第一篇:再次实践《用比例解决问题》教学设计
《用比例解决问题》第二次教学设计
教学目标:
1.掌握用正比例知识解答含有正比例关系问题的步骤和方法。
2.使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。
教学重点:
1.判断题中相对应的两个量和它们的比例关系。
2.利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题。
教学难点
1.掌握用比例知识解答解答应用题的步骤和方法。
2.理解“用比例解决问题”的结构特点,从而构建知识结构。
教学过程:
一、出示尝试题,学生练习(各种方法)
1.一辆汽车行1.2千米,要用汽油3.6升,照这样计算,6升汽油可行多少千米? 2.一辆汽车从甲地开往乙地,每小时80km,6小时到达。如果要5小时到达,每小时要行多少km?
3.分析用比例解决(板书过程)
在我们的生活中的应用也是非常广泛的,今天我们就一起来研究——(课件出示)用比例解决问题。(板书课题)
二、揭示课题、探索新知。
(一)例5(出示)
1.回顾旧知
师:从题目中你能知道哪些信息?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?
(1)学生自己解答,然后交流解答方法。
(学生可以先求出单价,再求总价或先求出用水量的倍数关系再求总价。)
(2)师:有不同做法吗?(如果有,出示学生作业,让学生说想法;如果没有,就提示:像这样的问题也可以用比例的知识来解决。)
2.探究解法
(1)梳理两种相关联的量
师:用比例解决这个问题之前,我们先来思考
①它们成什么比例关系?你是根据什么判断的?
②根据这样的比例关系,你能列出比例式吗?
3.用比例解答。
如果设李奶奶家上个月的水费是x元,请根据表中相对应的数据和判断列出比例式,然后解答。
知道每吨水的价钱一定,所以水费和用水量成正比例。也就是说,两家的水费和用水量的比值相等。
设李奶奶家上个月的水费是x元。列出比例是:(12.8:8=x:10),比例的解是x=16。(板书解法1)
师:你是怎么想的?(根据上面的数据,概括:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。)
12.8:8=x:10
板书: 解:设李奶奶家上个月的水费是χ元。
12.8 :8 =χ:10 或 12.8/8 =χ/10
8χ=12.8×10 8χ= 12.8×10
χ= 128÷8 χ=128÷8
χ=16 χ=16
答:李奶奶家上个月的水费是16元。
师:12.8:8和x:10 分别表示什么?(水费单价)
让学生再思考,看看有没有出现其它比例的解法。
如果列出的比例是8:12.8=10:x 可以吗?为什么?(可以,因为8:12.8 和10:x 都表示1元可以用水多少吨,是一定的,板书解法2)
师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)
4.即时练习
师:同学们很了不起,帮李奶奶解决完了问题,能再帮王大爷解决一个问题吗?
出示下一个例题:“王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?”(让学生进行变式练习。)
5.出示例6
6.学生练习,并分析。(方法同上)
提炼方法
师:我们一起来反思一下刚才的学习过程,比较一下这两个例题有什么联系?
得出用比例解决问题的“四步骤”(课件出示):
(1)设要求的问题为x
(2)用正比例或反比例的意义判断题中的两种量成正比例还是成反比例关系;(3)列比例式
(4)解比例,验算,作答。
三、巩固提高。
(一).只列比例式不计算:
1.华南服装厂3天加工西装180套,照这样计算,要生产540套西装,需要多少天?
2.用同样的砖铺地,铺18平方米要用612块。如果铺24平方米,要用多少块砖? 3.一堆煤,原计划每天烧3吨,可以烧96天,由于改进炉灶,每天烧2.4 吨,这堆煤实际可以烧多少天?
(二).我能解决(用比例解答)
①这本书,每天读10页,30天可以读完。如果每天多读5页,多少天可以读完?
(10+5)χ=10×30
χ == 20
②每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟能完成计划?
四、全课总结。
1.今天你们有什么收获?
