第一篇:分数的基本性质教学设计
2·3分数的基本性质(19-23页)
一、教材分析:本节教材围绕着分数基本性质的得出与应用,安排了两道例题。通过例1,概括出分数基本性质。通过例2,运用、巩固分数的基本性质。
考虑到分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。这是分数与整数的区别。因此,教材在例1中,先让学生通过折纸、涂色,感悟1/
2、2/
4、4/8三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着引导学生探究三个分数的分子和分母是按照什么规律变化的。先从左往右看,再反过来从右往左看,引导学生发现三个分数的分子和分母是怎样变化的。然后,要求学生自己进一步举例验证,并根据这些例子归纳出变化的规律。在此基础上,教材给出了分数的基本性质。
由于分数和整数除法有着内在联系,分数的分子相当于除法中的被除数,分母相当于除数,分数值相当于除法中的商,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。充分利用这一联系,有利于促进学习的迁移。因此,教材在导出分数的基本性质之后,又提出了一个问题,让学生根据分数与除法的关系以及整数除法中商不变的性质,来说明分数的基本性质。
为了帮助学生在运用的过程中巩固和加深对分数基本性质的理解,教材安排了例2,引导学生运用分数的基本性质,写出几个相等的分数。
通过写相等的分数加深对分数基本性质的理解
二、学情分析:本课题是青岛版五年级数学下册第二单元的内容,分数的基本性质在分数教学中占有十分重要的地位,它是约分、通分的理论依据,而约分、通分又是分数四则运算的重要基础。只有理解和掌握分数的基本性质,能比较熟练地进行约分和通分,才能应用四则运算的法则正确、迅速地进行分数四则运算。因此,分数的基本性质是分数的意义和性质这一单元的教学重点之一。掌握分数与除法的关系,以及除法中被除数、除数同时扩大或同时缩小相同的倍数商不变的规律,是学好分数基本性质的基础
三、教学目标:
1、通过教学使学生理解和掌握分数的基本性质,能用分数的基本性质解决一些简单的实际问题。
2、通过教学使学生正确认识和理解变与不变的辨证关系。
3、培养学生的观察能力、抽象思维能力,通过学生的成功体验,培养学生热爱
四、教学重点难点:
重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。难点:自主探究、归纳概括分数的基本性质
五、教学准备:纸条、彩笔、各种卡片。多媒体课件。六教学过程:
1、自主学习
谈话:(出示课件)光明小学举行了校园科技周活动,看:同学们正在制作科技展牌。今天老师就给大家带来了三幅作品,请看第一张,看到这幅作品,你想到了那个分数?你是怎样想到的?请看第二幅作品,图片占整个版面的几分之几?第三幅作品呢?大家比较这三张展牌,注意观察,这三个分数,你认为哪个大呢?
2、合作探究
下面我们就来验证一下。请小组长快速地从一号信封中拿出三张一样长的纸条,小组合作,用折一折、涂一涂的方法分别表示出这三个分数,然后比一比,看,这三个分数相等吗? 生操作。
师展示一组的纸条。同学们都是这样涂的吗?你有什么发现?
3、组内交流
谈话:请同学们观察黑板上的两组相等的分数,思考:要使分数的大小不变,分数的分子和分母应怎样变化?请把你的发现告诉小组的同学。小组长注意,要把你们组发现的规律记在练习本上。
4、班级展示
哪个小组想把你们组发现的规律和探究的过程展示给同学们? 学生可能得出很多规律。
对于他们组的发现,你想提问什么问题吗?学生可能提出你是怎么发现的?(如果学生提不出来老师提)
哪个组还有补充。对他们的补充你有什么问题要提吗?
谈话:同时除以相同的数,分数的大小也会不变吗?你是怎么发现的? 大家听明白了吗?你能把刚才同学们的发现概括出来吗?
学生能得出分子和分母同时乘或除以相同的数,分数的大小不变。(师板书)
5、梳理拓展 谈话:这是同学们根据这两组例子发现的规律,是不是所有的分数经过这样的变化,大小都不变呢?下面我们就来验证一下。
请同学们打开信封看老师给大家准备的素材,先用一张纸条或在一条线段上表示一个分数,然后根据规律变化出另一个分数并在另一张纸条或线段上表示出来。最后再放在一起比较,看两个分数大小是否相等。生操作。
谈话:谁来展示一下你们的验证情况。学生展示。
谈话:这个结论是你发现的,请你骄傲的写上去。哪组跟他们验证的分数不同? 谈话:有没有验证出两个分数大小不相等的?(没有)也就是说我们发现的规律是正确的。请同学们利用这个规律完成下面的题21页第一题
括号内可以填几?为什么0不可以?根据学生的回答,教师随机补充0除外,并告诉学生:
这个规律就是分数的基本性质。出示课题: 分数的基本性质
七、巩固练习、1、光明小学的同学还设计了一个这样的版面,你知道图片部分占这个版面的几分之几吗?你能写出两个与十分之二相等的分数吗?说说你是怎样想出来的。
2、请你把相等的分数连起来。
3、请你来当设计师。
光明小学计划做一块综合栏目的展牌,内容如下:“知识城堡”占版,“活动乐园”占版,“科技图片”占版,“生活园地”占版,其余的为“开心一刻”。
(1)哪些栏目的版面一样大?(2)哪种栏目的版面最大?(3)请你画图设计版面。
八、课堂总结:回顾本节内容(回头看)
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这是分数的基本性质。
九、作业布置:23页第10题
十、板书设计(略)
第二篇:《分数基本性质》教学设计
《分数基本性质》教学设计
作为一名无私奉献的老师,通常需要用到教学设计来辅助教学,借助教学设计可使学生在单位时间内能够学到更多的知识。写教学设计需要注意哪些格式呢?下面是小编为大家整理的《分数基本性质》教学设计,希望对大家有所帮助。
《分数基本性质》教学设计1
教材分析
1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。
2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。
学情分析
学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。
因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。
教学目标
经历探索分数基本性质的过程,理解分数基本性质。
能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点和难点
理解分数基本性质,能运用分数基本性质转化分数。
教学过程
一、复习导入
二、探究新知
实践操作,探究规律
观察发现:初步概括分数基本性质
括归纳分数基本性质
三、课堂练习
四、课堂小结
出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。1、 讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”
提出问题: 这些分数都相等吗?
观察这组相等的分数,你发现了什么?把你的发现说给同伴听。
分子、分母都乘或除以一个数,这个数可以是0吗?为什么?
1、课本P43的“试一试”2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4
通过这节课的学习、你学会了那些知识
口答
小组讨论
拿出准备好的圆形纸片,折一折,画一画、涂一涂
小组讨论、交流
小组讨论、交流
做练习,完成后集体交流。
说说,读分数基本性质
复习旧知,为学习新知识作铺垫。
将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。
让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。
引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。
在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。
让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。
对本节课的所学知识的回顾,及所学知识点的总结。
板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。
教学反思:
分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。
在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。
《分数基本性质》教学设计2
教学内容:
苏教版数学五年级下册第60~61页例1、例2,试一试及练习十一1~3题。
预设目标:
1、使学生经历探索分数基本性质的过程,初步理解和掌握分数的基本性质,知道它与商不变规律之间的联系。
2、使学生能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括能力,体验数学学习的乐趣。
教学重点:
探索、发现、归纳和理解分数的基本性质。
教学过程:
一、导入
猜谜:你有我有他也有,黑身子黑腿黑脑袋,灯前月下伴你走,就是从来不开口。
二、学习新知
1、提供例证
(1)观察两个算式:1÷32÷6,问这两个算式的商相等吗?你的依据是什么?你能接着往下再写一个除法算式吗?
板书:1/3=2/6=3/9(得出三个相等的分数)
(2)学生折纸找与1/2相等的分数。
你能先对折,涂色表示它的1/2吗?你能通过继续对折,找出和1/2相等的其他分数吗?
展示与1/2相等的分数,并逐步板书:1/2=2/4=4/8=8/16
2、诱导探索
提问:这些分数的分子、分母都不同,但是它们的大小都是一样的,这里隐藏着什么规律呢?分数的分子、分母怎样变化分数的大小不变呢?
3、探究新知
(1)独立思考或小组交流。
(2)探究验证。
你能从(1/2=2/4、1/2=4/8、1/2=8/16)这三组分数中任意选一组具体说说分数的分子、分母怎样变化以后,分数的大小不变?
教师根据学生的回答进行板书。
4、揭示结论:出示分数的基本性质的内容,并揭示课题。
5、深究结论:
(1)在分数的基本性质中,你认为哪些字词比较重要,为什么?
(2)齐读并理解记忆分数的基本性质。
三、多层练习
1、填一填。(在○里填运算符号,在□里填数或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2、判断。
3/4=3+4/4+412/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
四、课堂作业:
1、第62页“练一练”2。
2、第63页第3题。
3、每日一题:请判断3/4和3+6/4+8是否相等,为什么?
