元一次方程组解应用题的方法和步骤.
【拓展提升】例3某铁路桥长1000 m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1 min,整列火车完全在桥上的时间共40 s.求火车的速度和长度.例4从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米.那么从甲地到乙地需54分,从乙地到甲地需42分,从甲地到乙地全程是多少千米?通过练习,使学生熟练掌握解决问题的方法,提升解决问题的能力.
活动四:课堂总结反思
【当堂训练】1.甲、乙二人练习跑步,如果甲让乙先跑10米,甲跑5秒钟就可追上乙,如果甲让乙先跑2秒钟,那么甲跑4秒钟就追上乙.若设甲、乙每秒钟分别跑x米,y米,则列出方程组应为( )A. B.C. D.2.一轮船顺流航行的速度为a千米/时,逆流航行的速度为b千米/时,那么船在静水中的速度为多少千米/时( )A.a+b B.(a-b) C.(a+b) D.a-b3.甲、乙两人从相距36千米的两地相向而行,如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇.设甲每小时走x千米,乙每小时走y千米,可列出方程组________________.通过设置当堂训练,进一步巩固所学新知,同时检测学习效果,做到堂堂清.框架图式总结,更容易形成知识网络.
【教学反思】①[授课流程反思]通过古代的“鸡兔同笼”问题,进行列二元一次方程组解决实际问题的训练,这样,一方面在列方程组的建模过程中,强化了方程思想,培养了学生列方程(组)解决实际问题的意识和应用能力.另一方面,将解方程组的技能训练与实际问题的解决融为一体,在实际问题的解决过程中,进一步提高学生解方程组的技能.
②[讲授效果反思]通过师生互动,让学生体会数学的实用性,掌握列方程组解应用题的思考方法及解题步骤.
③[师生互动反思]在建立方程思想的过程中采用了循序渐进的思路,由算术方法到一元一次方程再到二元一次方程组,遵循了学生的思维梯度,逐步建立起学生用二元一次方程组解应用题的思想,充分感受它的优点和思维的简化.
④[习题反思]好题题号__________________________________________错题题号__________________________________________ 反思,更进一步提升.
活动四:课堂总结反思
二元一次方程组教案11
知识与技能
(1) 初步理解二元一次方程和一次函数的关系;
(2) 掌握二元一 次方程组和对应的两条直线之间的 关系;
(3) 掌握二元一次方程组的图像解法.
过程与方法
(1) 教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;
(2) 通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.
情感与态度
(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
教学重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.
教学难点
数形结合和数学转化的思想意识.
教学准备
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
教学过程
第一环节: 设置问题情境,启发引导(5分钟,学生回答问题回顾知识)
内容:
1.方程x+y=5的解有多少个? 是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y= 的'图像上吗?
3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程 .
第二环节 自主探索方程组的解与图像之间的关系(10分钟,教师引导学 生解决)
内容:
1.解方程组
2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数 的图像.
3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;
(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
第三环节 典型例题 (10分钟,学生独立解决)
探究方程与函数的相互转化
内容:
例1 用作图像的方法解方程组
例2 如图,直线 与 的交点坐标是 .
第四环节 反馈练习(10分钟,学生解决全班交流)
内容:
1.已知一次函数 与 的图像的交点为 ,则 .
2.已知一次函数 与 的图像都经过点A(—2, 0),且与 轴分别交于B,C两点,则 的面积为.
(A)4 (B)5 (C)6 (D)7
3.求两条直线 与 和 轴所围成的三角形面积.
4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?
第五环节 课堂小结(5分钟,师生共同总结)
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一 次函数的图像的关系;
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上 的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1) 方程组的解是对应的两条直线的交点坐标;
(2) 两条直线的交 点坐标是对应的方程组的解;
3.解二元一次 方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.
第六环节 作业布置
习题7.7A组(优等生)1、2、3 B组(中等生)1、2 C组1、2
二元一次方程组教案12
教学目标
1.会列二元一次方程组解简单的应用题并能检验结果的合理性。
2.提高分析问题、解决问题的能力。
3.体会数学的应用价值。
教学重点
根据实际问题列二元一次方程组。
教学难点
1.找实际问题中的相等关系。
2.彻底理解题意。
教学过程
一、引入。
本节课我们继续学习用二元一次方程组解决简单实际问题。
二、新课。
例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的'速度吗?还能算出她家与外祖母家相距多远吗?
