第一篇:红外测温仪毕业设计总结
毕业设计总结
由于医学发展的需要,在很多情况下,一般的温度计己经满足不了快速而又准确的测温要求,例如车站和机场等人口密度较大的地方进行人体温度测量。虽然现在国外这种测温的技术都比较成熟,但是国内这方面的技术还处于发展阶段。因此,为了适应医学发展的需要,有效地进行特殊环境下的温度测量,从而有力地控制和预防诸如甲流、非典之类型的特殊疾病的传播,急需设计一种测温速度快,准确率高的测温仪。
为了克服传统温度计测量温度的主要缺点——需要测量者与被测目标近距离接触和测量不方便,在顾及仪器测量高精度前提下,以追求最低成本为原则,研制了非接触式热释电红外测温仪,实现了对物体表面温度快速准确的测量。红外测温仪的设计主要为适应人体体温快速无接触测量的需要。
伴随着人们生活水平的不断提高以及对生活质量要求的提高,人们对自身的健康状况越来越关注,而人体的体温、血压、脉搏和呼吸是鉴别人体健康状况的重要参数,对这些生理指标的监控与测量则可以更好的体现人体自身的健康状况,所以他们在医疗领域中占有十分重要的地位,也为人民的生活带来极大的方便。
本次设计主要围绕体温这一生理指标展开,以AT89S52单片机为控制核心对温度进行实时采集,开发设计红外测温仪的全过程,根据红外线测温仪的原理,通过关键器件的选择以及温度补偿的自动调节来提高红外线测温仪的精确度,设计了一种非接触式人体体温测试仪,用于人体体温的快速测量。
毕业设计总结
本次设计的主要内容是利用单片机和传感器完成人体体温的非接触式测量。该系统主要应用在人们的日常生活中,对人们了解自身的健康状况至关重要。整个系统的设计简洁,准确,快速,方便。设计的核心部分选用AT89S52芯片和PM611红外温度传感器。另外,软件程序的设计包括数据采集程序,A/D转换程序,显示程序等。
红外检测是一种在线监测(不停电)式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发出的红外线(红外辐射),将其热像显示在荧光屏上,从而准确判断物体表面的温度分布情况,具有准确、实时、快速等优点。任何物体由于其自身分子的运动,不停地向外辐射红外热能,从而在物体表面形成一定的温度场,俗称“热像”。红外诊断技术正是通过吸收这种红外辐射能量,测出设备表面的温度及温度场的分布,从而判断设备发热情况。
设计的目的与意义
生理参数是人体最重要、最基本的生命指标,对危重病人进行生命指标参数的监测是医务工作者及时了解病情状况的重要手段之一,它有利于对有生命危险的伤病员进行及时有效的治疗和抢救处理,完善病人的医疗护理以及研究人体对环境变化的反应都有着重要的意义。
此设计的目的是在理论学习的基础上,通过完成一个涉及MCS-51单片机多种资源应用,并具有综合功能的小目标板的设计与编程应用,并在进行相关课程设计基础上进行的一次综合设计。通过查阅资料,接口设计,程序设计,安装调试,整理资料等环节,从而掌握工
毕业设计总结
程设计方法和组织实践的基本技能,熟悉开展科学实践的程序和办法,为今后从事生产技术工作打下必要的基础,学会灵活运用已经学过的知识,并能不断接受新的知识,大胆发明创造的设计理念。
因此研制一套可应用于个人家庭、方便携带、结构简单、测量速度快、实时性好的人体体温测试仪尤为重要。人们可以足不出户,在家中可随时对自己生理指标进行测试,监测自己的身体状况,做到提前预防,提高生命质量。
红外基础理论
红外线的波长在0.76~100μm之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
而红外线测温仪的性能指标包括:测温范围、显示分辨率、精度、工作环境温度范围、重复性、相对湿度、响应时间、电源、响应光谱、尺寸、最大值显示、重量、发射率等都是红外线测温仪的性能指标。