反思
“分数的基本性质”在分数教学中占有重要的地位,它是约分、通分的依据,对于以后学习比的基本性质也有很大的帮助,所以分数的基本性质是本单元的教学重点。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,
从而激励学生进一步地主动学习,产生我会学的成就感,让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,这节课我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、问题让学生自主解决,使学生获得成功的体验,增强学习的自信心。
3、让学生在多层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。填空题第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3、4题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题是开放题,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
《分数基本性质》教学设计3
一、学习目标:
1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。
2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生观察、比较、抽象、概括的逻辑思维能力,渗透“事物之间是相互联系的”辨证唯物主义观点。
二、重、难点:
理解和掌握分数的基本性质。
三、学习过程:
一、导入
(1)3张同样的正方形或长方形纸片,(如下图)平均分成2份、4份、8份,涂上颜色,分别用分数表示涂色部分。
(2)你发现了什么?
二、学习新知
1、师板书 = =
2、观察三组分数,它们的分子和分母是怎样变化的?
分小组讨论,并填写
1 ( ) 2 1 ( ) 4
2 ( ) 4 2 ( ) 8
4 ( ) 2 2 ( ) 1
8 ( ) 4 4 ( ) 2
总结:分数的分子和分母同时 或 相同的数,分数的大小
3、应用
根据分数的基本性质,我们可以写出很多相等的分数
⑴的分子和分母同时乘2,等于( );同时乘4,等于( );
同时乘5,等于( );同时乘7,等于( )
总结: =( )=( )=( )= ( )
⑵= 说出你这样填的理由
= 说出你的理由
4、巩固练习
⑴第80页 (直接做在课本上)
⑵.在下面的括号里填上适当的数。
在下面的()里填上适当的数,在○里填上“×”号或“÷”,使等式成立
⑶
请你当法官(说明理由)
⑷下面的分数化成分母是12,而大小不变的分数
⑸下面的分数化成分子是6,而大小不变的分数
5、拓展练习
判断
1、分数的分子和分母同时加上或者减去相同的数,分数的大小不变。( )
2、把 的分子增加1,分母增加3,分数的大小不变。( )
3、把 的分子扩大2倍,分母缩小2倍,分数的大小不变。( )
思考:一个分数的分母不变,分子乘以3,这个分数的大小有什么变化吗?如果分子不变,分母除以5呢?
《分数基本性质》教学设计4
教学目标
1. 让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点使学生理解分数的基本性质。
教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学过程
一、故事情景引入
同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:“我觉得不公平,小红分得多。”
生乙:“我觉得小明分得多。”
生丙:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”
二、新授
师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:“三张圆片一样大。”
1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)
2. 师:“分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)
下面请哪位同学说一说,你是怎么分的?”
生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”
师:“那九分之三又是怎么得到的呢?大家一起说。”
生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)
3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”
小结:原来三个圆的阴影部分是同样大的。
师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)
生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”
师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”
生甲:“通过图上看起来,这三个分数应该是一样大的。”
生乙:“这三个分数是相等的。”
师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)
4. 研究分数的基本规律。
师:“我们仔细观察这一组分数,它的什么变了,什么没变?”
生甲:“三个分数的分子分母都变了,大小没变。”
师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?”
生乙:“它的分子分母都同时扩大了两倍。”
师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)
教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”
学生发言
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。
5. 深入理解分数的基本性质。
师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?
齐读分数的基本性质,并用波浪线表出关键的词。
生甲:我觉得“零除外”这个词很重要。
生乙:我觉得“同时”“相同”这两个词很重要。
师:想一想为什么要加上“零除外”?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。
教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)
三、应用
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
4.按规律写出一组相等的分数。
《分数基本性质》教学设计5
一、教学目标:
1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。
2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。
3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。
二、教学重点:
理解掌握分数的基本性质,它是约分,通分的依据
三、教学难点:
理解和掌握分数的基本性质,初步建立数学模型。
四、教学准备:
课件、正方形的纸。
五、教学设计过程:
(一)迁移旧知.提出猜想
1、回忆旧知
猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张 ,谁能猜出另一张是什么?出示: 2÷3
你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:
被除数÷除数=
谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想:
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
A、 看图分类
下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。
B、 讨论方法
师:你是怎么判断它们相等的?
师:它们相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
C、研究规律
师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?
利用研究卡进行研究。
确定的研究对象
分子和分母同时乘上或者
除以一个相同的数
得到的分数
研究对象与得到的分数相等吗?
相等( )不相等( )
猜想是否成立?
成立( )不成立( )
充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13
师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)
师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)
师:分数的基本性质与商不变性质有什么联系?
D、质疑完善
3/4 = 3×( )/ 4×( )
师:括号中可以填哪些数?
预设:可以填无数个数
师:如果只用一个数来表示,填什么数好?
预设:字母
师:这个字母有什么特殊要求吗?(0除外)
得到一个初级的数学模型。3/4= 3×X/ 4×X(X≠0)
让学生打开课本进行阅读、内化,并想一想还有什么问题吗?
(三) 练习升华
1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3
2、把5/6和1/4都化为分母为12而大小不变的分数。
3、把2/3和3/4都化为分子为6而大小不变的分数。
4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?
5、 和 哪一个分数大,你能讲出判断的依据吗?
(四)总结延伸
师:这节课学了什么?
师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板书)
六、作业p87-1、2
板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)
6÷8
3÷4
12÷16
《分数基本性质》教学设计6
一、教学目标
1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。
2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
3、激发学生积极主动的情感状态,体验互相合作的乐趣。
二、教学重点
1、理解、掌握分数的基本性质,能正确应用分数的基本性质。
2、自主探究出分数的基本性质。
三、教学准备
课件、正方形的纸
四、教学设计过程
(一)迁移旧知.提出猜想
1、回忆旧知
根据“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷=12
被除数÷除数=()
说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示学习提示。
学习提示
A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。
B、验证结束后,把你的验证方法和结论与小组同学交流。
3、汇报交流
指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。
C、总结规律
1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。
2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。
3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?
如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。
师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)
D教学例2
把2/3和10/24都化为分母为12而大小不变的分数。
学生独立完成,集体订正。
(三)练习升华
1、填空
2、下面算式对吗?如果有错,错在哪里?
3、把相等的分数写在同一个圈里。
4、老师给出一个分数,同学们迅速说出和它相等的分数。
(四)作业
教材59页第9题。
(五)思维拓展
(六)总结延伸
师:这节课你有什么收获?
六、板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
《分数基本性质》教学设计7
1.教材简析
《分数的基本性质》是苏教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2.教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。
设计意图:
本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。
1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。
2、从故事情境中提出问题,体现数学来源于生活。
3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。
4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。
5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。、
6、在游戏活动中对数学知识进行拓展运用。
教学目标
1.知识与技能
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2.过程与方法
(1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。
(2) 培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
3.情感态度与价值观
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。
(2)体验数学与日常生活密切相关。
教学重点
理解分数的基本性质
教学难点
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
教学准备
师:电脑课件 学生:圆纸片 长方形纸
教学步骤:
一、故事引人,揭示课题。
1.教师讲故事。
话说唐僧师徒四人去西天去取经,这天走在路上,唐僧感觉饿了,就叫孙悟空去化斋,孙悟空答应了声驾起筋斗云走了,不一会,他就带回了三块一样大的饼,唐僧说:三块饼,我们四个人怎么吃呢?孙悟空说:“你分给我一块饼的四分之一就行了” 唐僧就把第一块饼平均分成四块,给了一块给孙悟空。沙僧说:“我想要两块”
唐僧把第二块饼平均分成八块,给了2块给沙僧。猪八戒比较贪心,他说:“我要三块,我要三块”,于是唐僧把第三块饼又平均分成12块,给了猪八戒3块。同学们,你知道孙悟空、猪八戒、沙僧三人谁分的多吗?
[ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]
2、组织讨论,动手操作。
(1)小组讨论,谁分的多
(2)拿出三张纸,分别涂出它们的1/4、2/8、3/12。
(3)比较涂色部分的大小,有什么发现,得出什么结论。
既然他们三个分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(4)教师演示
3、教学例1
(1)引导比较。
师问:这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?
你知道其中哪些分数是相等的吗?
根据学生回答板书:1/3=2/6=3/9
师追问:你是怎么知道这三个分数相等的?(图中观察出来的)
(2)师演示验证大小。
(3)完成“练一练”第1题
学生先涂色表示已知分数,再在右图中涂出相等部分。
完成填空后,说说怎么想的。
4、教学例2。
(1)组织操作。
师:取出正方形纸,先对折,用涂色部分表示它的1/2。
学生完成折纸、涂色。
师问:你能通过继续对折,找出和1/2相等的其它分数吗?
学生在小组中操作,教师巡视指导。
学生展开折法并汇报,可能出现的方法有:
连续对折两次,平均分成4份。如图:
1/2=1/4
②连续对折三次,平均分成8份。如图:
1/2=4/8
③连续对折四次,平均分成16份。
师追问:每次对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?
得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
板书:1/2=2/4=4/8=8/16=16/32……
(2)发现规律。
师:你有什么发现?(如学生观察有困难,可进行以下提示)
①、从左往右看,它们的分子、分母是怎样变化的?你有什么发现?
