《整式的乘法--多项式乘以多项式》教学设计

时间:2019-05-12 18:10:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《整式的乘法--多项式乘以多项式》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《整式的乘法--多项式乘以多项式》教学设计》。

第一篇:《整式的乘法--多项式乘以多项式》教学设计

《整式的乘法--多项式乘以多项式》教学设计

一.教材分析

本节内容属于数与代数领域的知识。它是在学习完单项式乘以多项式之后安排的内容,既是单项式与多项式相乘的应用与推广,又为今后学习乘法公式、因式分解等知识作准备。同时,还可以激发学生对数学问题中蕴含的内在规律进行探索的兴趣和培养学生知识迁移的能力。因此,它在数与式的学习中占有重要地位。

二.教学目标

(一)知识与技能:经历探索多项式与多项式相乘的运算法则的过程,会进行整式相乘的运算

(二)过程与方法:在经历探索多项式与多项式乘法法则的过程中,体会数形结合和化归的数学思想

(三)情感态度与价值观:让学生获得成功的体验,增强学习数学的信心。

三.教学的重点与难点

重点:多项式与多项式相乘的运算法则的探索 难点:从数的角度推导法则及法则的灵活应用。四.教学方法

创设情境-主体探究-合作交流-应用提高 五.教学过程

(一)创设情景,引入新课 新民市在建设“百强”县的过程中,为了扩大街心花园的绿地面积,把一块原长a米、宽m米的长方形绿地,增长了b米,加宽了n米.你能用几种方法求出扩大后的绿地面积?

(二)合作探究,展示自我

1.说说你计算扩大后绿地面积的方法。

(学生分组讨论并展示讨论结)

n m a b 计算方法一:先分别求出四个长方形的面积,再求它们的和,即(am+an+bm+bn)米2

计算方法二:是先计算大长方形的长和宽,然后利用长乘以宽得出大长方形的面积,即(a +b)(m+n)米2.

计算方法三:将达长方形分割成以(a+b)为长的两个长方形,他们的宽依次为m和n,并把面积相加,即m(a+b)+n(a+b)米2 计算方法四:将大长方形分割成以m+m为长的两个长方形,他们的宽依次为a和b,并把面积相加,即a(m+n)+b(m+n)米2 2.从上面的几种方法中,你有什么发现?

(教师引导学生,师生共同讨)

3.上面是从数形结合的角度得到的结论,如果脱离具体情景,仅从数的角度你能计算(a+b)(m+n)吗?能得到上述结论吗? 结论1:(a+b)(m+n)=m(a+b)+n(a+b)=a(m+n)+b(m+n)(运用乘法分配律,把多项式乘多项式可以拆分成几个单项式乘多项式的和)结论2:两种计算结果表示的是同一个量,因此(a +b)(m+n)= am+an+bm+bn.

(分组讨论得出多项式与多项式相乘的法则)

4.通过上面的探究,你能归纳多项式乘多项式的法则吗?(师生小结)多项式相乘的法则:

多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加.

(三)达标测试,提升自我 1.例题示范(3x+1)(x+2)2.变式巩固,学以致用

(1)(x8y)(xy)(2)(2x1)(3x5)(3)(xy)(x2xyy2)

3.查缺补漏,小结规范

注意:不漏不重,符号问题,合并同类项 4.达标测试,提升自我

(1)(m2n)(3nm)(2)(2x1)(x3)(3)(a1)2(4)(a3b)(a3b)(5)(2x21)(x4)每组一题,达标测试

(四)拓展运用,超越自我 1.趣味探究:

(1)(x2)(x3)计算:(2)(x4)(x1)(3)(y4)(y2)

(4)(y5)(y3)你能总结出规律吗?

(xp)(xq)2x

2.拓展运用,超越自我

若(x2ax2)(x25xb)的积中不含x3和x项,求

(五)反思小结,回归自我 这节课你有哪些收获?

(六)布置作业

(七)总结评比

a+b的值

第二篇:单项式乘以多项式教学设计

单项式乘以多项式

教学目标

1.使学生探索并了解单项式与多项式相乘的法则;会运用法则进行简单计算.

2.使学生进一步理解数学中“转化”、“换元”的思想方法,即把单项式与多项式相乘转化为单项式与单项式相乘.

3.逐步形成独立思考、主动探索的习惯,培养思维的批评性、严密性和初步解决问题的愿望和能力.

重点:单项式与多项式相乘的法则及其运用. 难点:单项式与多项式相乘去括号法则的应用. 教学过程(师生活动)复习引新 一知识回顾:

1.回忆幂的运算性质:

am·an=am+n(m,n都是正整数)底数幂相乘,底数不变,指数相加.(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘.(ab)n=anbn(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.