第二篇:《用比例解决问题》教学设计
《用正比例解决问题》教学设计
教案背景:
1、面向学生:小学
2、学科:数学
3、课时:1课时
4、学生课前准备:预习教材61页例5内容 教材分析:
人教版义务教育课程标准实验教科书《数学》六年级下册《比例》第61页例5,练习十一3、4题。学情分析:
学生已经学习了比例的基本性质以及正反比例,对本课学习打下了坚实的基础。本班学生基础较好,学习程度较好,对解决问题和分析题意,大多数思路都比较清晰。教学目标:
1、知识与技能
通过学习,掌握用正比例知识解决的思路和方法步骤,能灵活运用所学知识解决这一类的正比例问题。
2、过程与方法
结合具体情境,自主探究用正比例知识解决问题的方法,进一步培养阅读、理解、分析、解答、反思的数学学习能力。
3情感态度与价值观 培养良好的解决问题的习惯和感受数学与生活的密切联系。教学重点:
用正比例知识解决比较简单的应用题。教学难点:
正确分析数量关系,找出相关联的量并列出方程。教学准备:
课件 教法与学法:
教法:讲授分析法
学法:自主探究,交流汇报,总结归纳。教学过程:
一、复习(课件展示)
判断下面每题中的两个量成什么比例? 1.单价一定,总价和数量。(正比例)
2.工作效率一定,工作总量和工作时间。(正比例)3.书的总数一定,每包的本书和包数。(反比例)
4.每吨水的价钱一定时,水费和用水的吨数。(正比例)5.总路程一定,速度和时间。(反比例)6.差一定,被减数与减数。(不成比例)
这节课,我们就应用比例的知识解决一些实际问题。
二、探究新知
1、教学例5(1)课件出示教材例5主题图,全班齐读题目。(2)整理信息:
已知张大妈家上个月用了8吨水,水费是12.8元。李奶 奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?(3)以合作的方式,四人一组在自学提示下进行探究
自学提示:① 问题中有哪两种量?
② 它们成什么比例关系?你是根据什么判断的?
③ 根据这样的比例关系,你能列出等式吗?
(4)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(5)请学生在自己的练习本上自行解答,教师巡视指导,并选取不同的解答方法。
2、课件展示,汇报交流
方法一:(算书法)
28÷8×10 或 28×(10÷8)= 3.5×10 = 28×1.25 = 35(元)= 35(元)先算出每吨水的单价 先算出李奶奶家的用水量 是张奶奶家的几倍
方法二:(成正比例)(1)解:设李奶奶家上个月的水费是Χ元。28 : 8 = Χ : 10 8Χ=28×10 Χ=28×10÷8 Χ=35 因为每吨水的价钱一定(也就是单价一定),所以水费和用水的吨数成正比例关系,两家的水费与用水吨数的比值相等。
(2)解:设李奶奶家上个月的水费是Χ元。8 :28 = 10 :Χ 8Χ= 28×10 Χ= 28×10÷8 Χ=35 因为单位价钱内所对应的用水吨数一定(也就是支付每元所对应的用水吨数一定),所以用水吨数和水费成正比例关系,两家的用水吨数与水费的比值相等。
3、体验并齐答。
4、组织学生观察两种方法,对比算术法和用正比例解决问题那种方法更具有直观性?更方便于理解和解答?
三、知识拓展
修改题目:已知张大妈家上个月用了8吨水,水费是12.8元。王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
四、巩固提高
完成教材“回顾与反思”以及练习十一第3、4题。再次体会用正比例解决实际问题的优越性。
五、课堂小结
通过本节课的学习,你有什么收获?能给大家说说用正比例知识解决问题的步骤是什么吗?解答时,你要提醒大家注意什么?学生交流回答,师总结。
第三篇:用比例解决问题教学设计
用比例解决问题教学设计
一、教学目标
(一)知识与技能
在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。
(二)过程与方法
通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。
(三)情感态度和价值观
主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。
【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归
一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。
二、教学重难点
教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题
教学难点:利用正比例的关系列出含有未知数的等式。
三、教学准备
课件。
四、教学过程
(一)复习回顾
1.说说正比例、反比例的相同点和不同点。
2.判断下列每题中的两个量是不是成比例,成什么比例?
(1)已知 A÷B=C。
当A一定时,B和C()比例;
当B一定时,A和C()比例;
当C一定时,A和B()比例。
(2)购买课本的单价一定时,总价和数量的关系。
(3)总路程一定时,速度和时间的关系。
【设计意图】 通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。
(二)探究新知,培养能力
1.提出问题。
教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。
课件出示教材第61页例5。
思考:题中告诉了我们哪些信息?要解决什么问题?
教师:你能利用数学知识帮李奶奶算出上个月的水费吗?
2.解决问题。
(1)学生尝试解答。
(2)交流解答方法,并说说自己的想法。
教师:谁愿意来说一说你是怎么解决的?
预设1:
28÷8×10
=3.5×10
=35(元)
(先算出每吨水的价钱,再算出10吨水需要多少钱)
预设2:
10÷8×28
=1.25×28
=35(元)
(也可以先求出用水量的倍数关系,再求总价)
教师:谁和这位同学的方法一样?
