第一篇:高考数学一轮复习 第14章 计数原理、二项式定理、概率14.1两个基本计数原理教学案 苏教版
第14章 计数原理、二项式定理、概率
14.1 两个基本计数原理
考纲要求
1.理解分类计数原理和分步计数原理.
2.会用分类计数原理和分步计数原理分析和解决一些简单的实际问题.
1.分类计数原理:完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……,在第n类方式中有mn种不同的方法,那么完成这件事情共有__________种不同的方法.
2.分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有mn种不同的方法,那么完成这件事情共有____________种不同的方法.
1.5名同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法有__________种.
2.有不同颜色的四件上衣与不同颜色的三条长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是__________.
3.书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从书架上任取1本书,不同的取法数为__________.从第1,2,3层分别各取一本书,不同的取法数为__________.
4.由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有________. 5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有________种(用数字作答).
在计数问题中如何判定是分类计数原理还是分步计数原理?
提示:如果已知的每类办法中的每一种方法都能完成这件事,应该用分类计数原理;如果每类办法中的每种方法只能完成事件的一部分,就用分步计数原理.
一、分类计数原理的应用
x2y2【例1】方程+=1表示焦点在y轴上的椭圆,其中m∈{1,2,3,4,5},n∈mn{1,2,3,4,5,6,7},那么这样的椭圆有多少个?
方法提炼
使用分类计数原理计数的两个条件一是根据问题的特点能确定一个适合于它的分类标准.二是完成这件事情的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法.
请做针对训练3
二、分步计数原理的应用
【例2】已知集合M={-3,-2,-1,0,1,2},点P(a,b)(a,b∈M)表示平面上的点,问:
(1)点P可表示平面上多少个不同的点?(2)点P可表示平面上多少个第二象限的点?(3)点P可表示多少个不在直线y=x上的点? 方法提炼
应用分步计数原理要注意两点:
(1)明确题目中所指的“完成一件事”是什么,必须经几步才能完成.
(2)完成这件事需分为若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少任何一步本事件都不可能完成.
请做针对训练1
三、两个计数原理的综合应用
【例3】某个同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读.
(1)若他从这些书中带一本去图书馆,有多少种不同的带法?(2)若带外语、数学、物理参考书各一本,有多少种不同的带法?
(3)若从这些参考书中选两本不同学科的参考书带到图书馆,有多少种不同的带法? 方法提炼
在解决实际问题的过程中,并不一定是单一的分类或分步,而是可能同时应用两个原理,即分类时,每类的方法可能要运用分步完成,而分步时,每步的方法数可能会采取分类的思想求.
请做针对训练2
从近三年高考试题来看,高考对此部分内容考查都在附加题中.单独考查较少,往往结合概率进行考查,题型为解答题,难度为中档题.
1.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)2.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有__________种.
3.高三一班有学生50人,男30人,女20人;高三二班有学生60人,男30人,女30人;高三三班有学生55人,男35人,女20人.
(1)从高三一班或二班或三班学生中选一名学生任校学生会主席,有多少种不同的选法?
(2)从高三一班、二班的男生中,或从高三三班的女生中选一名学生任校学生会体育部部长,有多少种不同的选法?
参考答案
基础梳理自测 知识梳理
1.N=m1+m2+…+mn 2.N=m1×m2×…×mn 基础自测
51.32 解析:分5步完成,每一步有两种不同的方法,故不同的报名方法有2=32种. 2.12 解析:由分步计数原理,一条长裤与一件上衣配成一套,分两步,第一步选上衣有4种选法,第二步选长裤有3种选法,所以有4×3=12种选法.
3.15 120 解析:由分类计数原理,不同的取法总数为4+5+6=15.由分步计数原理,不同的取法总数为4×5×6=120.4.174个 解析:可用排除法,由0,1,2,3可组成的所有四位数有3×4×4×4=192(个),其中无重复的数字的四位数共有3×3×2×1=18(个),故共有192-18=174(个).
5.24 解析:分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法;其次甲从剩下的3门课程中任选1门,有3种方法;最后乙从剩下的2门课程中任选1门,有2种方法.于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种).