探究: 1. 你能画线段表示本题的数量关系吗?
2.填空:(用含S、V的代数式表示)
设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米20xx年-20xx学年七年级数学下册全册教案(人教版)教案。
3.列方程组。
4.解方程组。
5.检验写出答案。
讨论:本题是否还有其它解法?
三、练习。
1.建立方程模型。
(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度
(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?
2.P38练习第2题。
3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
四、小结。
本节课你有何收获?
二元一次方程组教案13
教学目标:
1、会用代入法解二元一次方程组
2、会阐述用代入法解二元一次方程组的基本思路——通过“代入”达到“消元”的目的,从而把解二元一次方程组转化为解一元一次方程。
此外,在用代入法解二元一次方程组的知识发生过程中,让学生从中体会“化未知为已知”的重要的数学思想方法。
引导性材料:
本节课,我们以上节课讨论的求甲、乙骑自行车速度的问题为例,探求二元一次方程组的解法。前面我们根据问题“甲、乙骑自行车从相距60千米的两地相向而行,经过两小时相遇。已知乙的速度是甲的速度的2倍,求甲、乙两人的速度。”设甲的速度为X千米/小时,由题意可得一元一次方程2(X+2X)=60;设甲的速度为X千米/小时,乙的速度为Y千米/小时,由题意可得二元一次方程组 2(X+Y)=60
Y=2X 观察
2(X+2X)=60与 2(X+Y)=60 ①
Y=2X ② 有没有内在联系?有什么内在联系?
(通过较短时间的观察,学生通常都能说出上面的二元一次方程组与一元一次方程的内在联系——把方程①中的“Y”用“2X”去替换就可得到一元一次方程。)
知识产生和发展过程的教学设计
问题1:从上面的二元一次方程组与一元一次方程的内在联系的研究中,我们可以得到什么启发?把方程①中的“Y”用“2X”去替换,就是把方程②代入方程①,于是我们就把一个新问题(解二元一次方程组)转化为熟悉的.问题(解一元一次方程)。
解方程组 2(X+Y)=60 ①
Y=2X ②
解:把②代入①得:
2(X+2X)=60,
6X=60,
X=10
把X=10代入②,得
Y=20
因此: X=10
Y=20
问题2:你认为解方程组 2(X+Y)=60 ①
Y=2X ② 的关键是什么?那么解方程组
X=2Y+1
2X—3Y=4 的关键是什么?求出这个方程组的解。
上面两个二元一次方程组求解的基本思路是:通过“代入”,达到消去一个未知数(即消元)的目的,从而把解二元一次方程组转化为解一元一次方程,这种解二元一次方程组的方法叫“代入消元法”,简称“代入法”。
问题3:对于方程组 2X+5Y=-21 ①
X+3Y=8 ② 能否像上述两个二元一次方程组一样,把方程组中的一个方程直接代入另一个方程从而消去一个未知数呢?
(说明:从学生熟悉的列一元一次方程求解两个未知数的问题入手来研究二元一次方程组的解法,有利于学生建立新旧知识的联系和培养良好的学习习惯,使学生逐步学会把一个还不会解决的问题转化为一个已经会解决的问题的思想方法,对后续的解三无一次方程组、一元二次方程、分式方程等,学生就有了求解的策略。)
例题解析
例:用代入法将下列解二元一次方程组转化为解一元一次方程:
(1)X=1-Y ①
3X+2Y=5 ②
将①代入②(消去X)得:
3(1-Y)+2Y=5
(2)5X+2Y-25.2=0 ①
3X-5=Y ②
将②代入①(消去Y)得:
5X+2(3X-5)-25.2=0
(3)2X+Y=5 ①
3X+4Y=2 ②
由①得Y=5-2X,将Y=5-2X代入②消去Y得:
3X+4(5-2X)=2
(4)2S-T=3 ①
3S+2T=8 ②
由①得T=2S-3,将T=2S-3代入②消去T得:
3S+2(2S-3)=8
课内练习:
解下列方程组。
(1)2X+5Y=-21 (2)3X-Y=2
X+3Y=8 3X=11-2Y
小结:
1、用代入法解二元一次方程组的关键是“消元”,把新问题(解二元一次方程组)转化为旧知识(解一元一次方程)来解决。
2、用代入法解二元一次方程组,常常选用系数较简单的方程变形,这用利于正确、简捷的消元。
3、用代入法解二元一次方程组,实质是数学中常用的重要的“换元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替换,使方程②中只含有一个未知数Y。
课后作业:
教科书第14页练习题2(1)、(2)题,第15页习题5.2A组2(1)、(2)、(4)题。
二元一次方程组教案14
教学目标:
1. 认识二元一次方程和二元一次方程组.