2.单项式与单项式相乘法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

3.判断正误(如果不对应如何改正?)(1)4a2·2a3=8a6()

(2)(ab)2(ab3)=a3b5()

(3)(-2x2)3xy2=8x7y2()

点拨:(1)错误,应该为8a5(2)正确(3)错误,应该为-8x7y2 创设情境引入新课

问题: b c d

a

如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____.a

b+c+d 如果把它看成一个大长方形,那么它的面积可表示为_________.则得:ab+ac+ad=a(b+c+d)想一想:你能由此总结出单项式与多项式相乘的乘法法则吗? 教师总结如下:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.例题分析:(-3a)·(-2a2-3a-2)

(在学习过程中重点提醒学生注意符号问题,多项式的每一项都包括它前面的符号)解:(-3a)·(-2a2-3a-2)=(-3a)·(-2a2)+(-3a)·(-3a)+(-3a)·(-2)

=6a3+9a2+6a

深入 探究

一、根据例题分析,启发学生总结单项式与多项式相乘的实质和一般步骤:

1、单项式与多项式相乘的实质是利用分配律把单项式乘以多项式转化为单项式乘法

2.单项式与多项式相乘时,分三个阶段:

①按分配律把乘积写成单项式与单项式乘积的代数和的形式; ②按照单项式的乘法法则运算。③再把所得的积相加.二、强调计算时的注意事项:

1.计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负。2.不要出现漏乘现象。

3.运算要有顺序:先乘方,再乘除,最后加减。4.对于混合运算,注意最后应合并同类项。课内巩固 练一练:

⑴ a(2a-3)⑵ a2(1-3a)⑶ 3x(x2-2x-1)⑷-2x2y(3x2-2x-3)(5)(2x2-3xy+4y2)(-2xy)给学生足够的时间进行基础练习,安排2-3个同学在黑板上演示解题过程,及时观察学生知识的掌握状况,及时纠错以便加深印象,使学生深刻理解单项式与多项式相乘的解题思路及基本方法。课外研究 试一试:

通过以下三道题目加深对单项式与多项式相乘的理解,能够灵活的应用计算方法解出除了例题这样常规题型以外的几类经典题型,拓宽学习思路。

⑴ 3x(x2-2x-1)-2x2(x-3)

⑵-6xy(x2-2xy-y2)+3xy(2x2-4xy+y2)⑶ x2-2x[2x2-3(x2-2x-3)] 设计思想

单项式的乘法用到了有理数的乘法、幂的运算性质,而后续的多项式与多项式的乘法,都要转化为单项式乘法.因此,单项式乘法将起到承前启后的作用,在整式乘法中占有独特地位.所以在教学中先对所学知识进行回顾,再从实际问题导入,让学生自己动手试一试,主动探索;在教学过程中引导学生参照引例解决方法,教师先不给出单项式与多项式相乘的运算法则,而是让学生先独立思考,然后由学生自己小结出如何进行单项式与多项式相乘的乘法,在探索新知的过程中让学生体会从特殊到一般,从具体到抽象的认识过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得单项式与单项式相乘的运算法则,从而构建新的知识体系.在此基础上要求学生用语言叙述这个性质,这有利于提高学生数学语言的表述能力.因为整式是在数的运算的基础上发展起来的,所以在学习单项式与多项式的乘法时,让学生类比数的运算律,将单项式乘以多项式转化为单项式的乘法,将新知识转化为已经学过的知识.无论是单项式乘以单项式还是单项式乘以多项式“转化”为单项式的乘法,学生都从中体会到学习新知识的方法,即学习一种新的知识、方法;通常的做法是把它归结为已知的数学知识、方法,从而使学习能够进行。

第三篇:《多项式乘以多项式》教案专题

教案

【教学目标】:

知识与技能:理解并掌握多项式乘以多项式的法则.过程与方法:经历探索多项式与多项式相乘的过程,通过导图,理解多项与多项式的结果,能够按多项式乘法步骤进行简单的多项式乘法的运算,达到熟练进行多项式的乘法运算的目的.情感与态度:培养数学感知,体验数学在实际应用中的价值,树立良好的学习态度.【教学重点】:多项式乘以多项式法则的形成过程以及理解和应用 【教学难点】:多项式乘以多项式法则正确使用 【教学关键】:多项式的乘法应先转化为单项式与多项式相乘进行运算,进一步再转化为单项式的乘法,紧紧扣住这一线索.【教具】:多媒体课件 【教学过程】:

一、情境导入

(一)回顾旧知识。

1.教师引导学生复习单项式乘以多项式运算法则.并通过练习加以巩固:(1)(-2a)(2a 22ab)

(二)问题探索

式子p(a+b)=pa+pb中的p,可以是单项式,也可以是多项式。如果p=m+n,那么p(a+b)就成了(m+n)(a+b),这就是今天我们所要讲的多项式与多项式相乘的问题。(由此引出课题。)

二、探索法则与应用。

问题:某地区在退耕还林期间,有一块原长m米、宽a米的长方形林区增长了n米,加宽了b米。请你表示这块林区现在的面积。问题:(1)如何表示扩大后的林区的面积?