考点探究突破
【例1】 解:以m的值为标准分类,分为五类.第一类:m=1时,使n>m,n有6种选择;第二类:m=2时,使n>m,n有5种选择;第三类:m=3时,使n>m,n有4种选择;第四类:m=4时,使n>m,n有3种选择;第五类:m=5时,使n>m,n有2种选择.
∴共有6+5+4+3+2=20种方法,即有20个符合题意的椭圆. 【例2】 解:(1)确定平面上的点P(a,b)可分两步完成: 第一步确定a的值,共有6种确定方法; 第二步确定b的值,也有6种确定方法.
根据分步乘法计数原理,得到平面上的点数是6×6=36.(2)确定第二象限的点,可分两步完成:
第一步确定a,由于a<0,所以有3种确定方法; 第二步确定b,由于b>0,所以有2种确定方法.
由分步乘法计数原理,得到第二象限点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个. 由(1)得不在直线y=x上的点共有36-6=30个.
【例3】 解:(1)完成的事情是带一本书,无论是带外语书还是带数学书、物理书,事情都能完成,从而确定为分类计数原理,结果为5+4+3=12种.
(2)完成的事情是带3本不同学科的参考书,只有从外语、数学、物理中各选一本书后,才能完成这件事,因此应用分步计数原理,结果为5×4×3=60种.
(3)选1本数学书和选1本外语书,应用分步计数原理,有5×4=20种选法,同样地,选外语书、物理书各一本有5×3=15种选法,选数学书、物理书各一本有4×3=12种选法,应用分类计数原理,结果为20+15+12=47种.
演练巩固提升 针对训练
1.14 解析:用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,因此满足条件的四位数共有16-2=14(个).
2.30 解析:分两类.第一类:A类选修课选1门,B类选修课选2门,不同的选法有3×6=18(种);第二类:A类选修课选2门,B类选修课选1门,不同的选法有3×4=12(种).根据分类计数原理共有18+12=30种不同的选法.
3.解:(1)完成这件事有三类方法:
第一类,从高三一班任选一名学生共有50种选法; 第二类,从高三二班任选一名学生共有60种选法; 第三类,从高三三班任选一名学生共有55种选法,根据分类计数原理,任选一名学生任校学生会主席共有50+60+55=165种选法.(2)完成这件事有三类方法:
第一类,从高三一班男生中任选一名共有30种选法; 第二类,从高三二班男生中任选一名共有30种选法; 第三类,从高三三班女生中任选一名共有20种选法,综上知,共有30+30+20=80种选法.
第二篇:高考数学第一轮复习_分类分步计数原理(例题解析含答案)
分类加法计数原理与分步乘法计数原理
基础梳理
1.分类加法计数原理
完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,„„,在第n类方案中有mn种不同的方法,则完成这件事情共有N
2.分步乘法计数原理
完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,„„,完成第n步有mn种不同的方法,那么完成这件事情共有N=×mׄ×m种不同的方法.
两个原理
分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”.而分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.
双基自测
1.(人教A版教材习题改编)由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有().
A.238个B.232个C.174个D.168个
解析 可用排除法由0,1,2,3可组成的四位数共有3×43=192(个),其中无重复的数字的四位
3数共有3A3=18(个),故共有192-18=174(个).答案 C
2.(2010·广州模拟)已知集合A={1,2,3,4},B={5,6,7},C={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合,则一共可以组成多少个集合().
A.24个B.36个C.26个D.27个
11111解析 C14C3+C4C2+C3C2=26,故选C.答案 C
3.(2012·滨州调研)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有().
A.6种B.12种C.24种D.30种
解析 分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,1甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种),故选C.4.(2010·湖南)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为().
A.10B.11C.12D.1
5解析 若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C3若恰有2个位置上的数字不同的信息个数为C2由分类计数原理知满足条件的信息个数4;4,2为1+C34+C4=
11.5.某电子元件是由3个电阻组成的回路,其中有4个焊点A、B、C、D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有________种. 解析 法一 当线路不通时焊点脱落的可能情况共有2×2×2×2-1=15(种).