影响温度测量的主要因素
影响红外人体测温仪的因素有:
1)测温目标大小与测温距离的关系:在不同距离处,可测的目标的有效直径D是不同的,因而在测量小目标时要注意目标距离。人体红外测温仪距离系数K的定义为:被测目标的距离L与被测目
毕业设计总结
标的直径D之比,即K=L/D。
2)选择被测物质发射率:人体红外测温仪一般都是按黑体(发射率?=1.00)分度的,而实际上,物质的发射率都小于1.00。因此,在需要测量目标的真实温度时,必须设置发射率值。物质发射率可从《辐射测温中有关物体发射率的数据》中查得。
3)测量温度时的环境因素:测温仪所处的环境条件对测量结果有很大的影响,应予考虑并适当解决,否则会影响测温精度。本设计中正是利用了PM611热释电红外线传感器可以补偿温度起伏的作用,实现准确测温。
4)强光背景里目标的测量:若被测目标有较亮背景光(特别是受太阳光或强灯直射),则测量的准确性将受到影响,因此可用物体遮挡直射目标的强光以消除背景光干扰。
5)温度输出功能:首先模拟信号输出——0~5V,1~5V,0~10V,0/4~20毫安,可以加入闭环控制中。其次高报警、低报警─生产过程中要求控制温度在某个范围里,可设置高,低报警值。高报警:在高报警设置打开的情况下,当温度高于高报警值,相应的LED灯闪烁,蜂鸣器响,并有相应继电器接通或断开。
红外线测温仪的特点
人体红外测温仪是通过接收人体发射的红外线的能量的大小来测量其体温的仪器。测温仪内部的灵敏探测元件将采集的能量信息输送到微处理器中进行处理,然后转换成温度读数显示。所以人体红外测温仪具有以下优点:
毕业设计总结
1)非接触测量:它不需要接触到人体,只需在额头前方5厘米左右测温即可,而且红外探测器只需感应人体辐射的红外线。因此,不会干扰人体,也不会为人体带来损伤。
2)测量范围广:因为人体红外测温仪是非接触式测温,所以测温仪并不处在较高或较低的温度场中,而是工作在正常的温度或测温仪允许的条件下进行测量的,所以测量范围比较广。
3)测温速度快:即响应时间快。红外探测器中灵敏元非常灵敏,只要接收到目标红外辐射即可在短时间内测温。
4)准确度高:人体红外测温不会与普通测温一样破坏物体本身温度分布,因此测量精度高。
5)灵敏度高:只要人体温度有微小变化,辐射能量就有较大改变,易于测出,而且使用安全及使用寿命长。
6)体积小,方便携带。
7)受外界环境温度干扰较小:由于本设计中所使用的红外探测器是带补偿电路的,所以它可以补偿外界环境温度的高低起伏。
红外测温仪的硬件设计
红外测温仪是利用红外传感器对被测目标时的热辐射进行采集,通过转换电路将红外传感器采集到的光信号转换成电信号,再将电信号通过放大电路,A/D转换等单元电路处理后送到单片机中,最后单片机将带有数据信息的电信号进行分析处理,将电信号转变成与之相对应大小的温度值显示输出。其中要解决的问题有:体温信号的非接触测量、微弱电压信号的放大、传感器的环境温度补偿等。其中体温
毕业设计总结
测量选用红外热释传感器PM611、LM324进行电压放大、ADC0804进行模数转换,系统控制及数据处理等功能都用AT89S52单片机实现,通过驱动共阴极LED数码管进行显示。红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出、报警电路等部分组成。
在一个系统的硬件设计中应选择合适型号的单片机后,进行系统所需的扩展和配置。按照系统功能要求进行扩展和配置外围设备。要设计合适的接口电路,系统的扩展和配置应遵循以下原则:
1)尽可能选择典型电路,并符合单片机常规用法。为硬件系统的标准化、模块化打下良好的基础。本次设计选取的是AT89S52单片机。
2)系统扩展与外围设备的配置水平应充分满足应用系统的功能要求,并留有适当余地,以便二次开发。