学生观察、思考,在小组中交流。
师问:观察例1中的1/3=2/6=3/9,有这样的规律吗?
《分数基本性质》教学设计8
教学目标:
1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
3、让学生在学习过程中养成互相帮助、团结协作的良好品德。
重点难点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。理解分数的基本性质。
教具学具: 课件,每人一张白纸,一张圆纸片,彩笔
教学时间:1课时
教学流程:
一、复习引入
1、120÷30的商是多少?被除数和除数同时扩大3倍,商是多少?被除数和除数同时缩小10倍,商是多少?
120÷30=4
(120×3)÷(30×3)
=360÷90
=4
120÷30=4
(120÷10)÷(30÷10)
=12÷3
=4
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
除法与分数之间有什么联系?
被除数÷ 除数=被除数/除数
教师板书:分数的基本性质
二、动手操作
(1)用分数表示涂色部分。
( )
( ) )
( ) )
①请大家拿出1张长方形纸片,现在我们把它对折平均分成4份,涂出其中的3份,写上分数。
②把它继续对折平均分成8份,看看原来的3/4现在成了?(6/8)
③继续折成16份,看看原来的3/4现在又成了?(12/16)
(2)小结:原来,这张纸的3/4 、6/8、 和它的12/16同样大!看来不管选择哪种折法,分到的数都一样多!
(教师随机板书 )3/4=3×2/4×2=6/8=6×2/8×2=12/16
(2)用分数表示涂色部分。
( ) )
( ) )
( ) )
根据上面的过程,你能得到一组相等的分数吗?
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
三、发现规律
1、请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?
学生观察、思考,完成上面的图形,再在小组内交流。
学生交流后,教师集中指导观察,板书这组数字,说出其中的规律。
3/4=6/8=12/16 8/12=4/6=2/3
从这些数字中可以得出:
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(相同的数,这个数能不能是0 ?)
教师举例说明:3/4,8/12分子和分母分别乘以零,分数大小怎么样?
得出分数基本性质: 分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。这叫做商不变性质。
3、课件出一组分数让学生练习填
2/3=/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()
四、练一练(课件出示)
1、判断.(手势表示。)
(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。() (2)把 15 /20 的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()
(3) 3 /4 的分子乘3,分母除以3,分数的大小不变。 ( )
( 4)把3/5的分子加上4,要使分数的大小不变,分母加4。 ( )
2、把5 /6和1/4都化成分母是12大小不变的分数。(课件出示 )
3、数学游戏(课件出示)
说出相等的分数 1/4和2/8
(1)你能根据分数的基本性质,再写出一组相等的分数?
所写的分数是否相等?你是怎样想的?
(2)根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?
五、课本练习中的第1,2题。
六、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的分数的基本性质要注意什么?我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
七、板书设计:
3/4=3×2/4×2=6/8=6×2/8×2=12/16
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
《分数基本性质》教学设计9
【教材依据】
《分数的基本性质》是九年义务教育北师大版五年级上册第三单元的内容。
【设计理念】
根据新课标的基本要求,我以培养学生的创新意识和实践能力为重点,在教学中创设情境让学生“自由大胆猜想——主动探究验证——合作交流得到结果”的开放式教学流程。让学生在问题情境中激活内在要求,大胆猜想,使实验成为内在需求。通过观察操作、经历知识的形成。让学生变被动的知识接受者为主动知识的探索者。
【学情与教材分析】
《分数的基本性质》是北师大版小学数学教材五年级上册第三单元《分数》的教学内容,它既与整数除法的商不变性质有着内在的联系,也是约分和通分的基础,而约分和通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。学生之前已经掌握了商不变的性质,在教学之后将其与分数的基本性质进行联系,有意识地加强分数与除法的关系,以便把旧知识迁移到新的知识中来。
【教学目标】
1、经历探索分数基本性质的过程,理解分数的基本性质。
2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。
3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。
【教学重点】运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。
【教学难点】联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。
【教学准备】多媒体课件长方形白纸、圆片,彩色笔等。
【教学过程】
一、创设情境,激趣导入
师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?
生1:四、五、六年级分的地一样多。
生2:……
师:到底校长分的公平不公平,我们来做个实验吧?
二、动手操作,探究新知
1,小组合作,实验探究。
师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。
2,汇报结果
师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。
生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。
生5:……
3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)
(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)
4、探索分数的基本性质。
师:三个年级分的地一样多,那么你们觉得、、这三个分数的大小怎么样?
生:相等。
师:同学们请看这组分数有什么特点?(板书=)
生:分数的分子分母发生了变化分数的大小不变。
师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?
生:分子分母同时乘2,……
师:谁能用一句换来描述一下这个规律?
生:给分数的分子分母同时乘相同的数。(师随着板书)
师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?
生:分数的分子分母同时除以相同的数。
师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。
师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?
生:0除外。
师:为什么0要除外?
生:因为分数的分母不能为0.
师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?
生:同时相同0除外
师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?
生:商不变的性质。
师:为什么?
生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。
师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。
三:应用新知,练习巩固。
(一)练一练
(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。
(二)判断(抢答)
1、分数的分子、分母都乘过或除以相同的数分数的大小不变。
2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。
3、给分数的分子加上4,要是分数的大小,分母也要加上4。
(四)测一测
1、把和都化成分母是10而大小不变的分数。
2、把和都化成分子是4而大小不变的分数。
3、的分子增加2,要是分数大小不变,分母应增加几?
四:总结。
1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?
2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)
五:作业练习册2、4题
【板书设计】
分数的基本性质
给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。
【教学反思】
本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!
这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。
本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。
在学生通过听故事、看图片,让学生猜想、、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。
《分数基本性质》教学设计10
教学目标:
结合趣味故事经历认识分数的基本性质的过程。
初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣
教学重点:理解掌握分数的基本性质。
教学难点:归纳分数的性质。
学生准备:长方形纸片。
一、创设故事情境,激发学生学习兴趣并揭示课题。
编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?
让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。
二、小组合作,探究新知:
1、动手操作、形象感知
出示课件,让学生观察讨论图中分数的涂色部分是多少?
A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?
B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?
C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。
2、观察比较、探究规律
(1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。
(2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?
(3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题
(4)通过从左到右的观察、比较、分析,你发现了什么?
使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。
【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】
3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?
观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:
先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律?
4、归纳规律
提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?
学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的数﹙0除外﹚,分数的大小不变,这是分数的基本性质”
6、小结
同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?
【通过小结,既对整个课堂学习的内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】
四、巩固强化,拓展应用
多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。
五、游戏找朋友。
六、布置作业:
在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。
《分数基本性质》教学设计11
【教学内容】:
【教学目标】:
1、使学生理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。
3、在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣,提高学生发现问题的能力。
【教学重点】:经历质疑、猜想、验证、观察、归纳的学习过程,探究分数的基本性质。
【教学难点】:理解和掌握分数的基本性质。
【教学方法】:
本节课我综合采用了谈话法,情境创设法、引导探究法、直观演示法,组织学生经历观察,猜测,得出结论。
【学法指导】:
为了有效的达成上述教学目标,秉着新课程标准的精神指导,在整个教学活动中力求充分体现学数学就是做数学,数学教学就是数学活动的教学的理念,以学生为主体,以学生发展为本。在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法。引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。
【教学准备】:
1、媒体准备:白板
2、资源准备:PPT
【资源运用】:
1、导入——课件出示问题-——唤醒旧知
2、探究新知——PPT课件——突破重点、分解难点
3、拓展延伸
【教学过程】:
一、联系旧知,质疑引思。
1、在自然数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的自然数吗?
2、在小数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的小数吗?
3、在分数的范围内,可以找到两个大小相等但分子和分母又都不相同的分数吗?
谁能说一个与《分数的基本性质》教学设计
【唤醒学生已有知识经验而且引发学生的数学思考,为主动探究新知积聚动力。】
二、自主操作,验证猜想
1、初步验证
(1)提出问题
谁能说一个与《分数的基本性质》教学设计
如果让你证明他们确实和《分数的基本性质》教学设计
(2)汇报方法
2、深入验证:
(1)在纸上写上一组你认为可能相等的分数;
(2)用你喜欢的方法来证明。
(3)学生操作。
(4)汇报交流。
3、概括性质,深化理解
(1)在操作的过程中,你有什么发现?分子分母怎样变化分数的大小才不变?
(2)归纳概括,总结规律,揭示课题。
(3)根据我们以前学过的分数与除法的关系,以及整数除法中商不变的性质,来说明分数的基本性质吗?
4、运用规律,完成例2。
(1)理解题意
(2)要把他们化成分母是12而大小不变的分数,分子应该怎么变化?变化的根据是什么?
(3)独立完成,交流汇报
【给学生提供开放的探究空间,满足学生的探索欲望。】
三、知识应用,巩固提升
1、判断
(1)分数的分子、分母同时乘以或除以一个数,分数的大小不变。
(2)两个分数的分子、分母都不相同,这两个分数一定不相等。
(3)《分数的基本性质》教学设计
2、五年级有《分数的基本性质》教学设计
3、把《分数的基本性质》教学设计
才能使分数的大小不变?