法二 恰有i个焊点脱落的可能情况为Ci4(i=1,2,3,4)种,由分类计数原理,当电路不通时焊
234点脱落的可能情况共C14+C4+C4+C4=15(种).
考向一 分类加法计数原理
【例1】►(2011·全国)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有().
A.4种B.10种C.18种D.20种
[审题视点] 由于是两类不同的书本,故用分类加法计数原理.
解析 赠送一本画册,3本集邮册,共4种方法;赠送2本画册,2本集邮册共C24种方法,由分类计数原理知不同的赠送方法共4+C24=10(种).
【训练1】 如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.
解析 把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个);第二类,有两条公共边的三角形共有8(个).
由分类加法计数原理知,共有32+8=40(个).
考向二 分步乘法计数原理
【例2】►(2011·北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答).
[审题视点] 组成这个四位数须分4步完成,故用分步乘法计数原理.
解析 法一 用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,因此满足条件的四位数共有16-2=14(个).
法二 满足条件的四位数可分为三类:第一类含有一个2,三个3,共有4个;第二类含有三个2,一个3共有4个;第三类含有二个2,二个3共有C24=6(个),因此满足条件的四位数共有2×4+C24=14(个).
考向三 涂色问题
【例3】► 如图,用5种不同的颜色给图中A、B、C、D四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,求有多少种不同的涂色方法?
[审题视点] 根据乘法原理逐块涂色,要注意在不相邻的区域内可使用同一种颜色.
解 法一 如题图分四个步骤来完成涂色这件事:
涂A有5种涂法;涂B有4种方法;涂C有3种方法;涂D有3种方法(还可以使用涂A的颜色).根据分步计数原理共有5×4×3×3=180种涂色方法.
法二 由于A、B、C两两相邻,因此三个区域的颜色互不相同,共有A35=60种涂法;又D与B、C相邻、因此D有3种涂法;由分步计数原理知共有60×3=180种涂法.
【训练3】 如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.
解 法一 可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.由题设,四棱锥S-ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60种染色方法.
当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染
法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种). 法二 以S、A、B、C、D顺序分步染色
第一步,S点染色,有5种方法;
第二步,A点染色,与S在同一条棱上,有4种方法;
第三步,B点染色,与S、A分别在同一条棱上,有3种方法;
第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).
规范解答20——如何解决涂色问题
【问题研究】 涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点.【解决方案】 涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.【示例】►(本小题满分12分)用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?
[解答示范] 如图所示,将4,第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.(2分)
2①当第2个、第3个小方格涂不同颜色时,有A4=12种不同的涂法,第4个小方格有3种
不同的涂法.由分步计数原理可知,有5×12×3=180种不同的涂法;(6分)
②当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻西格不同色,因此,第4个小方格也有4种不同的涂法,由分步计数原理可知.有5×4×4=80种不同的涂法. 由分类加法计数原理可得,共有180+80=260种不同的涂法.(12分)
第三篇:2018年高考数学总复习第十章计数原理、概率第2讲排列与组合!