3)系统中的相关器件要尽可能做到性能匹配。4)可靠性及干扰设计是硬件设计必不可少的一部分。5)单片机外围电路较多时,应考虑其驱动能力。驱动能力不足时,系统工作不可靠,可通过增设线驱动器增强驱动能力或减少芯片功耗来降低总线负载。
6)工艺设计必须考虑安装、调试、维护的方便。
单片机的选型
为了硬件系统的标准化、模块化、便于二次开发,本次设计选取的单片机 型号是AT89S52。
AT89S52是一种低功耗、高性能CMOS八位微控制器,具有8KB
毕业设计总结 的系统可编程Flash存储器。使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。AT89S52具有以下标准功能:8K字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S52可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
1.AT89S52的主要特点是:
·与MCS-51 单片机产品兼容; ·8k可反复擦写(>1000次)Flash ROM; ·全静态操作:0Hz~33Hz; ·三级加密程序存储器;
·32 个可编程I/O 口线;
·3个16 位定时器/计数器; ·8个中断源;
·全双工UART 串行通道;
·低功耗空闲和掉电模式,掉电后中断可唤醒; ·看门狗定时器及双数据指针; ·掉电标识和快速编程特性;
热释电温度传感器的选型
本设计的探头使用的是红外线传感器,它能接收人体发射出的红外线并使之转换成电压信号。设计选用的是PM611单元热释电传感器,它是一种专门用于非接触式测量体温的器件,主要接收5~14um之间的红外线。被测物体的辐射能经过窗口和光阑聚焦在接收元件(热电堆)的受热片上,受热片上有60只串联的热电偶,每只热电偶的热端在受热片的中央部位围成一圈,焊接在一起,从引线就可以得到所有电偶的热电势之和。这种结构设计具有较小的热惯性和较高的灵敏度,传感器采用负温度系数电热调节器进行环境温度补
毕业设计总结
偿。
这种传感器虽是单灵敏元,由于他采用一个接收元和二个并联的补偿元串接的结构,故也能有效地补偿环境温度起伏,振动等干扰影响。他的工作温度是-20℃——+100 ℃,特别适合测量人体的温度。而且PM611各项指数都比较好,因此选用了它做温度仪的探头。
放大电路
由于传感器探测到的人体红外线信号较弱,当转化为电压后需要通过放大器放大电压信号。因为探测器测到的信号可能掺杂了外界环境的某些因素,所以放大电路中要加入低通滤波电路把多余的杂信号过滤掉。■模数转换电路
由于传感器探测到红外线后被放大的是模拟信号,然而需要在LED上显示出来,所以本设计利用模数转换器来实现这个功能。因为只用到了一个输入信号,所以为了节省不必要的累赘,采用ADC0804把有用的模拟信号转换成数字信号,最后显示出来。
ADC0804是用CMOS集成工艺制成的逐次比较型模数转换芯片。分辨率8位,输入电压范围是0~5V, 增加一些外部电路后,输入模拟电压为±5V。此芯片内有输出锁存器,当与计算机连接时,转换电路的输出可以直接连接在CPU数据总线上,不用再加接口电路。
整体电路
本设计采用AT89S52系列单片机进行数据的采集存储和处理。由于信号只有一个输入,为了避免不必要的消耗,本设计A/D转换器采用的是ADC0804。芯片的CLKIN端和CLKR端配合可以由芯片自身产生时钟脉冲。测量物体表面辐射能量的热释电传感器选用的是尼赛拉传感器有限公司的PM611型热释电传感器,它有效调节外界环境的温度起伏影响,显示器采用4片8位LED数码管。
红外测温仪的软件设计
毕业设计总结
主程序设计