【设计意图】用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。
3.激励引新。
教师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)
课件出示以下问题,让学生思考和讨论:
(1)题目中相关联的两种量是()和(),说说变化情况。
(2)()一定,()和()成()比例关系。
(3)用关系式表示是()。
(4)集体交流、反馈。
板书:
教师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(5)根据正比例的意义列出比例式(方程)。
学生独立完成,教师巡视。
反馈学生解题情况。
解:设李奶奶家上个月的水费是x元。
:8 =x:10 或(8x=28×10)
x=280÷8
x=35
答:李奶奶家上个月的水费是35元。
(6)将答案代入到比例式中进行检验。
教师:你认为李奶奶用了10吨水的水费为35元钱,这个答案符合实际吗?你是怎么判断的?
(7)学生交流,汇报。
【设计意图】“人人都能获得良好的数学教育,不同的人在数学上获得不同的发展”是课标的教学理念,为此让学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。
4.变式练习。
教师: 刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?(出现下面的练习)
张大妈:我们家上个月用了8吨水,水费是28元。王大爷家上个月的水费是42元,他们家上个月用了多少吨水?
(1)比较一下此题和例5有什么联系和区别?
(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)
(3)集体订正,请学生说一说是怎样想的。
5.概括总结。
教师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用正比例解决问题的思考过程是怎样的。
学生讨论交流,汇报。
(1)分析找出题目中相关联的两种量。
(2)判断它们是否是正比例关系。
(3)根据正比例的意义列出比例。
(4)最后解比例。
(5)检验作答。
教师总结:同学们不但会解决问题,而且还善于归纳总结方法。就像大家想的那样,先分析题中的数量关系,判断相关联的两种量成什么关系,根据问题中的等量关系列出方程,解方程并检验作答。
【设计意图】本着“以学生发展为本”的理念,围绕生活中的水费问题,让学生经历“尝试──理解──总结”的全过程,从而理解、掌握用正比例解决问题的方法,使学生解决问题的能力有一个提升。
(三)巩固练习
1.只列式不计算。
(1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。
(189:3=x:9)
(2)小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用x元钱。
(x:3=6:4)
2.用正比例解决问题。
(1)小兰的身高1.5米,她的影长是2.4米。如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?
(2)小红计划每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟才能完成计划?
【设计意图】通过即时练习巩固,增强学生对具体情境中成正比例的量作出判断和解释的能力,能有条理地解释问题解决的思考过程,有助于提高学生解决问题的能力。
(四)课堂小结,拓展延伸
同学们,谁来说说,上了这节课,你收获了什么?
【设计意图】课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。
网友观点
很菜
好文
第四篇:用比例解决问题教学设计
《用比例解决问题》例5教学设计
横道河子乡中心校 陈立强
教学目标:
1.掌握用正比例知识解答含有正比例关系问题的步骤和方法。
2.使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。教学重点:
1.判断题中相对应的两个量和它们的比例关系。2.利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题。教学难点:
1.掌握用比例知识解答解答应用题的步骤和方法。2.理解“用比例解决问题”的结构特点,从而构建知识结构。
教学准备:多媒体课件 教学过程:
一、激发兴趣,回忆旧知
1.师:本节课是我们这个单元最后的一个内容,今天我们运用所学的知识来解决问题,希望大家用精彩的表现完成这节课!我们先来回忆一下已经学过的知识吧!(课件出示:)判断下列每题中的两个量是不是成比例,成什么比例?为什么?
(1)购买的课本的单价一定,总价和数量。(2)路程一定,速度和时间。
2.师:看来同学们正比例和反比例的知识学得都很不错,下面我我们就一起来研究——用比例解决问题。(板书课题:用比例解决问题)
(设计意图:复习正、反比例的意义,为用比例知识解决问题做准备。)
二、揭示课题、探索新知。
(一)教学例5(课件出示:情境图)1.回顾旧知
师:从这幅图中你能知道哪些信息?你能提出什么数学问题?
(选择同学们提出的问题:李奶奶家上个月的水费是多少钱?)
(设计意图:这样设计是让学生感受到自己就是学习的主人,同学们探讨自己提出的问题,更能激发学生的学习兴趣。)(1)例5中的已知条件是:
张大妈家:用了()吨水,水费是()。李奶奶家:用了()吨水。所求的问题是:(选择同学们提出的问题:李奶奶家上个月的水费是多少钱?)师:要解决水费的问题,就要知道水的单价和用水量。根据我们的生活经验,水的单价虽然不知道,但它是一定的。(2)李奶奶家上个月的水费是多少钱?想请我们用我们以前学过的方法帮她算一算,你们能帮这个忙吗?(3)学生自己解答,然后交流解答方法。
(学生可以先求出单价,再求总价或先求出用水量的倍数关系再求总价。)
(4)师:像这样的问题也可以用比例的知识来解决。
2、探究解法
师:用比例解决这个问题之前,我们先来思考:(1)这道题中涉及哪两种量?(2)哪种量是一定?(3)水费和用水的吨数成什么比例关系?你是根据什么判断的?