四、回顾总结,完善认知
通过本节课的学习,你有什么收获?
【教学反思】:
1、课前准备不足,我用的20xx版做的,结果上课电脑是xxxx年版本的,展台没有试,影响教学流程。
2、教学机智不足,没有关注学情,总想到20分钟的课,时间短,有些赶,知识落实不够扎实。
3、课堂提问语言不够准确精炼,课堂评价不够丰富、准确。例如开课语及结束语言有歧义。
《分数基本性质》教学设计12
教学目标:
情感态度:培养学生观察、比较、抽象、概括的逻辑思维能力,并且渗透事物间相互联系,发展变化的辩证唯物主义观点。
知识技能:理解分数的基本性质,并且能够灵活应用。
过程方法:动手操作、观察、讨论
教学重、难点:理解并掌握分数的基本性质并灵活应用。
教具准备:自制多媒体课件、图(2组)、拼图画一幅、实物投影仪。
学具准备:拼图12组。
教学设计理念:
《新课标》要求,让学生在动手操作中观察、思考,在生动具体的情境中学习数学,参与知识的发现过程。在教学分数的基本性质时,选择了学生喜闻乐见的游戏形式,在学生人人参与的教学情境中,让学生发现问题——讨论问题——解决问题。力求通过学生动手实践,自主探索和合作交流的学习方式,新知识的教学,训练学生思维,引导学生把所学数学知识应用于实际中。感受数学的价值,本课设计完全从学生发展为本,在教学中大胆的把课堂还给学生,让学生成为课堂真正的主人。
教学过程:
一、 创设情境,激趣导入。
设计意图:让学生在喜闻乐见的游戏情境中,以浓厚的兴趣参与学习,激发学生探索数学问题欲望,并训练学生小组合作学习的方法和习惯。
师:请看这幅拼图漂亮吗?老师这还有三幅漂亮的图片(投影展示)可爱的青蛙,朝气彭勃的太阳,诱人的苹果,用你们灵巧的双手能不能把他们拼出来?请小组合作完成。同学们,准备好了吗?我宣布:拼图比赛现在开始。
请看拼图要求:1、用所给材料拼成三个完全一样图形。
2、用分数表示阴影部分占整幅图的几分之几,并写出来。
二、合作交流,探究规律。
设计意图:让学生在具体的情境中充分利用现有资源,增强学生的学习兴趣,既有张扬个性的独立思考,又有发挥集体力量的小组合作学习,培养学生敢于探索的精神与大胆尝试的能力,同时让学生选择自己喜欢的方式,既尊重了学生,又激发了学生的学习兴趣,体现了主体性。
(一)拼图,写分数。
(1)教师组织小组活动,并巡视,参与,指导小组活动。学生拼好图后写出分数。
(2)汇报优胜组介绍经验,并展示作品。(体会小组合作的有效性)教师贴图并板书分数。( = = )
(二)找分数间的大小关系。
(1)师:请同学们用自己喜欢的方法找一找每组中三个分数的大小关系,学生独立思考后与同桌交流方法。
(2)汇报:每组中三个分数大小相等。
比较方法。(1)看图比较(2)化小数比较(3)利用商不变的性质比较(4)……
(三)探究规律
(1)每组中三个分数看似不同,实质大小相等,它们之间到底有什么联系?小组讨论探究规律。
(2)交流自己的发现。①每组中三个分数平均分的份数不同取的分数也不同?②分子,分母都扩大了2倍(3倍)③……
(3)师:分数的分子和分母怎样变化时,分数的大小才会不变,学生自由发言,教师给予肯定和鼓励。
(4)师结合图依据分数的意义讲解变化规律。
(5)小结分数的基本性质:强调“相同”“同时”组织讨论:“相同的数”可以是哪些数?
(四)对比分数的基本性质和商不变的性质。
学生对比,说出两个性质间的区别与联系。
三、应用。
设计意图:本环节所设计是由易到难,紧扣本课的重难点,练习具有针对性、实用性、开放性。通过变式练习让学生的思维得到训练,激发探究热情,培养创新能力。
1、填空
(1)学生独立思考。(2)交流口答,并说明依据,同时训练学生应用所学知识解决实际问题的能力。
2、比较 和 的大小。
四、游戏"找朋友”。
设计意图:游戏的'情境,形式活泼,让学生通过大小相等的分数找到自己的朋友。游戏规则新颖而恰当,既巩固新知又体会到数学与生活的密切联系。
同学们拿出课前老师发给你的纸,纸上所写分数大小相等的同学,你们是“好朋友”。请学生读自己的分数,与他所读分数大小相等的同学举起来确定后手拉手离场。
,五年级数学分数的基本性质教学设计
《分数基本性质》教学设计13
教学目标:
知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。
过程与方法:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:自主探究出分数的基本性质
教学准备:PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
教学流程:
一、故事导入激趣引思
引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。
讲故事:话说唐僧师徒四人去西天取经,一路上历经磨难。一天,他们走得又累又饿,幸好路过一个村庄,化缘得到三块同样大小的饼。唐僧心想:三块饼,四个人不太好分呀!但是很快他就想到了一个分饼的方案,他对徒弟们说:我准备将第一块饼,平均分成2份,八戒吃其中的二分之一;将第二块饼平均分成4份,沙和尚吃其中的四分之二;将第三块饼平均分成8份,悟空吃其中的八分之四,你们同意这样的分配方案吗?师父的话音未落,猪八戒便跳出来说:“我不同意这样的分法,师父你太偏心了,凭什么猴哥吃那么多有八分之四,而我却吃那么少才二分之一。同学们,请你们判断一下,猪八戒说的对吗,师父真的偏心吗?
生发表见解。
二、自主合作探索规律
1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!
2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视
4、全班汇报
交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图
板书课题:分数的基本性质打出幻灯
5、反思规律看书对照找出关键词要求重读共同读
6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。
三、自学例题运用规律
过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始
生自学
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
四、多层练习巩固深化
1、判断对错并说明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数
4、对对碰与1/2,2/3,3/4生生组组师生互动
五、课堂小结课堂作业
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,
作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。
《分数基本性质》教学设计14
一、故事引人,揭示课题。
1.教师讲故事。猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。同学们,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
[一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]
2.组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:3/4=6/8=9/12。
(3)我们班有50名同学,分成了五组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:1/2=2/4=20/40。
3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了, 分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
3.出示例2:把1/2和10/24化成分母是12而大小不变的分数。
思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么?
4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
[得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。]
5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12
[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
二、比较归纳,揭示规律。
1.出示思考题。
2.比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。(1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。
板书:
(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。
(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以 相同的数)
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都除以 )
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
[新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]
《分数基本性质》教学设计15
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
二、民主导学
任务一
任务呈现
动手操作验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘相同的数,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,
生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)
师板书:或者除以
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)
生:不成立,
师:为什么
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话
生:0除外
师板书0除外
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思总结
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计
教具课件设计
小黑板正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
第三篇:《分数基本性质》教学设计
《分数基本性质》教学设计15篇
作为一位不辞辛劳的人民教师,时常需要用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。教学设计要怎么写呢?下面是小编为大家收集的《分数基本性质》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《分数基本性质》教学设计1教学要求
①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
②培养学生观察、分析和抽象概括能力。③渗透“事物之间是相互联系”的辩证唯物主义观点。
教学重点理解分数的基本性质。
教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。
教学过程
一、创设情境
1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示课题
让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。
三、探索研究
1.动手操作,验证性质。
(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。
(2)观察比较后引导学生得出:==
(3)从左往右看:==
由变成,平均分的份数和表示的份数有什么变化?
把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。
把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。
引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。
(4)从右往左看:==
引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。
板书:====
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。
(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)
2.分数的基本性质与商不变的性质的比较。
在除法里有商不变的性质,在分数里有分数的基本性质。
想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?
3.学习把分数化成指定分母而大小不变的分数。
(1)出示例2,帮助学生理解题意。
(2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?
(3)让学生在书上填空,请一名学生口答。教师板书:
====
4.练习。教材第108页的做一做。
四、课堂实践。
练习二十三的1、3题。
五、课堂小结
1.这节课我们学习了什么内容?
2.什么是分数的基本性质?
六、课堂作业
练习二十三的第2题。
七、思考练习
练习二十三的第10题。
教学反思:
“分数的基本性质”是西师版小学数学五年级下册的内容,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学基本知识,更重要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。
这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。
2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。
3、运用知识,解决实际问题。为了把知识转化为能力,练习的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。
《分数基本性质》教学设计2一、故事引人,揭示课题。
1.教师讲故事。猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。同学们,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
[一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]
2.组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:3/4=6/8=9/12。
(3)我们班有50名同学,分成了五组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:1/2=2/4=20/40。
3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了,分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
3.出示例2:把1/2和10/24化成分母是12而大小不变的分数。
思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么?
