第一篇:长方体和正方体的体积计算教学设计方案
长 方 体 和 正 方 体 的 体 积 计 算
教学设计方案
本课是人教版五年级数学下册第二第二课时
数学课程标准对“空间与图形”的内容,以“图形的认识、图形与变换、图形与位置、图形与证明”等四条线索展开,并且都以图形为载体,以培养学生空间观念、推理能力,以及更好地认识与把握我们生存的现实空间为目标,不仅着眼于学生理解和掌握一些必要的几何事实,而且强调学生经历自主探索和合作交流的过程,形成积极的学习态度和情感。提倡以“问题情境——建立模型——解释、应用与拓展、反思”的基本模式展现内容,让学生经历“数学化”和“再创造”的过程。
鉴于新课标的要求,本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中主要通过学生操作的方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,采用小组合作的方式引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。总之,新课力求体现两个特点:
1、给学生更多的动手操作实验与实践的空间。
2、课堂教学的组织,将突出探究性活动,使学生亲历“做数学”的过程,并在这一过程中,通过自主探索,认识和掌握图形性质,积累数学活动的经验,发展空间观念和推理能力,其间特别注意给学生提供充分的数学活动交流的机会
第二篇:长方体和正方体的体积计算教学设计
《长方体和正方体的体积计算》教学设计
教学内容:长方体和正方体的体积计算(教材41至42例
1、例2)
教学目标:
1、知道长方体、正方体体积的推导过程。
2、经历长方体、正方体体积计算公式的探究过程。
3、通过实验操作、讨论归纳发展学生的空间观念。
4、激发学生的学习兴趣,培养学生爱数学的好情感。
教学重点 :长方体、正方体体积公式的掌握和运用。教学难点:长方体、正方体体积公式的推导。
教学用具:
教师准备:一大块橡皮泥; 1立方厘米的正方体木块24块;投影仪。
学生准备:1 立方厘米的正方体12个 教学方法 : 实践操作法 教学过程:
一、创设情境
1、填空:
(1)()叫做物体的体积。
(2)、常用的体积单位有:()、()、()。
(3)、计量一个物体的体积,要看这个物体含有多少个()。
2、小结:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节
课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1、小组讨论、学习长方体体积的计算,然后汇报:
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
2、提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
3、实验:师生都拿出准备好的12个1立方厘米的小正方块,按第31页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少? 板书:长方体:长、宽、高(单位:厘米)含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)(3)它含有多少个1 立方厘米?(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
4、结论:长方体的体积=长×宽×高。用字母表示:V = a×b×h=abh
5、应用:出示例1 一块正方形的石料,棱长是 6 dm。这块石料的体积是多少立方分米? 学生独立解答。
6、思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?
7、结论:正方体的体积=棱长×棱长×棱长 用字母表示为:V=a3 说明:a×a×a可以写成a3,读作:a的立方。应用:出示例2,让学生独立做后订正。
三、课堂实践
1、做第43页的“做一做”的第1题。(1)先让学生标出每个长方体的长、宽、高。(2)再根据公式算出它们各自的体积。(3)集体订正。
2、做练习七的第5、6题。
3、补充练习:
①、一个正方体的棱长是最小的合数(单位:分米),它的体积是多
少立方米?
②、制作一个长15分米,宽4分米,高6分米的长方体玻璃鱼缸(不带盖),至少需要玻璃多少平方分米?
四、课堂小结。
第三篇:长方体和正方体的体积计算 教学设计
长方体和正方体的体积计算 教学设计
一、创设情境
填空:
1、叫做物体的体积。
2、常用的体积单位有:
、、。
3、计量一个物体的体积,要看这个物体含有多少个。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)
含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)
(3)它含有多少个1 立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
结论:长方体的体积=长×宽×高。
用字母表示:V = a×b×h=abh
应用:出示例1,让学生独立解答。
2.小组学习——正方体体积的计算。
思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?