(2)用不同的方法表示出来后的等式为什么是相等的呢?

(学生分组讨论,相互交流得出答案。)

学生得到了两种不同的表示方法,一个是(m+n)(a+n)平方米;另一个是(ma+mb+na+nb)米平方,以上的两个结果都是正确的。问:你从计算中发现了什么?

由于(m+n)(a+b)和(ma+mb+na+nb)表示同一个量,故有(m+n)(a+b)=ma+mb+na+nb 问:你会计算这个式子吗?你是怎样计算的?

学生讨论得:由繁化简,把m+n看作一个整体,使之转化为单项式乘以多项式,即:[(m+n)(a+b)=(m+n)a+(m+n)b=ma+mb+na+nb。] 设计意图:这里重要的是学生能理解运算法则及其探索过程,体会分配律可以将多项式与多项式相乘转化为单项多与多项式相乘。渗透整体思想和转化思想。引导:观察这一结果的每一项与原来两个多项式各项之间的关系,能不能由原来的多项式各项之间相乘直接得到?如果能得到,又是怎样相乘得到的?(教师示范。)你能用语言叙述这个式子吗? 多项式乘以多项式的法则:

多项式乘以多项式先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

即:(m+n)(a+b)=ma+mb+na+nb。

设计意图:引导学生发现多项式乘多项式的法则,培养学生分析问题、归纳问题的能力。通过对同一面积的不同表示方式,使学生对多项式乘多项式的有一个直观的认识,给出了多项式相乘的一个几何解释。

三、例题讲解巩固练习例1:计算:(1)(x+2)(x+3)

(1)(2x-5y)(3x-y)设计意图:例1有两个特点:

1、两因式项数相同;

2、每个因式的项的最高次数都是1,应用多项式的乘法法则时应注意x·x=x1+1=x2,还应注意符号。归纳:(1)不要漏乘(2)注意符号

(3)结果能合并,要合并 教师活动:讲解范例,提出问题

学生活动:参与例题的解答、探索、理解.课堂练习:(1)(2a–3b)(a+5b);(2)(x+1)(x2+x+1)

(3)(a+b)2

(4)(-2x+5y)(-3x-y)设计意图:设计各种不同类型的题目,让学生熟悉各种题型 例2:求值:(x-8)(x-5)-(2x-1)(x+2)其中x=-1 设计意图:本题是学生易错题,出本题起到敲警钟的作用.学生往往在算出后面两项后忘了加括号.解完题后引导学生归纳易错点.通过例题讲解,使学生明确每一步运算的道理,发展他们有条理的思考能力和表达能力,通过讲练结合,及时巩固法则。)

课堂练习:1.先化简,再求值:3a(a-1)-2(a-2)(a+3)例3:(2)解方程(x-3)(x-2)+18=(x+9)(x+1)

四、课堂总结

1.通过这节课的学习你有哪些收获?

2.你认为在多项式与多项式相乘的运算中,还有什么需要注意的问题要提醒大家?

注意各项的符号,并要注意做到不重复、不遗漏;能合并同类项的要合并同类项.3.数学思想:转化思想

五、作业布置

第四篇:《多项式乘以多项式》教学反思

多项式乘以多项式这节课,实际内容不多,也很简单,重要的是用法则来进行计算,但是在讲课时不能直接把法则投给学生,而是让学生自己通过小组内的探究,达到对知识的发生,发展,发现过程的全部理解,把课堂还给学生,体现学生的主体地位。所以在引入课题时就显得尤为重要,因为一堂好的课往往是从老师进教室的第一句话,第一个行动,第一个表情开始的。所以在进入新课时我利用个小练习题,将其中一题的单项式改为多项式,问学生会不会做,这样学生既回顾了旧知,又提起了学习的兴趣。从而引出了课题。

在这节课我忽视了对个别学生的关注,主要体现在第二关和第三关的环节处理上。在这两个环节中,我只注重了对好学生的关注,但却忽视了对较差的学生的关注,没有及时的发现问题,我以后在课堂上会对不同层次的学生都进行关注,不会在忽视这个问题了。以上就是我这次课所暴露的问题,我会谨记各位老师对我所提出的建议和指导,我会认真总结。