4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
[得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。]
5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12
[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
二、比较归纳,揭示规律。
1.出示思考题。
2.比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。(1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。
板书:
(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。
(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以 相同的数)
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都除以)
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
[新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]
《分数基本性质》教学设计3教材分析
1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。
2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。
学情分析
学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。
因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。
教学目标
经历探索分数基本性质的过程,理解分数基本性质。
能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点和难点
理解分数基本性质,能运用分数基本性质转化分数。
教学过程
一、复习导入
二、探究新知
实践操作,探究规律
观察发现:初步概括分数基本性质
括归纳分数基本性质
三、课堂练习
四、课堂小结
出示复习题口答卡片,复习商不变的规律、分数与除法的关系。1、讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”
提出问题: 这些分数都相等吗?
观察这组相等的分数,你发现了什么?把你的发现说给同伴听。
分子、分母都乘或除以一个数,这个数可以是0吗?为什么?
1、课本P43的“试一试”2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4
通过这节课的学习、你学会了那些知识
口答
小组讨论
拿出准备好的圆形纸片,折一折,画一画、涂一涂
小组讨论、交流
小组讨论、交流
做练习,完成后集体交流。
说说,读分数基本性质
复习旧知,为学习新知识作铺垫。
将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。
让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。
引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。
在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。
让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。
对本节课的所学知识的回顾,及所学知识点的总结。
板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。
教学反思:
分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。
在本节课中,由于我对学困生关注度不高,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。
《分数基本性质》教学设计4教学内容:人教版五年级数学下册57页内容及58、59页练习。
教学目标:
知识与技能:通过教学使学生理解的掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)相同而大小不变的分数,并能应用这一性质解决简单的实际问题。
过程与方法:引导学生在参与观察、比较、猜想、验证等学习活动的过程中,有条理,有根据地思考、探究问题,培养学生的抽象概括能力。
情感、态度和价值观:使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质。
教学难点:应用分数的基本性质解决问题。
教学准备:预习生成单、作业纸、课件
教学课时:一课时
教学过程:
1、师:通过昨天的预习,你知道我们今天要学习什么内容?(生:分数的基本性质)
2、师:针对这个内容,同学们做了充分的预习,相信你们一定提出了不同的数学问题,现在请组长带领组员提炼出你们组最想研究的问题。
3、指名学生汇报。
4、师:同学们,不管你们提出什么样的问题,都与分数的基本性质有关,今天我们就带着这些问题走进课堂。
1.出示预习生成单:(师:我们已经预习了这部分内容,请同学们组内交流一下你们的预习成果,形成统一意见准备汇报。)
2.指名上台展示并汇报。(师:哪个组的同学愿意最先上来展示你们的成果?)
3.(学生展示中注意分工汇报,在汇报中要注意学生用比一比的方法证明涂色部分相等,如果有用分数的意义的理解“都是相同纸的一半”或者“分子是分母的一半”理解也要给予肯定,教师应及时提出,照这样一半的理解,提问:你能在写出一个和他们大小一样的分数吗?教师及时的板演,4.师:其他同学还有补充吗?你们得出这个结论了吗?
1.师:第一张纸涂色部分是这张纸的(学生说二分之一),第二张纸涂色部分是这张的(四分之二),第三张纸涂色部分是这张纸的(八分之四),涂色部分都相同,也就证明这三个分数的大小也(学生说相等),可是,它们的分子分母却不相同,他们有没有一定的变化规律呢?我们通过合作交流来探究这个问题。
2.出示合作要求(课件),指名学生读一读。
3.学生合作交流,探究学习。
4.学生汇报中教师要及时纠正学生的语言要规范,同时,可以让小组回想补充,特别是,跳跃的两个分数的分子和分母之间的变化规律是怎样?
5.指导汇报,总结规律。谁能完整的说一下你们刚才总结出的规律?
6.教师归纳板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。
7.请同学们读一读这句话,想一想:还有需要补充的内容吗?(0除外)
8.再读一读,说说这句话中哪个词比较关键。
9.拓展深化,加深理解,完成练习,思考:分数的基本性质与商不变的性质之间的联系。(练习一)这个过程也要看学生的生成在哪,教师及时的给予肯定。
9.教师小结:通过刚才的学习,孩子们的表现特别出彩,老师相信你们接下来的表现会更棒。
1.出示例2,指名读题,理解题意。
2.师:你觉得解决这道题应该利用什么知识?(生:分数的基本性质)
3.学生独立在练习本上完成,指名板演,集体订正。
4.小结:刚才,我们通过自主学习、小组探究知道了什么是分数的基本性质,下面就应用分数的基本性来解决一些实际问题。
(一)、下面每组中的两个分数是否相等?相等的在括号里画“√”,不相等的画“X”。
和()和()和()和()
(二)、填空。
======
(三)、把下列分数化成分母是10而大小不变的分数。
===
(四)、涂色表示出与给定分数相等的分数。
(五)、如果一堂课40分钟,哪个班做练习用的时间长?
板书设计:
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
这节课最多的考虑就是分数的基本性质这个规律怎样才能让学生真正的夯实,怎样设计才能让学生水到渠成的加深了理解。在练习的设计和过渡语的设计都是关键。
《分数基本性质》教学设计5教学内容:人教版小学数学第十册第107页至108页。
教学目标:
1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学准备:长方形纸片、彩笔、各种分数卡片。
教学过程
1.课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。
【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】
“同学们,猴王真的分得不公平吗?”
同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。
任选一小组的同学台前展示实验报告,并汇报结论。
教师根据学生汇报板书:14=28=312
2.组织讨论。
(1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论教师板书:34=68=912。
3.引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母,分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。
三、比较归纳,揭示规律。
请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。
1.课件出示探究报告。
2.分组汇报,归纳性质。
(1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。
(根据学生回答板书:同时乘上 相同的数)
(2)从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答板书:除以)
(3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?
(4)综合刚才的探究,你发现什么规律?
根据学生的回答,揭示课题,(……这叫做板书:分数的基本性质)
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(红笔板书:零除外)
(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3、智慧眼(下列的式子是否正确?为什么?)
(1)35=3×25=65(生:35的分子与分母没有同时乘以2,分数的大小改变。)
(2)512=5÷512÷6=12(生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)
(3)112=1×312÷3=34(生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)
(4)25=2×x5×x=2x5x(生:x在这里代表任何数,当x=0时,分数的大小改变。)
4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?
1、浏览课本第107—108页的内容。
2、看了书,你又有什么收获?还有什么疑问吗?
3、师生答疑。
你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?
4、自主学习并完成例2,请二名学生说出思路。
四、多层练习,巩固深化。
1、热身房。35=3×()5×()=9()
824=8÷()24÷()=()3
学生口答后,要求说出是怎样想的?
《分数基本性质》教学设计6【教材依据】
《分数的基本性质》是九年义务教育北师大版五年级上册第三单元的内容。
【设计理念】
根据新课标的基本要求,我以培养学生的创新意识和实践能力为重点,在教学中创设情境让学生“自由大胆猜想——主动探究验证——合作交流得到结果”的开放式教学流程。让学生在问题情境中激活内在要求,大胆猜想,使实验成为内在需求。通过观察操作、经历知识的形成。让学生变被动的知识接受者为主动知识的探索者。
【学情与教材分析】
《分数的基本性质》是北师大版小学数学教材五年级上册第三单元《分数》的教学内容,它既与整数除法的商不变性质有着内在的联系,也是约分和通分的基础,而约分和通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。学生之前已经掌握了商不变的性质,在教学之后将其与分数的基本性质进行联系,有意识地加强分数与除法的关系,以便把旧知识迁移到新的知识中来。
【教学目标】
1、经历探索分数基本性质的过程,理解分数的基本性质。
2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。
3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。
【教学重点】运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。
【教学难点】联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。
【教学准备】多媒体课件长方形白纸、圆片,彩色笔等。
【教学过程】
师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?
生1:四、五、六年级分的地一样多。
生2:……
师:到底校长分的公平不公平,我们来做个实验吧?
1,小组合作,实验探究。
师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。
2,汇报结果
师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。
生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。
生5:……
3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)
(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)
4、探索分数的基本性质。
师:三个年级分的地一样多,那么你们觉得、、这三个分数的大小怎么样?
生:相等。
师:同学们请看这组分数有什么特点?(板书=)
生:分数的分子分母发生了变化分数的大小不变。
师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?
生:分子分母同时乘2,……
师:谁能用一句换来描述一下这个规律?
生:给分数的分子分母同时乘相同的数。(师随着板书)
师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?
生:分数的分子分母同时除以相同的数。
师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。
师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?
生:0除外。
师:为什么0要除外?
生:因为分数的分母不能为0.师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?
生:同时相同0除外
师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?
生:商不变的性质。
师:为什么?
生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。
师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。
三:应用新知,练习巩固。
(一)练一练
(二)摸球游戏。
老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。(二)判断(抢答)
1、分数的分子、分母都乘过或除以相同的数分数的大小不变。
2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。
3、给分数的分子加上4,要是分数的大小,分母也要加上4。
(四)测一测
1、把和都化成分母是10而大小不变的分数。
2、把和都化成分子是4而大小不变的分数。
3、的分子增加2,要是分数大小不变,分母应增加几?