第2讲 排列与组合
基础巩固题组(建议用时:25分钟)
一、选择题
1.(2016·四川卷)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48
C.60 D.72 解析 由题意,可知个位可以从1,3,5中任选一个,有A3种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有A4种方法,所以奇数的个数为A3A4=3×4×3×2×1=72,故选D.答案 D 2.(2017·东阳调研)某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A.16种 C.42种
B.36种 D.60种
414解析 法一(直接法)若3个不同的项目投资到4个城市中的3个,每个城市一项,共A4种方法;若3个不同的项目投资到4个城市中的2个,一个城市一项、一个城市两项共C3A4种方法.由分类加法计数原理知共A4+C3A4=60(种)方法.法二(间接法)先任意安排3个项目,每个项目各有4种安排方法,共4=64种排法,其中3个项目落入同一城市的排法不符合要求共4种,所以总投资方案共4-4=64-4=60(种).答案 D 3.10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为()A.C7A5 2
222 B.C7A2
222
C.C7A5
D.C7A5
23解析 首先从后排的7人中抽2人,有C7种方法;再把2个人在5个位置中选2个位置进行排列有A5种.由分步乘法计数原理知不同调整方法种数是C7A5.答案 C 4.(2017·金华调研)甲、乙两人从4门课程中各选修两门,则甲、乙所选的课程中至少有1门不相同的选法共有________种()A.30 B.36
C.60
D.72
222解析 甲、乙所选的课程中至少有1门不相同的选法可以分为两类:当甲、乙所选的课程中2门均不相同时,甲先从4门中任选2门,乙选取剩下的2门,有C4C2=6种方法;当甲、乙所选的课程中有且只有1门相同时,分为2步:①从4门中选1门作为相同的课程,有C4=4种
122选法,②甲从剩余的3门中任选1门,乙从最后剩余的2门中任选1门有C3C2=6种选法,由分步乘法计数原理此时共有C4C3C2=24种方法.综上,共有6+24=30种方法.答案 A 5.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有()A.36种 C.48种
B.42种 D.54种
111解析 分两类,第一类:甲排在第一位时,丙排在最后一位,中间4个节目无限制条件,有A4种排法;第二类:甲排在第二位时,从甲、乙、丙之外的3个节目中选1个节目排在第一位有C3种排法,其他3个节目有A3种排法,故有C3A3种排法.依分类加法计数原理,知共有A4+C3A3=42种编排方案.答案 B 6.(2016·东北三省四市联考)甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则有多少种坐法()A.10 C.20
B.16 D.24 1
31313
44解析 一排共有8个座位,现有两人就坐,故有6个空座.∵要求每人左右均有空座,∴在6个空座的中间5个空中插入2个座位让两人就坐,即有A5=20种坐法.答案 C 7.(2017·浙江五校联考)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 C.144
B.120 D.168
2解析 法一 先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品中2□相声□”,有A2C3A3=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个人,其形式为“□小品1□相声□小品2□”.有A2A4=48种安排方法,故共有36+36+48=120种安排方法.法二 先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有A3·A4=144(种),再剔除小品类节目相邻的情况,共有A3·A2·A2=24(种),于是符合题意的排法共有144-24=120(种).答案 B 8.(2017·青岛模拟)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,9×5=45种坐法.答案 45
能力提升题组(建议用时:20分钟)14.(2017·武汉调研)三对夫妻站成一排照相,则仅有一对夫妻相邻的站法总数是()A.72 C.240
B.144 D.288 解析 第一步,先选一对夫妻使之相邻,捆绑在一起看作一个复合元素A,这对夫妻有2种排法,故有C3A2=6种排法;第二步,再选一对夫妻,这对夫妻有2种排法,从剩下的那对夫妻中选择一个插入到刚选的夫妻中,把这三个人捆绑在一起看作另一个复合元素B,有C2A2C2=8种排法;第三步,将复合元素A,B和剩下的那对夫妻中剩下的那一个进行全排列,有A3=6种排法,由分步乘法计数原理,知三对夫妻排成一排照相,仅有一对夫妻相邻的排法有6×8×6=288种,故选D.答案 D 15.设集合A={(x1,x2,x3,x4,x5)|xi∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 C.120
B.90 D.130
