第一篇:加减法解二元一次方程组教案和说课稿
8.2.2 加减消元—解二元一次方程组教案
教学目标
1、知识与技能目标:
(1)、会用加减消元法解简单的二元一次方程组。
(2)、理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
2、过程与方法目标:
通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
3、情感态度及价值观:
通过交流学习获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。教学重点、难点:
重点:用加减法解二元一次方程组。
难点: 灵活运用加减消元法的技巧,把“二元”转化为“一元” 教学过程
1、复习
(1)、用代入法解方程的关键是什么?
二元通过消元转化为一元
(2)、解二元一次方程组的基本思路是什么?
消元:二元转化为一元
(3)用代入法解方程的步骤是什么? 主要步骤:
a、变形:用含有一个未知数的代数式表示另一个未知数,写成y=ax+b或x=ay+b b、代入:把变形后的方程代入到另一个方程中,消去一个元 c、求解:分别求出两个未知数的值 d、写解:写出方程组的解
2、新课探究
3x5y5例1:解方程组: 3x4y233x7y9例2:解方程组:
4x7y5
3、总结:
当两个二元一次方程中同一个未知数的系数相反或相等时,把两个方程的两边分别相加
或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。
可用四个字总结:同减异加。
4、练习
用加减法解二元一次方程组。(1)
(2)7x2y39x2y196x5y36xy15
x2y5(3)2xy3
(对于此题,加深学生对知识的掌握,如果遇到类似的方程组,我们要看哪个未知数的系数比较简单,根据等式的性质使这个未知数的系数变相同或相反,然后相加减。)
5、小结
提问:你本节课的收获是什么?
提示:本节课的重点就是学会用加减消元法解二元一次方程组
6、作业
习题8.2 3
7、板书设计
8.2.2加减消元—解二元一次方程组
1、加减消元的概念
3、例题
2、加减消元的步骤
4、练习
8、课后反思:
8.2.2 加减消元—解二元一次方程组说课稿
一、说教材分析
1、教材的地位和作用
二元一次方程组安排在学生已经学过代数式和一元一次方程的知识之后,它是学习三元一次方程组的重要基础,同时也是以后学习函数、平面解析几何等知识以及物理、化学中的运算等不可缺少的工具。
对于学生理解并掌握方程思想、转化思想、消元法等重要的数学思想方法有着重要的意义。
本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
教材的编写目的是通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,体会代数的一些特点和优越性;理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.2、教学目标
通过对新课程标准的的学习,结合我班学生的实际情况,我把本节课的三维教学目标确定如下:
(一)知识与技能目标:
1、会用加减消元法解简单的二元一次方程组。
2、理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:
通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:
通过交流学习获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
3、教学重点、难点:
由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下
重点:用加减法解二元一次方程组。
难点: 灵活运用加减消元法的技巧,把“二元”转化为“一元”
二、说教法与说学法
结合七年级学生的年龄特征和认知特点,在教学中我主要采用讲解加上诱导.英国教育学家斯宾塞说过:“教课应该从具体开始,而以抽象结束。”因此,在教学中,为了让学生在自学阅读课本前,我先让学生做好预习,以便学生在自学时有明确自学探索方向,知道要解决什么问题,然后我明确地告诉学生这节课需要达到的目的。
三、教学方法及手段
在教学中,采用“先学后教,当堂训练”法,使学生在课堂学习中动静分明,养成良好的学习习惯。
四、说教学过程
1、复习
(1)、用代入法解方程的关键是什么?
二元通过消元转化为一元
(2)、解二元一次方程组的基本思路是什么?
消元:二元转化为一元
(3)用代入法解方程的步骤是什么? 主要步骤:
a、变形:用含有一个未知数的代数式表示另一个未知数,写成y=ax+b或x=ay+b b、代入:把变形后的方程代入到另一个方程中,消去一个元 c、求解:分别求出两个未知数的值 d、写解:写出方程组的解
(通过这几个问题既复习前面所学的内容,增加学生的学习兴趣,又为接下来的学习做铺垫。)
2、新课探究
3x5y5例1:解方程组 3x4y23(用代入先解,再提问还有其他的方法吗?然后探究加减法解二元一次方程组,激发学生的探索欲望,然后解决问题)例2:解方程组:
3x7y94x7y5
(进一步探讨例题,更加深刻理解加减消元解二元一次方程。)
3、总结:
当两个二元一次方程中同一个未知数的系数相反或相等时,把两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。可用四个字总结:同减异加。
(对本节课的知识进行归纳概括,让学生将知识巩固升华。)
4、练习
用加减法解二元一次方程组。(1) 7x2y39x2y196x5y3(2)6xy15(通过练习巩固知识。)
5、小结
提问:你本节课的收获是什么?