设计的思路是首先初始化系统,然后显示子程序,开始测温后复位各个端口,摁下开关,接通电源,确定打开电源后A/D模数转换器Vin(+)输入端读取经过放大滤波计算后的数据进行模数转换,CS片选端、WR写入端同时设置成低电平,当芯片自身产生一个脉冲时,启动转换。然后A/D转换器的CS、RD同时为低电平0时读取转换输出的数据,转换后的数据存入模数转换器自身的锁存器里,由输出端口D0~D7输入到单片机的P0口中。读取三次数据,满三次后读数正确的写入单片机EEPROM存储器。同时计数器加1,继续读取下一组数据。如果读数满三次后数据不正确,则要对单片机进行清零,复位后重新测量读数。
主程序主要实现以下功能:
1)开机或复位时能自动初始化设备,引导程序正确执行。2)开机或复位之后启动A/D转换,对环境温度进行采样,并在显示器上显示当前环境温度。
3)保持环境温度显示的同时,对覆盖热释电探测器视场的物体表面的红外辐射进行转换和采样,并比较各采样值,直到采样值为热释电探测器响应的峰值电压为止。
子程序
主要实现以下功能:
1)A/D采样子程序完成对热释电传感器放大电路输出信号的采样。要实现准确测温就必须得到输出信号的峰值,但在实际电路中,由于探测器响应延时不尽相同,且电路的延时也很难准确计算,所以要准确采集到峰值是十分困难的。为此,我们只有对输出信号不断地进行采样,并比较各样值,取其中的最大者作为峰值的近似值
2)数据处理子程序完成对采样值的计算处理。中间又经过了ADC0804数模转换器将结果转换为可供LED显示的代码。
3)读取温度时超过预警温度,蜂鸣器报警,没超过直接显示所测温度。
毕业设计总结
4)显示子程序完成最后的温度显示。
系统调试 系统硬件调试
绘制完成原理图之后,根据原理图焊接电路板。焊接完成后,首先目测焊点是有虚焊或漏焊现象,再用万用表测量各个芯片间连接和电源与地间的连接是否正确,系统硬件调试方法如下:
1)对印刷电路板质量检查、测试,是否同印刷制电路板图一致。对所用的
元器件质量检查。两者无误后进行下一步。
2)按照印刷电路板上的器件名称、表识焊接好各个元器件。3)采用万用表、示波器、信号发生器等一般调试工具和测试软件对硬件电
路电气性能测试,看是否能正常工作。
系统软件调试
软件调试采用模块化调试方法,每一模块逐一调试,然后再将所有模块组合一起,进行整体调试。软件的调试主要有语法错误和逻辑错误两类。系统软件调试方法如下:
1)软件在各个子程序模块调试都正确后,再将相互有关系的模块逐块组合
起来加以调试,以解决在程序模块连接中可能出现的逻辑错误。
2)对所有程序模块的整体组合调试是在与系统联机后进行的。
致谢
经过将近一个多月的忙碌和工作,本次毕业设计已经接近尾声,作为一个专科生的毕业设计,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有指导老师的督促指导,以及一起学习的同学们的
毕业设计总结
支持,想要完成这个设计是难以想象的。这次毕业论文能够得以顺利完成,是所有指导过我的老师,帮助过我的同学和一直关心支持着我的家人对我的教诲、帮助和鼓励的结果。我要在这里对他们表示深深的谢意!
首先感谢我的指导老师——张鹏老师,感谢张老师对本论文从选题、构思、资料收集到最后定稿的各个环节给予细心的指引和教导,使我对本次设计有了深刻的认识,并最终得以完成毕业论文,同时,在此次毕业设计过程中我也学到了许多关于单片机和传感器方面的知识,实验技能有了很大的提高。其次要感谢和我一起作毕业设计的同学们,他们在本次设计中勤奋工作,克服了许多困难来完成此次毕业设计。因为有了他们的努力工作,此次设计的完成才会如此顺利。
感谢我身边所有的朋友与同学们,谢谢你们三年来的关照与宽容,与你们一起走过的缤纷时代,将会是我一生最珍贵的回忆。这里,对关心、帮助过我的老师和同学们表示衷心地感谢!
最后,我要向在百忙之中抽时间对本文进行审阅、评议和参加本人论文答辩的各位老师表示感谢!