312112解析 因为xi∈{-1,0,1},i=1,2,3,4,5,且1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3,所以xi中至少两个为0,至多四个为0.①xi(i=1,2,3,4,5)中4个0,1个为-1或1,A有2C5个元素; ②xi中3个0,2个为-1或1,A有C5×2×2=40个元素; ③xi中2个0,3个为-1或1,A有C5×2×2×2=80个元素; 从而,集合A中共有2C5+40+80=130个元素.答案 D 16.(2017·慈溪调考)在某班进行的演进比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为________(用数字作答).解析 若第一个出场是男生,则第二个出场的是女生,以后的顺序任意排,方法有C2C3A3=36种;若第一个出场的是女生(不是女生甲),则剩余的2个女生排列好,2个男生插空,方法有C2A2A3=24种.故所有出场顺序的排法种数为36+24=60.答案 60 17.(2017·诸暨模拟)从0,1,2,3,4,5这6个数字中任意取4个数字,组成一个没有重复且能被3整除的四位数,则这样的四位数共有________个(用数字作答).5-
第四篇:高二数学 分类计数原理与分步计算原理同步教案 新人教A版1
《分类加法计数原理和分步乘法计数原理》教案
李应钊
2009212042
一、教学目标
知识与技能:理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的实际问题。
过程与方法:通过诱导,探索得出结论,培养学生的理解能力和抽象概括能力;通过知识应用培养学生的分析和解决问题的能力。
情感、态度与价值观:通过实例引入体会数学来源生活,并为生活服务,激发学生学习本章的兴趣;通过探索与发现的过程,使学生体会数学研究的成功与快乐,学会提出问题、分析问题、解决问题,激发学生勇于探索,敢于创新的精神,优化学生的思维品质。
二、重点与难点
重点:理解分类加法原理与分步乘法计数原理;并能根据具体问题的特征,选择分类加法原理与分步乘法计数原理解决一些简单的实际问题。
难点:正确理解“完成一件事情”的具体含义,能根据具体问题的特征,正确选择分类加法计数原理与分步乘法计数原理解决计数问题。
关键:使学生从实例分析和例题学习中,正确认识分类和分步的特征。
三、教学方法:
本节课采用问题式教学为主线,辅以启发式、探究式、自主式、讨论式的教学方式。教学辅助手段:多媒体辅助教学。
四、教学过程
1.创设情境,激发兴趣。
2011年10月16日,第七届城市运动会在南昌开幕,其中乒乓球比赛项目17日至24日在“乒乓球市”新余举行,共有25支代表队参加比赛。问:(1)在男单比赛中,若采用小组单循环赛,已知第一小组有A、B、C、D、四人,那么第一小组共有多少场比赛,你能一一列举出来吗?(2)比赛分循环赛、淘汰赛、交叉赛,总共有多少场比赛?
2、实例分析,归纳概念
问题
1、从天津到大连,有四种交通工具供选择:汽车、火车、飞机、轮船。已知每天汽车有1班,火车有4班,飞机有2班,轮船有2班。问共有多少种走法? 设问1:从天津到大连按交通工具可分____类方法?
第一类方法, 乘汽车,有___ 种方法;第二类方法, 乘火车,有___ 种方法;第三类方法,乘飞机,有___ 种方法;第四类方法,乘轮船,有___ 种方法;∴ 从甲地到乙地共有__________ 种方法
设问2:如果完成一件事有四类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,在第4类方案中有m4种不同的方法,那么完成这件事共有多少种不同的方法?
设问3:如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢? 一般归纳:
完成一件事情,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1+m2+…+mn
种不同的方法.称为分类加法计数原理,简称加法原理。
问题2:从A村去B村的道路有3条,从B村去C村的道路有2条,从C村去D村的道路有3条(如图所示)。李明要从A村先到B村,再经过C村,最后到D村,一共有多少条线路可以选择?
设问1:(1)整个行程必须通过几个步骤? 第一步, 由A村到B村有___种方法 第二步, 由B村到C村有____种方法, 第三步, 由C村到D村有____种方法, ∴从A村到D村共有_______种方法。引导学生类比归纳:
完成一件事情,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有mn种不同的方法.那么完成这件事共有N=m1m2…mn种不同的方法.称为分步乘法计数原理,简称乘法原理
这两个原理有什么联系与区别?(学生归纳,教师随机板书)
分类计数与分步计数原理的区别和联系:
联系
加法原理
乘法原理
“完成一件事”的计数方法
完成一件事共有n类办法,关键
区别 词是“分类”
每类办法中的每一种方法都能
完成一件事共分n个步骤,关键词是“分步”
各步中的任何一种方法都不能独立完独立完成这件事情。(类类独立)成这件事情,只有每个步骤完成了,才
各类方法数相加
能完成这件事情。(步步关联)各步方法数相乘
3、合作学习,形成认识
例
1、在1,2,3,……,200中,能够被5整除的数共有多少个? 教师设置如下问题:
在本题中“完成一件事”指的是什么? 完成这件事是分类还是分步?具体怎么做? 根据什么原理计算得出结果是多少? 解:能够被5整除的数,末位数字是0或5;
因此,把1,2,3,···,200中能够被5整除的数分成两类来计数: 第一类:末位数字是0的数,一共有20个。
第二类:末位数字是5的数,一共有20个。
根据加法原理,在1,2,3,···,200中,能够被5整除的数共有20+20=4个。
例
2、有一项活动,需在3名教师,8名男生和5名女生中选人参加。(1)若只需1人参加,有多少种选法?(2)若需教师、男生、女生各1人参加,有多少种选法?