2. 了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.
教学重点:
理解二元一次方程组的解的意义.
教学难点:
求二元一次方程的正整数解.
教学过程:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
思考:
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分.
这两个条件可以用方程
x+y=22
2x+y=40
表示.
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
x+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.
探究:
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.
x
y
上表中哪对x、y的值还满足方程②
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
例1 (1)方程(a+2)x +(b-1)y = 3是二元一次方程,试求a、b的.取值范围.
(2)方程x∣a∣ – 1+(a-2)y = 2是二元一次方程,试求a的值.
例2 若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程.求m、n的值
例3 已知下列三对值:
x=-6 x=10 x=10
y=-9 y=-6 y=-1
(1) 哪几对数值使方程 x-y=6的左、右两边的值相等?
(2) 哪几对数值是方程组 的解?
例4 求二元一次方程3x+2y=19的正整数解.
课堂练习:
教科书第102页练习
习题8.1 1、2题
作业:
教科书第102页3、4、5题
二元一次方程组教案15
教学目标
1.会用加减法解一般地二元一次方程组。
2.进一步理解解方程组的消元思想,渗透转化思想。
3.增强克服困难的勇力,提高学习兴趣。
教学重点
把方程组变形后用加减法消元。
教学难点
根据方程组特点对方程组变形。
教学过程
一、复习引入
用加减消元法解方程组。
二、新课。
1.思考如何解方程组(用加减法)。
先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?
能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。
学生解方程组。
2.例1.解方程组
思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?
学生讨论,小组合作解方程组。
提问:用加减消元法解方程组有哪些基本步骤?
三、练习。
1.P40练习题(3)、(5)、(6)。
2.分别用加减法,代入法解方程组。
四、小结。
解二元一次方程组的.加减法,代入法有何异同?
五、作业。
P33.习题2.2A组第2题(3)~(6)。
B组第1题。
选作:阅读信息时代小窗口,高斯消去法。
后记:
2.3二元一次方程组的应用(1)
第四篇:二元一次方程组教案
二元一次方程(组)
一.二元一次方程的概念
含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: 1.方程两边的代数式都是整式——分母中不能含有字母; 2.有两个未知数——“二元”;
3.含有未知数的项的最高次数为1——“一次”.
二.二元一次方程组的概念
由几个一次方程组成并且一共含有两个未知数的方程组叫做二元一次方程组 ..
1、下列方程中是二元一次方程的是()
3126xy0 y232xy10xy3yx0 5x22yxy10
x2、下列属于二元一次方程组的是()2x3y53xyz0
x351xy11xy5yx2 35xy222xy1xy0xy1xy0x1,y12xy1,x2y10,xy,xy3xy4x2y1a24|b|(a2x),xy的二元一次方程,则(b1)y13a=,b=
3、如果是关于
4、若2x2a5a3y1是二元一次方程,求a的值.5、已知3xa22y2b55是二元一次方程,则a=b=.6、已知方程m3xm22yn10是关于x、y的二元一次方程,则m______,n______
三.二元一次方程的解
使二元一次方程两边的值相等的两个未知数的一组取值叫做二元一次方程的解.在写二元一次方程解的时候我们用大括号联立表示.
x1如:方程xy2的一组解为,表明只有当x1和y1同时成立时,才能满足
y1方程.
四.二元一次方程组的解
二元一次方程组中所有方程(一般为两个)的公共解叫做二元一次方程组的解. ...