结论:正方体的体积=棱长×棱长×棱长
用字母表示为:V=a3
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结
五、课后实践
做练习七的第5、7题。
第四篇:长方体和正方体体积的计算教学设计
长方体和正方体体积的计算
【教学内容】
教材第29~30页内容 【教材分析】
教材让学生用体积为1 cm3的小正方体摆成不同的长方体,通过对不同摆法的长方体的相关数据的分析,引导学生找出长方体中所含体积单位的数量与它的长、宽、高的关系,从而总结出长方体体积的计算公式。正方体的体积,教材是通过启发学生根据长方体和正方体的关系推导出来的。在用字母表示正方体的公式时,教材介绍了“立方”的含义,说明三个相同的数连乘就是这个数的立方后,安排例1学习计算长方体、正方体的体积。
【学情分析】
学习了体积和体积单位后,学生自然会思考怎样求长方体和正方体的体积。为了解决这个问题,让学生自己动手用相同体积单位的小正方体摆出不同的长方体,分析长方体中所含体积单位的数量与它的长、宽、高的关系,从而概括出长方体、正方体体积的公式。
【教学目标】
1.理解并掌握长方体和正方体体积的计算公式,能运用公式解决简单的实际问题。2.通过学生的自主探索和合作交流,培养学生分析、比较和综合归纳的能力,进一步发展学生的空间观念。
【教学重难点】
重点:能熟练地运用公式计算长方体、正方体的体积 难点:理解长方体、正方体体积公式的推导过程。【教学准备】
多媒体课件、小正方体若干、投影仪
【谈话引入】
师:我们已经知道了常用的体积单位,并且知道计量一个物体的体积,就是要算这个物体含有多少个体积单位。怎样计算一个物体的体积呢?
我们今天就来探究这个问题。(板书课题:长方体、正方体体积的计算)【新知探究】
1.长方体体积的计算
(1)教师出示用体积为1 cm3的小正方体拼成的长方体,说明这个长方体的长、宽、高各是多少。
教师:我们想要知道这个长方体的体积,就是要知道它含有多少个1立方厘米,现在把这个长方体拆成1立方厘米的小正方体,看看它到底含有多少个1立方厘米。(课件演示拆的过程,拆完后数一数)(2)学生数,教师归纳:共有多少个1立方厘米的小正方体,原来这个长方体的体积就是多少立方厘米。
(3)用拆开数一数的方法,能计量出长方体的体积,但是有许多物体是拆不开或不能拆的,那么怎样才能简便准确地计算长方体的体积呢?
(4)实验:请同学们拿出准备好的12个棱长是1厘米的小正方体,以4人小组为单位展开研究。①摆一摆,看可以摆出长、宽、高分别是多少的长方体? 说一说,怎样计算长方体所含的体积单位呢?
教师巡视,指导学生讨论,再用投影仪把学生摆成的长方体展示出来。
②要求学生把上面4种不同的长方体的相关数据填入课本第29页的表格。(课件展示)师:对于这些形状不同的长方体,你是如何得到它们所含的体积单位数的?并且发现了什么?
学生讨论后汇报,教师归纳:
只要用1排放的体积单位的个数(即长)乘以排数(即宽),得到一层含的体积单位数,再乘以竖着所放的层数(即高),就能得到这个长方体里所含的体积单位的数量,所含的体积单位的数量正好等于长方体长、宽、高的乘积。
提出公式:长方体的体积=长×宽×高。
(5)教师讲述:如果用字母V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高,那么长方体的体积公式可以写成V=abh。
2.正方体体积的计算
师:根据正方体和长方体的关系,联系长方体的体积公式,想一想,正方体的体积应该怎样计算?用字母怎样表示?
学生先小组讨论,教师引导学生归纳得出:
正方体的体积=棱长×棱长×棱长 V=a·a·a=a3(V是正方体的体积,a是棱长)3.教学例1 学生读题,理解题意,指名板演,集体订正。【巩固训练】
1.完成教材第31页“做一做”第1题。2.完成教材第32、33页第6~9题。
【课堂小结】
这节课我们学习了很多知识,你们都学会了什么? 【板书设计】
长方体和正方体体积的计算
长方体的体积=长×宽×高 V=abh
正方体的体积=棱长×棱长×棱长 V=a3 例1 V=abh=7×3×4=84(cm3)V=a3=63=6×6×6=216(dm3)
第五篇:《长方体和正方体的体积计算》说课稿
《长方体和正方体的体积计算》说课稿
各位老师: 你们好!