讨论分析:从信息可以知道(每吨水的价钱)一定,所以(水费)和(用水量)成(正)比例。也就是说,两家的(水费)和(用水量)的(比值)相等。(4)根据这样的比例关系,你能列出等量关系式吗? 张大妈家水费:用水吨数 = 李奶奶家水费 :用水吨数(5)如果设李奶奶家上个月的水费是x元,请根据表中相对应的数据和判断列出比例式,然后解答。解:设李奶奶家上个月的水费是X元钱。(板书)28 :8= x :10 8 x=28×10
x=35
答:李奶奶家上个月的水费是35元钱。
3、探究用比例解题的方法 师:你是怎么想的?(根据上面的数据,概括:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。)师:28:8和x:10 分别表示什么?(水费单价)同学们再思考,看看有没有出现其它比例的解法,如果有,教师也要进行评析。
4、检验
师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)
(设计意图:强调解题过程的完整性。)
三、变式练习
师:同学们很了不起,帮李奶奶解决完了问题,能再帮王大爷解决一个问题吗?
课件出示:“王大爷家上个月的水费是42元,他们家上个月用了多少吨水?”(让学生进行变式练习。)教师巡视,个别指导。
四、小结解题步骤:解决了以上几个问题,我们一起来反思一下刚才的学习过程,归纳出用比例解决问题的步骤,好吗?(学生自己用语言叙述)
(1)找题目中两种相关联的量是成正比例还是反比例;(找)
(2)设未知量为x;(设)(3)根据题意列出比例式;(列)(4)解比例;(解)(5)验算,(验)(6)作答。(答)
五、巩固练习:
1、小明买4支圆珠笔用了6元,小刚想买3支同样的圆珠笔,要用多少钱? 提示:你知道哪种量不变吗?你能试着用比例解决吗? 2.只列式不计算:
(1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。
(2)小红8分钟走了500米,照这样的速度,他从家到学校用了14分钟,小红家离学校大约多少米?
3、小兰的身高1.5m,她的影长是2.4m,如果同一时间、同一地点测得一棵树的影子长4m,这棵树有多高? 提示:你知道吗?影长与身高的比是一个定值!试着用比例解决吧!
(设计意图:巩固所学知识,引导学生用比例知识灵活解决生活中的实际问题,体会数学就在自己身边,认识到只有努力学习并掌握解决问题的思想方法,才能去解决生活中的数学问题。)
六、课堂总结
解决了以上几个问题,我们一起来反思一下刚才的学习过程,归纳出用比例解决问题的步骤,好吗?(学生自己用语言叙述)
(1)找题目中两种相关联的量是成正比例还是反比例;(找)
(2)设未知量为x,注意写明计量单位;(设)(3)根据题意列出比例式;(列)(4)解比例;(解)(5)验算,(验)(6)作答。(答)
(设计意图:让学生回顾这一节学习的知识点,梳理归纳,总结用比例解决问题的步骤,体验和感受收获。)
附板书设计: 用比例解决问题
张大妈家水费:用水吨数 = 李奶奶家水费: 用水吨数 解:设李奶奶家上个月的水费是X元。
28:8=X:10
8X=12.8×10 X=35 答:李奶奶家上个月的水费是35元。
第五篇:《用比例解决问题》教学设计
《用比例解决问题》导学案
白冬梅
学习目标:
1、使学生掌握用比例知识解答以前学过的用归
一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。
2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。
3、培养学生良好的解答应用题的习惯。
学习重点:用比例知识解答比较容易的归
一、归总应用题。学习难点:正确分析题中的比例关系,列出方程。学习内容:
如何用比例知识解决问题? 学习过程: 一.铺垫练习
.根据题意用等式表示。
(1)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。
(2)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题
二、探究新知。
1、教学例5(1)学生读题,理解题意。(2)你想用什么方法解决这个问题?(3)独立思考,列式解答(指名板演)(4)交流订正,重点引导学生理解比例方法。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
3、教学例6(1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)
(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?(3)学生独立解答。(4)指名板演,全班交流。
三、课堂达标
1.用等式表示各题中的数量关系。
(1)3小时行180千米,照这样的速度,x小时行300千米。
(2)一批月饼,每盒装8块,可以装24盒。每盒装6块,可以装32盒。2.用比例知识解决应用题(1)60页做一做
(2)500千克的 海水中含盐25千克,120吨的海水含盐多少吨?
(3)一项工程派75人去做,40天可以完成。如果派60人去做,几天可以完成?
(4)修路队3天修150米,照这样速度,再修10天,又修了多少米?
四、课堂小结。
今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?
五、课堂作业。
教科书P62练习九第3、5.6.7题。