四:总结。
1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?
2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)
五:作业练习册2、4题
【板书设计】
分数的基本性质
给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。
【教学反思】
本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!
这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。
本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。
在学生通过听故事、看图片,让学生猜想、、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。
《分数基本性质》教学设计7一、教学目标
1.经历探索分数基本性质的过程,理解分数的基本性质。
2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、教学重、难点
教学重点是:分数的基本性质。
教学难点是:对分数的基本性质的理解。
三、教学方法
采用了动手做一做、观察、比较、归纳和直观演示的方法
四、教学过程
(一)、故事引入,揭示课题
1.教师讲故事。
猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
2.组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,14=28=312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:34=68=912。
(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12=24=20xx。
3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了,分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
(二)、比较归纳,揭示规律
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。
板书:
(2)34是怎样变化成912的呢? 怎么填?学生回答后填空。
(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以
相同的数)
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(板书:都除以)
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
3.出示例2:把12和1024化成分母是12而大小不变的分数。
思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
(三)、沟通说明,揭示联系
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
(四)、多层练习,巩固深化
1.口答。(学生口答后,要求说出是怎样想的?)
2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)
教学反思:
学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的`数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:
1、学生在故事情境中大胆猜想。
通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
《分数基本性质》教学设计8教学目标:
情感态度:培养学生观察、比较、抽象、概括的逻辑思维能力,并且渗透事物间相互联系,发展变化的辩证唯物主义观点。
知识技能:理解分数的基本性质,并且能够灵活应用。
过程方法:动手操作、观察、讨论
教学重、难点:理解并掌握分数的基本性质并灵活应用。
教具准备:自制多媒体课件、图(2组)、拼图画一幅、实物投影仪。
学具准备:拼图12组。
教学设计理念:
《新课标》要求,让学生在动手操作中观察、思考,在生动具体的情境中学习数学,参与知识的发现过程。在教学分数的基本性质时,选择了学生喜闻乐见的游戏形式,在学生人人参与的教学情境中,让学生发现问题——讨论问题——解决问题。力求通过学生动手实践,自主探索和合作交流的学习方式,新知识的教学,训练学生思维,引导学生把所学数学知识应用于实际中。感受数学的价值,本课设计完全从学生发展为本,在教学中大胆的把课堂还给学生,让学生成为课堂真正的主人。
教学过程:
一、创设情境,激趣导入。
设计意图:让学生在喜闻乐见的游戏情境中,以浓厚的兴趣参与学习,激发学生探索数学问题欲望,并训练学生小组合作学习的方法和习惯。
师:请看这幅拼图漂亮吗?老师这还有三幅漂亮的图片(投影展示)可爱的青蛙,朝气彭勃的太阳,诱人的苹果,用你们灵巧的双手能不能把他们拼出来?请小组合作完成。同学们,准备好了吗?我宣布:拼图比赛现在开始。
请看拼图要求:1、用所给材料拼成三个完全一样图形。
2、用分数表示阴影部分占整幅图的几分之几,并写出来。
二、合作交流,探究规律。
设计意图:让学生在具体的情境中充分利用现有资源,增强学生的学习兴趣,既有张扬个性的独立思考,又有发挥集体力量的小组合作学习,培养学生敢于探索的精神与大胆尝试的能力,同时让学生选择自己喜欢的方式,既尊重了学生,又激发了学生的学习兴趣,体现了主体性。
(一)拼图,写分数。
(1)教师组织小组活动,并巡视,参与,指导小组活动。学生拼好图后写出分数。
(2)汇报优胜组介绍经验,并展示作品。(体会小组合作的有效性)教师贴图并板书分数。(= =)
(二)找分数间的大小关系。
(1)师:请同学们用自己喜欢的方法找一找每组中三个分数的大小关系,学生独立思考后与同桌交流方法。
(2)汇报:每组中三个分数大小相等。
比较方法。(1)看图比较(2)化小数比较(3)利用商不变的性质比较(4)……
(三)探究规律
(1)每组中三个分数看似不同,实质大小相等,它们之间到底有什么联系?小组讨论探究规律。
(2)交流自己的发现。①每组中三个分数平均分的份数不同取的分数也不同?②分子,分母都扩大了2倍(3倍)③……
(3)师:分数的分子和分母怎样变化时,分数的大小才会不变,学生自由发言,教师给予肯定和鼓励。
(4)师结合图依据分数的意义讲解变化规律。
(5)小结分数的基本性质:强调“相同”“同时”组织讨论:“相同的数”可以是哪些数?
(四)对比分数的基本性质和商不变的性质。
学生对比,说出两个性质间的区别与联系。
三、应用。
设计意图:本环节所设计是由易到难,紧扣本课的重难点,练习具有针对性、实用性、开放性。通过变式练习让学生的思维得到训练,激发探究热情,培养创新能力。
1、填空
(1)学生独立思考。(2)交流口答,并说明依据,同时训练学生应用所学知识解决实际问题的能力。
2、比较 和 的大小。
四、游戏“找朋友”。
设计意图:游戏的情境,形式活泼,让学生通过大小相等的分数找到自己的朋友。游戏规则新颖而恰当,既巩固新知又体会到数学与生活的密切联系。
同学们拿出课前老师发给你的纸,纸上所写分数大小相等的同学,你们是“好朋友”。请学生读自己的分数,与他所读分数大小相等的同学举起来确定后手拉手离场。,五年级数学分数的基本性质教学设计
《分数基本性质》教学设计9一、教学目标:
1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。
2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。
3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。
二、教学重点:
理解掌握分数的基本性质,它是约分,通分的依据
三、教学难点:
理解和掌握分数的基本性质,初步建立数学模型。
四、教学准备:
课件、正方形的纸。
五、教学设计过程:
(一)迁移旧知.提出猜想
1、回忆旧知
猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张,谁能猜出另一张是什么?出示: 2÷3
你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:
被除数÷除数=
谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想:
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
A、看图分类
下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。
B、讨论方法
师:你是怎么判断它们相等的?
师:它们相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
C、研究规律
师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?
利用研究卡进行研究。
确定的研究对象
分子和分母同时乘上或者
除以一个相同的数
得到的分数
研究对象与得到的分数相等吗?
相等()不相等()
猜想是否成立?
成立()不成立()
充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
练习:2/3=()/18、6/21=2/()、3/5=21/()、27/39=()/13
师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)
师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)
师:分数的基本性质与商不变性质有什么联系?
D、质疑完善
3/4 = 3×()/ 4×()
师:括号中可以填哪些数?
预设:可以填无数个数
师:如果只用一个数来表示,填什么数好?
预设:字母
师:这个字母有什么特殊要求吗?(0除外)
得到一个初级的数学模型。3/4= 3×X/ 4×X(X≠0)
让学生打开课本进行阅读、内化,并想一想还有什么问题吗?
(三)练习升华1、5/7=()/35、3/4=9/()、3/()=12/20、16/24=()/32、把5/6和1/4都化为分母为12而大小不变的分数。
3、把2/3和3/4都化为分子为6而大小不变的分数。
4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?
5、和 哪一个分数大,你能讲出判断的依据吗?
(四)总结延伸
师:这节课学了什么?
师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板书)
六、作业p87-1、2
板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)
6÷8
3÷4
12÷16
《分数基本性质》教学设计10教学目标
1.让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点使学生理解分数的基本性质。
教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学过程
一、故事情景引入
同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:“我觉得不公平,小红分得多。”
生乙:“我觉得小明分得多。”
生丙:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”
二、新授
师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:“三张圆片一样大。”
1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)
2.师:“分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)
下面请哪位同学说一说,你是怎么分的?”
生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”
师:“那九分之三又是怎么得到的呢?大家一起说。”
生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。”
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)
3.师:“同学们,观察这些圆的阴影部分,你有什么发现?”
小结:原来三个圆的阴影部分是同样大的。
师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)
生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”
师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”
生甲:“通过图上看起来,这三个分数应该是一样大的。”
生乙:“这三个分数是相等的。”
师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)
4.研究分数的基本规律。
师:“我们仔细观察这一组分数,它的什么变了,什么没变?”
生甲:“三个分数的分子分母都变了,大小没变。”
师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?”
生乙:“它的分子分母都同时扩大了两倍。”
师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)
教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”
学生发言
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。
5.深入理解分数的基本性质。
师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?