今天我说课的内容是九年义务教育六年制小学数学第十册《长方体和正方体的体积计算》。下面我就从教材、学情、教法、学法以及教学流程和板书设计等
方面谈谈我的构思。
一、说教材(一)教学内容
人教版九年义务教育六年制小学数学第十册第二单元第三节《长方体和正方体的体积计算》。即P33页例1和P34页的例2题及相关练习。
(二)教材分析与目标确定
长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。本单元前几课时已经基本上认识了长方体和正方体的特征和性质,学习了表面积的计算,掌握了体积的概念和常用的体积单位。这节课要学习长方体和正方体的体积计算,认识体积公式的来源,掌握公式的意义和用法.长方体和正方体的体积计算是今后继续学习几何知识的基础,根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定了如下教
学目标:
①知识目标:使学生掌握长方体和正方体的体积计算公式,学会计算长方体
和正方体的体积。
②能力目标:培养学生实际操作能力,推理能力及运用知识解决实际问题的能力。
③情感目标:引导学生去实验推导出长方体、正方体的体积计算公式。让学生亲身经历探索知识的过程,激发他们乐于探索的热情,培养学生的探索性和挑战性。同时渗透理论来源于实践的思想。
(三)教学重点及难点。
根据长方体和正方体之间的关系,重、难点应定位在以下几方面:
(1)教学重点:指导学生探究长方体和正方体的体积形成过程。
(2)教学难点:理解公式的意义。
二、说学情
体积对学生来说是一个新概念,课前,学生已经初步认识了体积和体积单位,对物体的体积有一个比较模糊的认知。在教学中,教师要着眼于学生空间观念的培养,从学生的实际出发,充分利用和创造条件,使学生在轻松愉快的气氛中学习;利用互动多媒体课程,引导学生通过对物体、模型等的观察、测量、拼摆、画图、制作等活动,丰富学生对形体的感知,以培养学生的初步的空间观念和抽
象概括能力。
三、说教法
第多斯惠说过:一个不好的教师是奉送真理,而一个好的教师则是教人发现真理。按照新课程标准要求,我想我要转变观念,不再是单纯的知识传授者,而要成为儿童生活的指导者、支持者、合作者,努力为他们创设适宜的活动环境与学习条件,让他们能够主动地去探究、发现问题,并自己总结出规律。本课的教学从儿童的认知特点出发,强调寓教于乐,形象直观,采取启发式、探究式的方法教学,让学生自己参与,自己动手,自己得出结论。
四、说学法
1.启发学生独立思考。
学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。例如,在操作的基础上,让学生观察、分组讨论:每排个数、每层排数、层数是长方体的什么?长方体的长、宽、高与它的体积有什么关系,这是总结公式、理解公式的重要途径。
2.让学生在问题解决中学习。
问题是数学教学的核心,也是激发学生探究欲望的最佳动力。教学设计时,我力求以“长方体、正方体体积”这一数学知识为载体,通过学生主动参与、发现结论、猜测验证的探究过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上,从而转变学生的学习方式,体现课程改革精神。
五、说教学流程
(一)教学准备
1.学生动手操作的小正方体积木若干套。2.自制课件。
(二)教学过程
(1)、创设情景,导入新课。
1、课件演示如下图,让学生说出他们的体积各是多少?
2、如果较大的物体用1立方厘米去量好不好?我们能不能用学过的数学知识来
计算呢?
(2)、师生互动,探究新知。
1实验探究
小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行直观操作、思考,并且具体操作、思维和语言表
达紧密地结合起来。具体的过程是:
1)每五人一组做实验并记录:
取24块1立方分米的小正方体积木,任意拼摆长方体,然后把数字记录在表格里面。
2)通过课件演示,根据学生的记录表,操作验证。小组讨论:通过填表,你发现了什么?
2归纳概括
1)研究数字间关系。
分组讨论:从这些数字中你发现了什么? ①体积与每排个数、排数、层数的关系。
长方体体积=每排个数×排数×层数
②长方体所含体积单位的个数与它的长、宽、高的关系。
(长方体体积等于长方体所含体积单位的个数,所含体积单位的个数正好等
于长方体长、宽、高的乘积)2)概括体积公式。
①引导学生观看课件,由学生自己总结出长方体的体积公式。
长方体体积=长×宽×高 V=a×b×h V=abh
[例1.的讲解]进一步让学生默记公式,指名说一说求长方体的体积,必须要
知道什么条件?让学生计算例1。
②根据长方体与正方体之间的关系,我们可以推出正方体的体积计算公式吗?
正方体体积=棱长×棱长×棱长 V=a·a·a V=a3 [V=a·a·a,也可以写成a3 读作a的立方,表示三个a相乘,不要误认为а与3相乘。写“а3”时,3写在a的右上
角。]
[例2.的讲解]要使学生树立学习新知识,解决新问题的信心,所以让学生独
立完成例2,教师巡视。
(3)、反馈练习,实践运用。
练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计
了多层次的练习:
(1)、堆积木,算体积。
(2)、通过让学生完成教科书第34页的“做一做”的第一题,先让学生动作操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,记住长方体的体积
计算公式。
(3)、做第34页“做一做”的第二题,先学生独立完成,这道题是巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师
应及时纠正。
(三)、全课总结。
(1)让学生说说这节课学习了什么?(2)教师总结。
这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力。
六、附板书设计:
长方体和正方体的体积计算
长方体体积=每排个数×排数×层数
长方体体积=长×宽×高
V=a×b×h
V=abh
正方体体积=棱长×棱长×棱长
V=a·a·a
V=a3