第二篇:红外测温仪在玻璃工业中的应用方案[定稿]
红外测温仪在玻璃工业中的应用
玻璃工业解决方案
完成一次和二次玻璃加工制造
蔚蓝仕()红外探头用于测量窑炉、炉中的玻璃、熔化池、蓄热池、澄清池、料道、料滴、模具、浮法线和退火炉,以及冷却区和镀膜区的温度。
熔炉退火炉有多个温度控制区,探头装在每个控制区上,以保证准确的边到边玻璃温度的一致和玻璃表面的平坦。
瓶罐和容器料道各区段温度由红外光纤探头监视和控制,以保持进入成纤器处的玻璃保持在最佳温度。
优点:
-提高产量和成品率
-改善过程控制
-提高产品一致性
-提高产品质量
-减少停机时间
推荐型号: LUNA-OSS
波段:5.0
第三篇:红外波谱知识总结
红外光谱的分类:近红外区(泛频区):12820~4000;中红外区(基本转动-振动)4000~400;远近红外区(骨架振动区)400~20.说明:
从IR谱的整个范围来看,可分为4000~1350cm-1与1350~650 cm-1两个区。
4000~1350cm-1区域是由是伸缩振动产生的吸收带,光谱比较简单但具有很强的特征性,称为官能团区。其中:
4000~2500cm-1高波数一端有与折合质量小的氢原子相结合的官能团O—H、N—H、C—H、S—H键的伸缩振动吸收带;
2500~1900cm-1波数范围出现力常数大的三键、累积双键,如—C三C—、—C三N,—C二二C二C—、—C二C二O—、—N二C二O—等的伸缩振动吸收带;(三为三键,二为双键)
1900cm-1以下的低波数端有碳碳双键、碳氧双键、碳氮双键、及硝基等伸缩振动和芳环的骨架振动;
1350~650cm-1区域,有C—O、C—X的伸缩振动和C—C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。该区域中的各峰的吸收位置受整体分子的结构影响较大,分子结构稍有不同,吸收,吸收就有细微差异,称为指纹区。指纹区对于用已知物来鉴别未知物十分重要。
依照图记忆:
第一,4000~2500cm-
1C—H:(3000~3300)
—C—H:2960~2850(强)<3000
二C—H:3100~3010(中)<3100C—H都是<3300的;
三C—H:3310~3300(强)~3300
苯环上的氢:3110~3010(中)和烯氢相似;
N—H:(3300~3500)
一级胺:(游离)3490~3400(中)处有两个吸收峰;缔合的减少100;(和炔氢相似)二级胺:(游离)3500~3300有一个吸收峰
O—H:(3600)(3100-3700)
酚羟基:(游离)3611~3603(峰尖);
(缔合)3500~3200(峰替较宽);
醇羟基:(游离)3650~3610(峰尖);
(缔合)3500~3000:二聚在3600~3500;多聚3400~3200(峰替较宽);
醚:无O—H峰
醛羰基中C—H在2720
第二,2500~1900cm-1
C三C键:RC三CH,2140~2100(弱),三C—H:3310~3300(强),在700~600有三C—H弯曲振动,有用;
RC三CR’:2260~2190
乙炔和对称二取代乙炔,因为对称没有。
第三,1900cm-1以下
碳碳双键:1680~1620;
碳氧双键:
(1)羰基1750~1680(强)
醛羰基和酮羰基差别不大,但醛羰基中C—H在2720有吸收峰;
羰基与双键共轭时,会向低波位移,与苯环在1600区域分裂为俩峰,在1580有出现新峰;
(2)羧酸:羰基(单体1770~1750,二缔合1710)
酯:1735(强)
酰卤:脂肪酰卤1800;芳香酰卤1785~1750和1750~1735;
酸酐,酰胺等。
其实我就是觉得先几个大致的范围,如上面的4000~2500cm-
1、2500~1900cm-
1、1900cm-1以下、1350~650cm-1然后,肯定不是一个区同时出现好几个特殊官能团吧,那样化合物也不可能啊,至少少见,再记点每个官能团的确定峰,如醛基。这样就差不多了。我觉得《基础有机化学》(邢其毅、第三版)讲的简单实用!