1、下列各组数中,_________是方程x3y2的解;_________是方程2xy9的解;x3y2________是方程组的解
2xy9x1x5x3x2①;②;③;④y1y5y1y2
25、二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是()
x0A.1
y2B.x1 y1C.x1
y0D.x1
y1x
13、试写出一个二元一次方程组,使它的解是y3,这个方程组可以是________
x2,4、已知是方程x-ky=1的解,那么k=_______ y3x2mxy3的解,则m=_______,n=______.
5、已知是方程组y1xny6五、二元一次方程组的解法-----代入消元法
代入消元法:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法.
用代入消元法解二元一次方程组的一般步骤:
(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成yaxb的形式;
(2)代入消元:将yaxb代入另一个方程中,消去y,得到一个关于x的一元一次方程;
(3)解这个一元一次方程,求出x的值;
(4)把求得的x的值代入yaxb中求出y的值,从而得出方程组的解; xa(5)把这个方程组的解写成的形式.
yb
1、把方程7x-2y15写成用含x的代数式表示y的形式,得()
A.y2x
517B.x152y
7C.y7x15
2D.y157x
22、已知x=3t+1,y=2t-1,用含x的式子表示y,其结果是().
x1 32x5(C)y
3(A)y
y1 22x1(D)y
3(B)x2
3x4y2①
3、用代入法解二元一次方程组时,最好的变式是()
2xy5 ②24y23xy5A.由①得x3 B.由①得y
44、用代入法解下列方程组:
(1)y(=42x ①)2xy5 ②
(3)3m2n6 ① 4m3n1
②
2x1y4(5)3225 1x11 48y8
C.由②得x2 D.由②得y2x5 xy4 ①2xy5 ②(4)2p3q13p54q
(6)5x2y5a3x4y3(a其中a为常数)3
m12n3
x2y134(7)(8)4m3n7x:2y:3
5、若x-y+3与|2x+y|互为相反数,则x+y的值为__________
6、如果ab与-ab2y123xyx+
1是同类项,则x、y分别为___________
7、如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为__________
8、如图是一个正方体的展开图,标注了字母a的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,则a,x,y的值_______________________
9、若方程组 xy7,则3xy3x﹣5y的值是
.
3x5y3 4
10、若|x-y-1|+(2x-3y+4)2=0,则x=______,y=______.
11、二元一次方程组
12、小亮解方程组了两个数
4x3y7的解x,y的值相等,求k.
kx(k1)y32xyx5的解为,由于不小心,滴上了两滴墨水,刚好遮住
y#2xy12和▲,请你帮他找回▲这个数,▲=
.
Ax+By=2,x=1,x=2,13、甲、乙两人共同解方程组甲正确解得乙抄错C,解得
Cx-3y=-2,y=-1,y=-6,求A,B,C的值.
x3 ax5y15 ①变式:已知方程组 由于甲看错了方程①中的得到方程组的解为;乙看错了方程②a4xby2 ② y1x5中的b得到方程组的解为,若按正确的a、b计算,求原方程组的解.y4
14、关于x、y的二元一次方程组xy5k的解也是二元一次方程2x3y6的解,则
xy9kk的值是.变式:如果关于x、y的方程组
x2y7k的解满足3x+y=5,求k的值。
2xy82kxy3xmy2
15、若方程组xy1与方程组同解,则m=。
nxy
3xy6xay3变式:如果关于x、y的方程组 的解与 的解相同,求a、b的ax2ybxy8值。
第五篇:二元一次方程组教案
二元一次方程组教案
阜康市第四中学 方海艳
一、教学目标:
1.明确二元一次方程(组)的概念 2.正确掌握二元一次方程组的解法 3.运用二元一次方程组解决实际问题
4.进一步体会转化思想在解二元一次方程组及实际应用中运用
二、情感目标:
1.通过类比分析解二元一次方程组的不同方法,使学生树立最优解题的思想意识 2.通过建立方程模型解决实际问题,使学生深刻体会数学来源于生活,服务于生活,进一步培养学生的数学应用意识,体会数学的美。
三、教学重难点
(一)教学重点: 1.正确选择最优方法解二元一次方程组
2.建立二元一次方程组模型解决实际问题
(二)教学难点:
能根据实际问题提供的信息准确找出等量关系,列出二元一次方程组。
四、教学过程
(一)情境引入
师:同学们你们喜欢看电视吗?在电视上我们最多看到的是什么?(广告)如果你是这个电视台的台长,你会如何安排这两种广告呢?