齐读分数的基本性质,并用波浪线表出关键的词。
生甲:我觉得“零除外”这个词很重要。
生乙:我觉得“同时”“相同”这两个词很重要。
师:想一想为什么要加上“零除外”?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。
教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)
三、应用
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
4.按规律写出一组相等的分数。
《分数基本性质》教学设计111.教材简析
《分数的基本性质》是苏教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2.教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。
设计意图:
本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。
1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。
2、从故事情境中提出问题,体现数学来源于生活。
3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。
4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。
5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。、6、在游戏活动中对数学知识进行拓展运用。
教学目标
1.知识与技能
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2.过程与方法
(1)经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。
(2)培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
3.情感态度与价值观
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。
(2)体验数学与日常生活密切相关。
教学重点
理解分数的基本性质
教学难点
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
教学准备
师:电脑课件 学生:圆纸片 长方形纸
教学步骤:
一、故事引人,揭示课题。
1.教师讲故事。
话说唐僧师徒四人去西天去取经,这天走在路上,唐僧感觉饿了,就叫孙悟空去化斋,孙悟空答应了声驾起筋斗云走了,不一会,他就带回了三块一样大的饼,唐僧说:三块饼,我们四个人怎么吃呢?孙悟空说:“你分给我一块饼的四分之一就行了” 唐僧就把第一块饼平均分成四块,给了一块给孙悟空。沙僧说:“我想要两块”
唐僧把第二块饼平均分成八块,给了2块给沙僧。猪八戒比较贪心,他说:“我要三块,我要三块”,于是唐僧把第三块饼又平均分成12块,给了猪八戒3块。同学们,你知道孙悟空、猪八戒、沙僧三人谁分的多吗?
[ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]
2、组织讨论,动手操作。
(1)小组讨论,谁分的多
(2)拿出三张纸,分别涂出它们的1/4、2/8、3/12。
(3)比较涂色部分的大小,有什么发现,得出什么结论。
既然他们三个分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(4)教师演示
3、教学例1
(1)引导比较。
师问:这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?
你知道其中哪些分数是相等的吗?
根据学生回答板书:1/3=2/6=3/9
师追问:你是怎么知道这三个分数相等的?(图中观察出来的)
(2)师演示验证大小。
(3)完成“练一练”第1题
学生先涂色表示已知分数,再在右图中涂出相等部分。
完成填空后,说说怎么想的。
4、教学例2。
(1)组织操作。
师:取出正方形纸,先对折,用涂色部分表示它的1/2。
学生完成折纸、涂色。
师问:你能通过继续对折,找出和1/2相等的其它分数吗?
学生在小组中操作,教师巡视指导。
学生展开折法并汇报,可能出现的方法有:
连续对折两次,平均分成4份。如图:
1/2=1/4
②连续对折三次,平均分成8份。如图:
1/2=4/8
③连续对折四次,平均分成16份。
师追问:每次对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?
得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
板书:1/2=2/4=4/8=8/16=16/32……
(2)发现规律。
师:你有什么发现?(如学生观察有困难,可进行以下提示)
①、从左往右看,它们的分子、分母是怎样变化的?你有什么发现?
学生观察、思考,在小组中交流。
师问:观察例1中的1/3=2/6=3/9,有这样的规律吗?
《分数基本性质》教学设计12教学目标:
1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
3、让学生在学习过程中养成互相帮助、团结协作的良好品德。
重点难点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。理解分数的基本性质。
教具学具: 课件,每人一张白纸,一张圆纸片,彩笔
教学时间:1课时
教学流程:
120÷30=4
(120×3)÷(30×3)
=360÷90
=4
120÷30=4
(120÷10)÷(30÷10)
=12÷3
=4
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
除法与分数之间有什么联系?
被除数÷ 除数=被除数/除数
教师板书:分数的基本性质
(1)用分数表示涂色部分。
()
())
())
①请大家拿出1张长方形纸片,现在我们把它对折平均分成4份,涂出其中的3份,写上分数。
②把它继续对折平均分成8份,看看原来的3/4现在成了?(6/8)
③继续折成16份,看看原来的3/4现在又成了?(12/16)
(2)小结:原来,这张纸的3/4、6/8、和它的12/16同样大!看来不管选择哪种折法,分到的数都一样多!
(教师随机板书)3/4=3×2/4×2=6/8=6×2/8×2=12/16
(2)用分数表示涂色部分。
())
())
())
根据上面的过程,你能得到一组相等的分数吗?
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
1、请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?
学生观察、思考,完成上面的图形,再在小组内交流。
学生交流后,教师集中指导观察,板书这组数字,说出其中的规律。
3/4=6/8=12/16 8/12=4/6=2/3
从这些数字中可以得出:
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(相同的数,这个数能不能是0 ?)
教师举例说明:3/4,8/12分子和分母分别乘以零,分数大小怎么样?
得出分数基本性质: 分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。这叫做商不变性质。
3、课件出一组分数让学生练习填
2/3=()/12 6/21=()/7 3/5=21/()27/39=9/()5/8=20/()24/42=()/7 2/5=()/25 4/6=()/()
1、判断.(手势表示。)
(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。()(2)把 15 /20 的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()
(3)3 /4 的分子乘3,分母除以3,分数的大小不变。()
(4)把3/5的分子加上4,要使分数的大小不变,分母加4。()
2、把5 /6和1/4都化成分母是12大小不变的分数。(课件出示)
3、数学游戏(课件出示)
说出相等的分数 1/4和2/8
(1)你能根据分数的基本性质,再写出一组相等的分数?
所写的分数是否相等?你是怎样想的?
(2)根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?
五、课本练习中的第1,2题。
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的分数的基本性质要注意什么?我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
3/4=3×2/4×2=6/8=6×2/8×2=12/16
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
《分数基本性质》教学设计13教学内容:苏教版小学数学第十册第95页至97页。
教学目标:
知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
情感目标:让学生在学习过程当中养成互相帮助、团结协作的良好品德。
教学准备:圆形纸片、彩笔、各种卡片。
教学过程:
一、创设情境,激发兴趣
孙悟空有3根一模一样的甘蔗,小猴子贝贝、佳佳、丁丁看见了,一哄而上,叫嚷着要吃甘蔗。孙悟空说: “好,贝贝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的。”贝贝、佳佳听了,连忙说:“孙大圣,不公平,我们要分得和丁丁的同样多。”孙悟空真的分得不公平吗?(学生思考片刻)
【通过学生耳熟能详的人物对话,给学生设计一个悬念,抓住学生的好奇心理,由此激发学生的学习兴趣。】
二、动手操作、导入新课
师:我们也来分分看。(学生拿出准备好的圆形纸片。)师:我们把三张纸片看成三块饼,大家比比看,每人的三块饼大小相等吗?请拿出第一块饼,我想要一块,而且大小要是第一块饼的一半,你能做到吗?你给我的为什么是这块饼的一半呢?用分数怎么表示呢?我现在想要两块,而且大小要跟刚才给我的饼一样大,你又能做到吗?用分数怎样表示呢?我如果想要四块,大小跟前两次给我的一样,你还能做到吗?这次用分数又该怎样表示呢?这三个分数大小相等吗?为什么呢?这节课,我们就来研究这个数学问题。
【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】
三、观察对比,由“数”变 “式”
你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?(==)(从这里你能看出,孙悟空分甘蔗,分得公平吗?)
四、概括分析,由“式”变 “语”
⒈观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先研究分数的分子、分母是怎样变化的。
⒉先从左往右看,是怎样变为与它相等的的?
(1)分母乘2,分子乘2。
根据分数的意义,”“表示把单位”1“平均分成2份,取其中的1份,而现在把单位”1“平均分成4份,也就是把原两份中的每一份又平均分成2份,所以现在平均分成了2×2=4(份),现在要得跟原来的同样多,必须取几份?[1×2=2(份)]==
即原来把单位”1“平均分成2份,取1份,现在把平均分的份数和取的份数都扩大2倍,就得到。与的大小相等,分数值没变。
(2)由到,分子、分母又是怎样变化的?(把平均分的份数和取的份数都扩大了4倍。)==
(3)谁能用一句话说出这两个式子的变化规律?
⒊再从右往左看
(1)是怎样变化成与之相等的的?
原来把单位”1“平均分成4份,取其中的2份,现在把同样的单位”1"平均分成2份,即把原来的每两份合并成 1份,现在要取得跟原来的同样多,只需取几份?[2÷2=1(份)]也就是现在把平均分的份数和取的份数都缩小了2倍,得到,分数的大小没有变。
==
(2)又是怎样变成的?(把平均分的份数和取的份数都缩小了4倍。)
==
(3)谁能用一句话说出这两个式子的变化规律?
⒋综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?
⒌这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。
(1)理解概念。
学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?
(2)瘃木鸟诊所。(请说出理由)
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。()
分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。()
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。()
⒍小结。
从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
【此过程主要由学生通过观察、比较,得出这三个分数大小相等的规律,由此牵引到其他的有同等规律的分数中,从而引出分数的基本性质:分子、分母是同时变化的,是同向变化的(是扩大都扩大,是缩小都缩小),是同倍变化的(扩大或缩小的倍数相同)。只有这样变化,分数的大小才不会变。】
五、巩固练习
⒈卡片练习:
⒉做P96“练一练”1、2。
⒊趣味游戏:
数学王国开音乐会,分数大家族的节目是女声大合唱,只有几分钟就要演出了,请大家赶紧帮合唱队的成员按要求排好队。
要求:第一排是分数值等于的,第二排是分数值等于的,还有一位同学是指挥,他是谁?你是怎样想的?