第四篇:红外热像仪学习总结讲解
红外热像仪的学习总结
制冷及低温工程
经历了几周对本课程的学习,发现自学到了很多东西,现将本课程最基本的知识整理如下:
1.红外线的发现与分布
1672年人们发现太阳光(白光)是由各种颜色的光复合而成,同时,牛顿作出了单色光在性质上比白色光更简单的著名结论。使用分光棱镜就把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光。1800年,英国物理学家F.W.赫胥尔从热的观点来研究各种色光时发现了红外线。他在研究各种色光的热量时,有意地把暗室的唯一的窗户用暗板堵住,并在板上开了一个矩型孔,孔内装了一个分光棱镜。当太阳光通过棱镜时,便被分解为彩色光带,并用温度计去测量光带中不同颜色所含的热量。为了与环境温度进行比较,赫胥尔用在彩色光带附近放几支作为比较用的温度计来测定周围环境温度。试验中,他偶然发现一个奇怪的现象:放在光带红光外的一支温度计,比室内其它温度的批示数值高。经过反复试验表明这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布太阳发出的辐射中除可见光线外,还有一种人眼看不见的热线,这种看不见热线位于红色外侧,叫做红外线。红外线是一种电磁波,具有与无线电波及可见光一样的本质,红外线的发展是人类对自然认识的一次飞跃,对研究、利用和发展红外技术领域开辟了一条全新的广阔道路。
红外线的波长在0.76--100μm之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一 一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。热像仪为非接触式测量,这是它的优点。如果为接触式测量,一个大的缺点就是破坏了原来的温度场。
2.红外热像仪的原理
红外热像仪由红外探测器、光学成像物镜和处理电路组成。早期的热像仪由于焦平面技术的限制,一般是线阵或×
4、×6阵列的,需要光机扫描系统,目前基本为凝视型焦平面所代替,省略了光机扫描系统。利用物镜将目标的红外辐射能量分布图形成像到红外焦平面上,由焦平面将红外能量转换为电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。
这种热像图与物体表面的分布场相对应实;际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩,描绘等高线和直方进行运算、打印等。
3.红外热像仪的主要参数
(1)工作波段:工作波段是指红外热像仪中所选择的红外探测器的响应波长区域,一般是3~5μm(短波,医疗)或8~14μm(长波,工业)。如美国FLIR的非制冷产品和制冷型QWIP系列都工作在长波8~12μm,制冷型产品MCT系列工作在中波3~5μm。
(2)探测器类型:探测器类型是指使用的一种红外器件。如采用单元或多元(×
2、×4等)、面阵等。可分为非制冷和制冷型2大类型。非制冷主要有热释电、多晶硅(α-Si,以法国sfradir为代表)、氧化钒(VOx,以美国FLIR为代表)等材料,目前,热释电热像仪基本被淘汰;制冷型主要有碲镉汞(PbCdTe,简称MCT)、量子阱(QWIP)、锑化铟(InSb,该产品对中国禁运)等。
(3)视频制式:我国标准电视制式,PAL制式,美国标准电视制式是NTSC制式。目前先进的热像仪同时还提供数字视频,有8位、10位及14位的。
(4)显示方式:指屏幕显示是黑白显示还是伪彩显示。
(5)温度测定范围:指测定温度的最低限与最高限的温度值的范围。
(6)最大工作时间:红外热像仪允许连续的工作时间。
4.红外热像仪的分类
红外热像仪一般分光机扫描成像系统和凝视型成像系统.。光机扫描成像系统采用单元或多元(元数有 8、10、16、23、48、55、60、120、180甚至更多)光电导或光伏红外探测器,用单元探测器时速度慢,主要是帧幅响应的时间不够快,多元阵列探测器可做成高速实时热像仪。
非扫描成像的热像仪,如今几年推出的阵列式凝视成像的焦平面热像仪,在性能上大大优于光机扫描式热像仪,已基本取代光机扫描式热像仪。其关键技术是探测器由单片集成电路组成被测目标的整个视野都聚集在上面,并且图象更加清晰,使用更加方便,仪器非常小巧轻便,同时具有自动调焦图像冻结、连续放大,点温、线温、等温和语音注释图像等功能。