教师组织三位学生合作解决问题,其中甲问乙答丙补充,引导甲问如下3个问题:
(1)在本题中“完成一件事”指的是什么?(2)完成这件事是分类还是分步?具体怎么做?(3)根据什么原理计算得出结果是多少? 乙作答,丙完善补充:
第(1)问:选一人参加活动,分三类。第一类:选一名教师,有3种;第二类:选一名男生,有8种;第三类,选一名女生,有5种。由加法原理,共有N=3+8+5=16种选法。第(2)问:需选三人参加活动,分三步完成。第一步:选一名教师,有3种;第二步:选一名男生,有8种;第三步,选一名女生,有5种。由乘法原理,共有N=3×8×5=120种选法。
4、自主探究,深化理解
练习1:课本第5页练习并组织学生作答。
练习2:①在所有的两位数中,个位数字大于十位数字的两位数共有多少个?
②一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数号码?
练习3:(课本练习拓展题)有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取2本不科目同的书,有多少种取法?
5、总结反思,提高认识 你在本节课学到了什么? 一个中心问题:计数问题
两个基本原理:
1、分类计数原理:
2、分步计数原理:
三个思维关键:
1、明确完成一件事的含义;
2、分清分类(类类独立)与分步(步步关联);
3、分类、分步标准明确,分类不重不漏,分步步骤完整。
6、布置作业,知识拓展 P5习题1-1:第3、4、5题
附:板书设计
分类加法计数原理和分步乘法计数原理
分类加法计数原理
例1
分步乘法计数原理
例2
第五篇:专题09 排列组合二项式定理(教学案)-高考数学二轮复习精品资料(原卷版)
专题09 排列组合、二项式定理(教学案)-20XX年高考数学二轮复习精品资料(原卷版)
【高效整合篇】
一.考场传真
1.【20XX年辽宁卷】一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()
A.3×3!B.3×(3!)C.(3!)D.9!
2.【20XX年浙江卷】将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).3.【20XX年重庆卷】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答)
4.【20XX年新课标(I)】设m为正整数,展开式的二项式系数的最大值为a,展开式的二项式系数的最大值为b,若,则m=()
A.5 B.6错误!未找到引用源。C.7
D.8
二.高考研究
1.考纲要求
(1)分类加法计数原理、分步乘法计数原理
①理解分类加法计数原理和分步乘法计数原理;
②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)排列与组合
①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.(3)二项式定理
①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题
.一.基础知识整合
1.应用两个计数原理解题的方法
(1)在应用分类计数原理和分步计数原理时,一般先分类再分步,每一步当中又可能用到分类计数原理.
(2)对于复杂的两个原理综合使用的问题,可恰当列出示意图或表格,使问题形象化、直观化.
2.排列、组合数公式及相关性质
(1)排列数公式:
(2)组合数公式
n
(3)排列数与组合数的性质
排列:An;组合!
;
④增减性与最大值:当大,当时的值22
时,二项式系数Cr的值逐渐增
nn逐渐减小,且在中间取得最大值.当n为偶数时,中间一项(第+1项)的二项式系数Cn2 式系数
相等并同时取最大值
二.高频考点突破
考点1 分类计数原理与分步计数原理
【例1】【20XX年北京卷理】从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18 C.12 D.6
【规律方法】高考计数原理可能单独考查,也可能与排列、组合问等题综合考查,要注意加乘明确:分类相加,分步相乘.“分类”就是对于较复杂的应用题中的元素往往分成互斥的几类,然后逐类解决;“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列组合问题,然后逐步解决.【举一反三】【安徽省望江四中20XX届高三上学期第一次月考】一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()
A.12种 B.15种 C.17种 D.19种
考点2 排列、组合及性质
取得最大值.当n为奇数时,中间两项(第和+1项)的二项
考点3 排列、组合的应用
【例3】【浙江温州市十校联合体20XX届高三上学期期初联考】将四个相同的红球和四个相同的黑球排成一排,然后从左至右依次给它们赋以编号l,2,„,8.则红球的编号之和小于黑球编号之和的排法有 种.【规律方法】1.解答排列组合应用题要从“分析”“分辨”“分类”“分步”的角度入手.