【通过练习,让学生加深对分数的基本性质的理解,为下节课分数的基本性质的应用打好坚实的基础。】
六、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?
七、布置作业
做P97练习十八2。
《分数基本性质》教学设计14教学目标:
结合趣味故事经历认识分数的基本性质的过程。
初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣
教学重点:理解掌握分数的基本性质。
教学难点:归纳分数的性质。
学生准备:长方形纸片。
一、创设故事情境,激发学生学习兴趣并揭示课题。
编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?
让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。
1、动手操作、形象感知
出示课件,让学生观察讨论图中分数的涂色部分是多少?
A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?
B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?
C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。
2、观察比较、探究规律
(1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。
(2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?
(3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题
(4)通过从左到右的观察、比较、分析,你发现了什么?
使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。
【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】
3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?
观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:
先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律?
4、归纳规律
提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?
学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的数﹙0除外﹚,分数的大小不变,这是分数的基本性质”
6、小结
同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?
【通过小结,既对整个课堂学习的内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】
多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。
五、游戏找朋友。
在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。
《分数基本性质》教学设计15教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
任务一
任务呈现
动手操作验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘相同的数,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。(二名学生重复)
师板书:或者除以
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)
生:不成立,师:为什么
生:因为0不能作除数,师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话
生:0除外
师板书0除外
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思总结
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
教具课件设计
小黑板正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
第四篇:分数基本性质教学设计
分数基本性质 约分的教学设计
【教学内容】
苏教版《义务教育课程标准实验教科书数学》五年级(下册)第62页。重点:分数约分的方法 难点:将分数化成最简分数
【教学目标】
1.知识与技能:使学生经历探索分数约分的过程,初步认识到约分的含义。
2.过程与方法:使学生在已经了解了最大公约数和分数的基本性质之后,能应用分数约分的方法找到最简分数。
3.情感、态度与价值观:使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括的能力,体验数学学习的乐趣。
【教学过程】
(一)复习
师:说一说上一节课学习过的分数的基本性质
师:那么请你写出与12/24相等的分数,引导学生对相等的分数作比较。板书:1/2 2/4 4/8
12/24 师:那现在同学们有没有发现这些分数的分子和分母有什么规律?引导学生对相等的分数作比较发现分子分母都比原来的大。
(二)教学例3 出示例3,找学生读题“你能写出和12/18相等,而分子、分母到比较小的分数吗?” 师:好,那么就请同学们独立思考一下,看看能不能找出和12/18相等但分子分母都比它小的分数?要是可以找出的话,会有多少个呢,越多越好。(时间2分钟)师:想出来的小组成员之间交流一下,看看其他同学都想到了哪几个分数?是怎么得出来的呢?(时间2分钟)
师:现在我请一个小组到前面来给大家汇报他们的交流成果。师:那你能说说你们小组是怎样得出这几个分数的呢? 师:恩,汇报的很好,还有没有同学加以补充的啊?
师:我们班的同学真的是很厉害,已经能够将我们今天要学习的内容展示出来,今天我们要学习的内容就是约分。板书:约分
师:根据刚才的小组讨论哪位同学能说一说什么叫做约分吗?引导:题目求的是什么啊,与12/18相等,分子、分母都比较小的分数,所以约分应该怎么说? 师:把一个分数化成同它相等,但分子分母都比较小的分数,叫做约分。(PPT)师:大家一起看着前面,把约分的含义读一遍。师:下面找几位同学来做一下,62页的第二题 师:通过刚刚的做题,谁能告诉我,我们在约分时要注意些什么呢?(引导学生从含义入手)师:我们来看看同学们整理出来的约分时要注意的事情,1是约分好得到的分数要与原来的分数相等;2是约分后得到的分数的分子分母到要比原来的分数小。师:同学们继续来看屏幕上的这些分数,有一些是不是还可以继续约分啊?看60/45可以约分成12/9,那12/9是不是可以继续约分,所以,60/45能够约分成多少,谁来完整的说一说。
师:也就是60/45等于12/9等于4/3,对不对? 师:那么我们是怎么知道60/45可以约分成12/9和4/3的呢?联系我们之前学过的分数性质想一想。师:也就是说60等于12乘以5,45等于5乘以9;12等于4乘以3,9等于3乘以3.(PPT)这时就需要同学们回忆上节课学到的分数的基本性质了,找同学来说一下分数的基本性质是什么?
师:所以,我们再约分时要分子和分母同时除以一个数,那这个数就是分子和分母的? 师:现在啊,我们知道了约分时要除以分子和分母的公因数,那么我们在进行约分时要怎样书写呢,看屏幕找同学来读一读,(PPT第一种约分方法)在约分时要把分子除以公因数所得的商写在分子的上面,分母除以公因数所得的商写在分母的下面,并把原来的分子、分母用“”划去。
师:看到屏幕上约分的方法后,你有没有跟简便的方法,可以把60∕45化成4∕3.师:我们知道约分时,分子分母要除以相同的数,什么除外呀(引导学生认识到零不做除数)所以,60除以15等于4;45除以15等于3,那还可以继续往下除吗?所以15就是60和45的最大公因数。那么在约分60∕45时我们一共有几种方法啊,找同学来到前面写一下。师:同学们写的非常好,那肖老师现在又有问题要问你们了,60∕45可以约分成分子分母最小的分数是多少?所以如果我想使这个分子与分母变得最小要除以什么呢? 师:谁能说一说如何判断分子分母除以最大公因数之后所得出的分子和分母最小呢?
(师:恩,当分子与分母不能再继续约分时它的值是最小的对不对,那分子和分母为什么不能继续约分了呢?有没有同学知道?)
师:所以当分子和分母只有一个公因数1时,它的分子分母值是最小的,那么在数学领域里我们一般称这样的分数为最简分数。
师:刚刚我们又认识了一个新的定义,最简分数,找同学来复述一下什么是最简分数呢? 师:通常,我们再约分时,都要约分成最简分数。
师:那我们再回过头来看看那之前做的那些题,是不是约分成了最简分数了,没有约分成最简分数的,自己在下面更改一下,我要找同学来说一下他的答案。
师:今天我们学习了分数的约分,下面我就要看看我们班的同学上课有没有认真听讲了,谁来说一说我们在分数约分时都要注意那几点?
(PPT)
1、约分后得到的分数要与原来的分数相等;
2、约分后得到的分数的分子分母都要比原来的分子分母小;
3、在约分时要把分子除以公因数所得的商写在分子的上面,分母除以公因数所得的商写在分母下面,并把原来的分子、分母用“”(手势比划)划去。
4、分数约分时都要约分成最简分数
师:非常好,看来同学们都非常认真的听课,那老师就要考考你们是不是真正的掌握了,给你们几分钟做一下下面的练习题。(PPT)62页第一题
第五篇:分数基本性质教学设计
分数的基本性质
教学内容 人教课标实验教材五年级下册 P75 分数的基本性质
教学目标
1.让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点 使学生理解分数的基本性质。
教学难点 让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学过程
一、故事情景引入
同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:“我觉得不公平,小红分得多。”
生乙:“我觉得小明分得多。”
生丙:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”
二、新授
师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:“三张圆片一样大。”
1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)
2.师:“分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)
下面请哪位同学说一说,你是怎么分的?”
生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”
师:“那九分之三又是怎么得到的呢?大家一起说。”
生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。”
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)
3.师:“同学们,观察这些圆的阴影部分,你有什么发现?”
小结:原来三个圆的阴影部分是同样大的。
师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)
生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”
师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/
3、2/
6、3/9这三个分数的大小怎么样呢?”
生甲:“通过图上看起来,这三个分数应该是一样大的。”
生乙:“这三个分数是相等的。”
师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)
4.研究分数的基本规律。
师:“我们仔细观察这一组分数,它的什么变了,什么没变?”
生甲:“三个分数的分子分母都变了,大小没变。”
师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?”
生乙:“它的分子分母都同时扩大了两倍。”
师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)
教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”
学生发言
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。(板题)
分数的基本性质。
5.深入理解分数的基本性质。
师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?
齐读分数的基本性质,并用波浪线表出关键的词。
生甲:我觉得“零除外”这个词很重要。
生乙:我觉得“同时”“相同”这两个词很重要。
师:想一想为什么要加上“零除外”?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。
教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)
三、应用
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
4.按规律写出一组相等的分数。
四.总结
这节课大家有什么收获?
《分数的基本性质》设计思路
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了“猜想——试验分析——合情推理——探究创造”的教学模式。
在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,构建了新的教学模式。
《数学课程标准》指出:“学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。”这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。在本节课中,我先引导学生自己动手分月饼,发现三个人分得的月饼同样多,然后得出三个分数同样大,再来观察几组分数的分子、分母发生了怎样的变化,然后在观察与分析中逐步感知分数的分子、分母都乘或除以同一个数,分数的大小不变。最后在概括与运用中对分数的基本性质形成了清晰的认识。每一个活动都调动学生学习的积极性,使学生主动参与到活动中,从而体现了学生的主体地位