目前,热像仪主要是高端的制冷型热像仪(碲镉汞MCT、量子阱QWIP)、低端的非制冷热像仪(氧化钒、多晶硅热像仪)。
美国的Honeywell公司在九十年代初研发成功非制冷型氧化钒热像仪,目前其专利授权FLIR-INDIGO、BAE、L-3/IR、DRS、以及日本NEC、以色列SCD等几家公司生产。法国的CEA/LETI/LIR实验室在九十年代末研发成功非制冷型多晶硅热像仪,目前主要由法国的SOFRADIR和ULIS公司生产,也是中国市场的供应商。在非制冷热像仪领域,也主要是美国FLIR的氧化钒技术和法国SOFRADIR的多晶硅技术的竞争。
5、红外热像仪的应用
热像仪作为一种红外成像仪器,不但在军事应用中占有很重要的地位在民用方面也具有很强的生命力。热像仪在军事和民用方面都有广泛的应用。随着热成像技术的成熟,各种低成本适于民用的热像仪的问世,它在国民经济各部门发挥着越来越大的作用。
在工业生产中,许多设备常处于高温、高压和高速运行状态,应用红外热像仪对这些设备进行检测和监控,既能保证设备的安全运转,又能发现异常情况以便及时排除隐患。同时,利用热像仪还可进行工业产品质量控制和管理。例如,在钢铁工业中的高炉和转炉所用耐火材料的烧蚀磨损情况,可用热像仪进行观测及时采取措施检修防止事故发生。又如,在石化工业中,热像仪可监视生产设备和管道的运行情况,随时提供有关沉淀形成、流动阻塞、漏热温度隔热材料变质等数据。再如,在电力工业中,发电机组、高压输电和配电线路等可用热像仪沿线扫查,找出故障隐患,及时排除以利于杜绝事故的发生。在电子工业中,也可用热像仪检查半导体器件、集成电路和印刷电路板等的质量情况,发现其他方法难以找到的故障。
此外,红外热像仪在医疗、治安、消防、考古、交通、农业和地质等许多领域均有重要的应用。如建筑物漏热查寻、森林探火、火源寻找、海上救护、矿石断裂判别、导弹发动机检查,公安侦查以及各种材料及制品质无损检查等。
6.红外热成像系统的主要技术指标
1).f/数
f/数是光学系统相对孔径的倒数。设光学系统的相对孔径为A=D/f(D为通光孔径,f为焦距),1/A=f/D,则数f/D 是表示系统的焦距f为通光孔径的多少倍。例如,f/3 表示光学系统的焦距为通光孔径的三倍。f/数代表的是红外系统接收红外热能量的能力。f/数越低,接收热能量越高,但镜头口径就越大。
2).视场
视场是光学系统视场角的简称。它表示能够在光学系统像平面视场光阑内成像的空间范围,当目标位于以光轴为轴线,顶角为视场角的圆锥内的(任一点在一定距离内)时候被光学系统发现,即成像于光学系统像平面的视场光阑内。即使物体能在热像仪中成像的空间的最大张角叫做视场。
3).光谱响应
红外探测器对各个波长的入射辐射的响应称为光谱响应。一般的光电探测器均为选择性的探测器。
4).空间分辨率
应用热像仪观测时,热像仪对目标空间形状的分辨能力。本行业中通常以mrad(毫弧度)的大小来表示。mrad的值越小,表明其分辨率越高。弧度值乘以半径约等于弦长,即目标的直径。如 1.3 mrad的分辨率意味着可以在100m的距离上分辨出 1.3×10-3 ×100=0.13m=13厘米的物体。
5).温度分辨率
温度分辨率 :可以简单定义为仪器或使观察者能从背景中精确的分辨出目标辐射的最小温差△T。一般的△T<0.1℃。一般的温度分辨率为环境为30℃时探测器的最小可变温差,而不是整机的分辨率。
6).最小可分辨温差
分辨灵敏度和系统空间分辨率的参数,而且是以与观察者本身有关的主观评价参数,它的定义为:在使用标准的周期性测试卡(即高宽比为 7:1的4带条图情况下),观察人员可以分辨的最小目标、背景温差。上述观察过程中,观察时间、系统增益、信号电平值等可以不受限制的调整在最佳状态。
7).探测识别和辨认距离