第五篇:整式的乘法—单项式乘以多项式教案_1

整式的乘法—单项式乘以多项式教案

本资料为woRD文档,请点击下载地址下载全文下载地址

内容:整式的乘法—单项式乘以多项式P60-63

课型:新授

时间:

学习目标:、在具体情景中,了解多项式和多项式相乘的意义。

2、在通过学生活动中,理解多项式和多项式相乘的法则,会用它们进行计算。

3、培养学生有条理的思考和表达能力。

学习重点:多项式乘以多项式的法则

学习难点:计算过程中项与项相乘时的符号处理。

学习过程

一、学习准备

、叙述单项式乘以多项式的法则

2、计算

ax•=

b•

=

•3x=

(4)•(-2)=

二、合作探究

(一)独立思考,解决问题、问题:一块长方形菜地,长为a,宽为m。现将它的长增加b,宽增加n,求扩大后的菜地的面积。

结合图形,考虑有几种算法?

算法一:扩大后菜地的长是a+b,宽是m+n,所以它的面积

;

算法二:先算4小块矩形的面积,再求总面积。扩大后

菜地的面积是

m2.因此,=am+bm+an+bn

3、你能用乘法分配律来求出的结果吗?

4、根据上面的计算过程,你能尝试总结多项式乘以多项式的法则吗?

(二)师生探究,合作交流、例4计算:

(1)

(2)

2、练一练

计算:

(1)

5、例5计算

(1)

5、练一练

(1)

(三)学习体会

对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?

(四)自我测试、教科书P61练习3,结合解题的结果,观察每一项的系数和因式中项的关系,写出你的想法。

2、计算:+y2的值是

.4、先化简,再求值。

a-b+,其中a=0.5,b=-1,c=-2.(五)应用拓展、(XX达州中考)若a-b=1,ab=-2,则(a+1)=

2、先化简,后求值

x2+x+1,其中x=

3、试用a、b、c、d表示如图所示的阴影部分的面积。

下载《整式的乘法--多项式乘以多项式》教学设计word格式文档
下载《整式的乘法--多项式乘以多项式》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《整式——多项式》教学反思[五篇范文]

    《整式——多项式》教学反思作为一位刚到岗的人民教师,教学是我们的任务之一,写教学反思能总结我们的教学经验,来参考自己需要的教学反思吧!以下是小编整理的《整式——多项式》......

    《2.1整式——多项式》教学反思

    《2.1整式——多项式》教学反思 本节课由于多项式概念在整式及其运算中的基础性,使得它在本章中具有尤为重要的作用。多项式的概念及由此归纳出的整式的概念,是本节课教学重点......

    多项式教学设计(★)

    2.1 整式――多项式 歇马镇中心学校吴秀珍 教学目标: 理解多项式、多项式的项和次数、整式的概念. 会用多项式表示简单的数量关系,并根据多项式中字母的值求多项式的值.......

    单项式乘以多项式相乘教学反思(精选合集)

    《单项式乘以多项式》教学反思 1.教学过程始终围绕学习目标展开。我首先复习了单项式乘以单项式的知识,然后让学生自己得出本节课的研究内容,并举出了一个单项式乘以多项式的......

    多项式的乘法 教学设计(5篇模版)

    多项式的乘法(一) 教学目标 1.使学生掌握多项式的乘法法则; 2.会进行多项式的乘法运算; 3.结合教学内容渗透“转化”思想,发展学生的数学能力. 教学重点和难点 重点:多项式的乘法法......

    多项式乘以多项式教学设计与反思(共5篇)

    多项式乘以多项式教学设计与反思 龙舟坪镇中心学校:覃玉玲 一、教学实践准备过程的反思 本节课是整式乘法多项式与多项式相乘。我在研读完教材、教参及课标后完成了自己的......

    2017单项式乘以多项式教案.doc[小编推荐]

    8.2 整式乘法(单项式乘以多项式) 教学目标:经历探索单项式与多项式相乘的运算法则的过程,会进行整式相乘的运算。 教学重点:单项式与多项式相乘的运算法则的探索. 教学难点:灵活运......

    多项式乘以多项式练习题 A3(通用版)(5篇材料)

    13.2.3多项式乘多项式习题 一、选择题 1. 计算(2a-3b)(2a+3b)的正确结果是 A.4a2 +9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b22. 若(x+a)(x+b)=x2 -kx+ab,则k的值为A.a+bB.-a-bC.a-bD.b-a 3. 计算(2......