(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;
(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有无限制等;
(3)“分类”就是对于较复杂的应用题中的元素往往分成互斥的几类,然后逐类解决;
(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列组合问题,然后逐步解决.
2.解决排列组合问题的13个策略.(1)特殊元素、特殊位置优先法;(2)相邻问题捆绑法;(3)不相邻(相间)问题插空法;(4)多排问题单排法;(5)多元问题分类法;(6)有序分配问题分步法;(7)交叉问题集合法;(8)至少或至多问题间接法;(9)选排问题先选后排法;(10)局部与整体问题排除法;(11)复杂问题转化法;(12)定序问题倍缩法;(13)相同元素分组可采用隔板法.3.对解组合问题,应注意以下四点:
(1)对“组合数”恰当的分类计算,是解组合题的常用方法;
(2)是用“直接法”还是“间接法”解组合题,其原则是“正难则反”;
(3)设计“分组方案”是解组合题的关键所在;
(4)分组问题:要注意区分是平均分组还是非平均分组,平均分成n组问题别忘除以n!.【举一反三】【浙江省嘉兴一中20XX届高三上学期入学摸底数学(理)】用0,1,2,3,4,5这六个数字,可以组成 个没有重复数字且能被5整除的五位数(结果用数值表示).
考点4 二项式定理及应用
【举一反三】【山西省忻州一中 康杰中学 临汾一中 长治二中20XX届高三第一次四校联考】 已知展开式中,奇数项的二项式系数之和为64,则展开式中含x项的系数为()
A.71 B.70 C.21 D.49 nn2
考点5 赋值法在二项式定理中的应用
【例5】【改编题】若,则 的值为()2222014
A.2 B.0 C.-1 D.-2
【规律方法】二项式定理是一个恒等式,使用时有两种思路:一是利用恒等定理(两个多项式恒等,则对应项系数分别相等);二是赋值.二项式定理结合“恒等”与“赋值”两条思路可以使很多求二项展开式的系数的问题迎刃而解.
赋值法是处理组合数问题、系数问题的最有效的经典方法,一般对任意,某式子恒成立,则对A中的特殊值,该式子一定成立,特殊值x如何选取视具体情况决定,灵活性较强,一般取居多.若
则设有:
f
考点6 二项式定理与其他知识交汇
【例6】【广东省广州市执信、广雅、六中20XX届高三10月三校联考】设是
展开式的中间项,若
mx在区间上恒成立,则实数m的取值范围是
【规律方法】二项式定理内容的考查常出现二项式内容与其它知识的交汇、整合,这是命题的一个创新方向.如二项式定理与函数、数列、复数,不等式等其他知识点综合成题时,对其他模块的知识点要能熟练运用.【举一反三】【安徽省六校教育研究会20XX届高三素质测试理】已知的最小值为n,则二项式展开式中x项的系数为1
x2
三.错混辨析
1.确定分类的标准出错和特殊情况考虑不全出错
2.排列、组合问题中盲目列举导致重复或遗漏出错
【例2】 【20XX年四川卷】从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到的不同值的个数是()
A.9 B.10 C.18 D.20
3.二项式定理与其他知识交汇时求解出错
【例3】二项式和是a,所有项的n 的最小值为()ab 的展开式中的所有项的系数的绝对值之
15713 A.B.C.D.2 636二项式系数之和是b,则
1.某人设计了一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有()
A.22种 B.24种 C.25种 D.36种
2.【安徽省六校教育研究会20XX届高三素质测试】某动点在平面直角坐标系第一象限的整点上运动(含x,y正半轴上的整点),其运动规律为
或
。若该动点从原点出发,经过6步运动到点,则有()种不同的运动轨迹.A.15 B.14 C. 9 D.