探测、识别和辨认距离;这些是使用者很关心的性能指标。为每个使用者自身素质和仪器给出的图像质量的差异以及严格定义的困难(探测性能是一个多种因素的复合函数)这里只给出大致形象的定义; 探测距离是能将目标与背景及一些引起注意的目标清晰分别开来的最大临界;识别距离是将探测的目标能大致分出种类的距离,如是车辆还是舰船;辨认距离是在分别出种类的基础上的细分。读书感想:(1)红外线的发现,任何物体都无时无刻(温度在绝对温度之上)不在向外发射出红外线。红外线是一种人眼看不到的热线,但却在1800年,被英国物理学家F.W.赫胥尔研究可见光时意外的发现了。这让我明白了,生活之中充满了科学色彩,我们做学问,搞科研要严谨,细心,这样我们才有可能发现生活中科学的魅力所在。我们都知道:红外线的发展是人类对自然认识的一次飞跃,对研究、利用和发展红外技术领域开辟了一条全新的广阔道路。这一次飞跃在现在看来好像是很简单,但是对于当时,一片黑暗的情况下研究出红外线应该是多么的困难,很佩服以前那些在黑暗中探索出光明道路的科学家们,我们要好好学习科学知识。
(2)其实有了红外线的发明,红外热像仪的原理就很好理解了:红外探测器(探测物体表面辐射的红外线)、光学成像物镜(目标的红外辐射能量分布图形成像到红外焦平面上,由焦平面将红外能量转换为电信号)和处理电路(处理电路处理后显示到显示屏上)。任何一个仪器,使用之前一定要搞明白它的原理,如果原理都不知道就去使用就会措手不及。
(3)我想把红外热像仪的主要参数和技术指标一起来总结。主要参数是对某一个热像仪说的,而技术指标是对总体来说的。一个热像仪有其主要参数,比如说:我买的这台热像仪工作波段是3~5μm,主要用于医疗,这是参数,你买的热像仪工作波段是8~14μm,主要用于工业。但是对于我们这两台热像仪,其技术指标,比如空间分辨率,算法都是一样的。对于技术指标,要好好掌握这项指标,对于以后应用热像仪有很大的帮助。比如一般的红外探测器在环境温度为三十度时,其温度分辨率最小温差一般为:ΔT<0.1℃,这可以作为以后校验数据的依据。
(4)分类:对于品种繁多的红外探测器,有各种不同的分类方法。根据响应波长,可以分为近红外、中红外、远红外和极远红外探测器;根据工作温度和致冷需求,可以分为低温致冷和室温非致冷红外探测器;根据结构可分为单元、线阵和焦平面红外探测器;就探测机理而言,又可分为光子和热敏红外探测器。以后再学习工作中会更加深刻的理解这些分类。
(5)我最佩服红外热像仪的就是其应用了。现罗列一下应用:
1)微电子器件的故障排除,一些微电子器件如果温度过高会失去作用,从而使机器停止运转。而用热像仪就可以发现微电子器件的温度分布,发现其不正常之处,提早排除故障。
2)高压线缆的安全检测。3)化工设备的检测。
4)医学检测:检测外表面的,比如头疼,检测额头,胸部的乳腺癌等。5)建筑物漏热查寻,比如窗口的严密性。
6)森林探火、火源寻找。比如大兴安岭的火源寻找,提早发现隐患,解决问题。
除此之外还有海上救护、矿石断裂判别、导弹发动机检查,公安侦查以及各种材料及制品质无损检查等。
总之,以后只要是想通过辨别温度场的差异来检测其是否正常的,优先考虑热像仪。
小结:纸上谈兵终觉浅,绝知此事要躬行。以后要熟练掌握使用热像仪,把其作为生活中解决问题的工具。
第五篇:毕业设计总结模版
毕业设计总结
历时十几周的毕业设计终于完成了。通过此次毕业设计,我不仅把知识融会贯通,而且丰富了大脑,同时在查找资料的过程中也了解了许多课外知识,开拓了视野,认识了将来液压传动系统的发展方向,使自己在专业知识方面和动手能力方面有了质的飞跃。
本科毕业设计是我作为一名本科生完成学业的最后一次作业,它既是对学校所学知识的全面总结和综合应用,又为今后走向社会的实际操作应用铸就了一个良好开端,毕业设计是我对所学知识理论的检验与总结,能够培养和提高设计者独立分析和解决问题的能力;是我在校期间向学校所交的最后一份综和性作业。
在没有做毕业设计以前觉得毕业设计只是对这几年来所学知识的大概总结,但当耐心去做毕业设计时发现自己的想法是错误的。毕业设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。通过这次毕业设计使我明白了自己原来知识太理论化、太肤浅了,自己要学习的东西还很多。以前老是觉得自己什么东西都好像会,什么东西都好像懂,现在来看,真是大错特错了。通过这次毕业设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。
在此要感谢我们的指导老师李老师对我悉心的指导,感谢老师们给我的帮助。在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次毕业设计的最大收获和财富,使我终身受益。