考考你:某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告,若要求每种广告播放不少于两次,问:两种广告的播放次数有几种安排方式?
师:观察这个式子,你有什么发现? 考点一:概念 知识点回顾1:二元一次方程的概念
定义:含有两个未知数,并且未知数所在项的次数均为1的整式方程叫做二元一次方程。
1.下列方程中,是二元一次方程的是()
1y2
2x A.3x+4y=1 B.2x-3y=5 C.5xy+1=8 D.2.若5xy 与4xy 是同类项,如何求m与n?
师:观察这个式子,和上面的有什么区别?你发现了什么? 知识点回顾2:二元一次方程组的概念
定义:由2个或2个以上的二元一次方程组成的方程组叫做二元一次方程组 练习: 判断下列方程组是否为二元一次方程组
111x1xy1xy B. C. A.xy3y21x2x2y1x3x2y1 E2 DF2y25yz8x2y4师:现在我们已经掌握了二元一次方程组的基本概念,那你们会解二元一次方程组吗?现在我们就来练一练
考点二:解法 请你在下列方程中选择两个组合出你喜欢的方程组,并求出方程组的解
(1)3x+2y=13(2)x-2y=-1(3)3x-y =-2(4)2x+y=2 师:看来大家对于解方程组已经掌握的很好了,那我们就一起来看看历年中考是怎么靠考解方程组的?
真题演练1.(2015凉山州)已知方程组2xy5,则x+y的值为()
x3y5A.-1 B.0 C.2 D.3 2.(2014·广安)如果a3xby与-a2ybx1是同类项,则()A.x2x2x2x2 B. C. D.
y3y3y3y3归纳总结:(1)在二元一次方程组中,若一个未知数能很好地表示出另一个未知数时,一般采用代入法;
(2)当两个方程中的某个未知数的系数相等或互为相反数时,或者系数均不为1时,一般采用加减消元法。
mxny7x2变式训练:已知 是二元一次方程组的解,则m+3n为——
nxmy1y1师:方程是解决实际生活的模型,我们已经会解二元一次方程组了,那开头我们所提出的问题你能解决吗?
考点三:应用
考考你:某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告,15秒广告每播一次收费0.6万元,30秒广告每插播一次收费1万元,若要求每种广告播放不少于两次,问:
(1)两种广告的播放次数有几种安排方式?(2)电视台选择哪种方式播放收益较大?
解:(1)设播放15秒广告x次,播放30秒广告y次 15 X +30y=120,化简得 x+2y=8 ∵x,y为整数,x≥2,y ≥ 2
x2x4∴ y3y2(2)设播放收益为W元,当x=2,y=3时,W=4.2万元;当x=4,y=2时,W=4.4万元,所以15秒4次,30秒2次收益较大
师:对于单个一个二元一次方程求整数解我们已经掌握,那么二元一次方程组的实际问题你可以解决吗?
真题演练1.(2015江苏南通)甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲、乙种电影票各买了多少张?
动动脑:小龙在拼图时,发现8个一样大的小长方形,恰好可以拼成一个大长方形,如图甲所示,陈晔 看见了说“我来试一试”,结果陈晔七拼八凑,拼成一 个如图乙的正方形,中间留下一个洞,恰好是边长2mm的小正方形,你能算出小长方形的长和宽吗?
甲 乙
真题演练:(2015新疆内高班)某小区准备新建50个停车位,以解决小区停车难的问题。已知新建1个地上停车位和1个地下停车位需0.5万元,新建3个地上停车位和2个地下停车位需1.1万元。
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)若该小区预计投资金额不超过11万元且地上停车位不超过33个,则共有几种建造方案?
中考热点:全民戒烟已经成为共识,为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,列出的方程组
师:通过练习,你能总结出列二元一次方程组解应用题的一般步骤吗? 列二元一次方程组解应用题的一般步骤: 审 审清题意,找出题目中的两个数量关系 设 用两个字母表示问题中的两个未知数 列 根据题意,列出方程组 解 解方程组,求出未知数的值
验 检验求得的值是否正确和符合实际情形 答 写出答案
五、课堂小结
本节课你收获了什么?
六、作业布置