(对本节课的知识进行归纳概括,让学生将知识巩固升华。)
6、作业
习题8.2 3(完成作业,巩固本节课所学的内容)
第二篇:用加减法解二元一次方程组教案
用加减法解二元一次方程组
裴庄联区 裴庄初中 聂晓萍
一、教学目标
1、知识目标:使学生掌握用加减法解二元一次方程组的步骤,能运用加减法解二元一次方程组
2、能力培养:根据方程的不同特点,进一步体会解二元一次方程组的基本思想——消元;培养学生分析问题、解决问题的能力,训练学生的运算技巧。
3、情感态度与价值观:树立消元的思想,化“二元”为“一元”,体会化归思想。
二、学法引导
观察各未知数前面系数的特征,只要将相同未知数前的系数化为绝对值相等的值后就可以利用加减消元法进行消元,同时在运算过程中注意归纳解题的技巧和解题的方法
三、教学重点、难点
重点:使学生学会用加减法解二元一次方程组
难点:如何用加减法“消元”化“二元”为“一元”
四、教学过程
(一)明确目标
本节课通过复习代入法,从而引入另一种消元的方法——加减法解二元一次方程。
(二)整体感知
加减法解二元一次方程组的关键在于将相同字母的系数化为绝对值相等的值,即可用加减法消元。故在教学中应反复教会学生观察并抓住解题的特征及方法从而方便解题。
(三)教学过程
1、创设情境,复习导入
(1)用代入法解二元一次方程组的基本思想是什么?(2)解下列方程组,并验证所得结果是否正确。
3x5y21 2x5y11学生活动:口答第(1)小题,在学案上完成第(2)题。并让学生展示各种解法。
2、合作探究,交流展示
针对上面不同的解法,思考下面的问题:
(1)上面的几种解法中,哪一种更简单一些?(2)上面的几种解法中,都包含了什么思想? 我们通过刚才的学习,我相信大家都有了自己的认识,那么请同学们自己完成下面的例1 2x5y7例1:解方程组
2x3y1学生活动:独立完成上面题,几个同学板演,交流展示完后,教师点拔:在上面的解方程中,当方程组中的两个方程有一个未知数的系数相等或是互为相反数时,可以把方程的两边分别相减或相加来消去这个未知数,把“二元”化成“一元”,得到一个一元一次方程,进而求得方程组的解,像这种解二元一次方程组的方法,叫做加减消元法,简称“加减法。
如果方程组中没有一个未知数的系数是相等或是互为相反数的,我们应该怎样做?现在我们自己在导学案上完成例2,完成后同桌交流。
2x3y12例2:解方程组
3x4y17教师点拔:能否对方程组中的两个方程进行变形,把这两个方程的某个未知数的系数化为相等或互为相反数,进而求解。几个学生板演,由学生总结用加减法解二元一次方程组的基本步骤,教师在学生总结的基础上完善。
第一步:变形,使某个未知数的系数的绝对值相等
第二步:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程
第三步:解这个一元一次方程 第四步:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解。
3、双基检测
用加减消元法解下列方程组
7x2y36x5y35x6y94s3t
59x2y196xy157x4y52st54、思维拓展
(1)如果5x3m-2n-2yn-m=0是二元一次方程,则m= ,n= xy134(2)解方程组
yx1
325、畅谈收获
在这节课的学习中,你有哪些收获?存在着哪些疑惑?说出来与大家交流、分享。
(四)板书
用加减法解二元一次方程组
3x5y21解方程组 基本思路:消元
2x5y11 一般步骤:
2x5y72x3y12学生板演
2x3y13x4y17
第三篇:《解二元一次方程组》教案
教案格式样例(一节课)
教师 XXX
学科/班级 XXXX 单元(可以不写)
授课日期
课题
消元——二元一次方程组解法
一、教学目标
(一)知识与技能目标
1.能说出二元一次方程、二元一次方程组和二元一次方程组的解的概念; 2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式;
3.会检验一对数值是不是某个二元一次方程组的解。
(二)过程与方法目标
1.提高对实际问题观察、分析、归纳、猜想,养成良好的思维习惯;
2.通过将二元一次方程与二元一次方程(组)有关知识的对比学习,渗透类比的思想方法; 3.通过多个相似例题的练习,提高自身观察、归纳、猜想的能力。
(三)情感与价值观目标
1.解决生活实际问题,感受加减消元法的应用价值,激发学生的学习兴趣。
2.通过对比观察、研究探讨解决问题的方法,培养学生合作交流意识与探究精神。
二、教学重点和难点(教材分析、学情分析)
(一)教材分析:本节的内容就是用几种消元法解二元一次方程组,在此之前已学习了解二元一次方程组的概念和已经学习了二元一次方程组的解的概念,本节是对二元一次方程组的解法的进一步探究。
(二)学情分析:七年级的学生,知识上已经学过了一元一次方程的解法,掌握根据实际问题列出相关的方程和方程组,能力上他们已经具备了一定的探索能力,也初步养成了合作交流的习惯,但独立分析问题的能力和灵活应用的能力还有待提高。
三、准备导入新课(时间:5分钟)
提问同学二元一次方程组的定义。随后叫同学举几个二元一次方程的例子。例1.小亮和小樱练习赛跑。如果小亮让小樱先跑10米,那么小亮跑5秒就追上小莹;如果小亮让小樱先跑4秒,那么小亮跑4秒就追上小樱。问两人每秒各跑多少米? 然后我们设小亮的速度为x,小樱的速度为y,根据题意我们很容易5y5x10得出下面一个方程组
4y4x4x
现在同学们开始从x=1,y=1依次代入上面的式子,看看当x,y分别等于什么的时候这两个方程组成立了,比比哪位同学先找到。大家是不是很快得出x=2,y=1的时候就能够成立了。
2yx10那么同学们肯定会想如果x,y的值太大了还要一个个试吗,比如①
yx53我们该怎么办呢?
所以这就需要我们学习二元一次方程组的解法.四、授新课(教学过程)(时间:20-25分钟)(回忆型提问、理解型提问、运用型提问、分析型提问、评价型提问、综合型提问)
(一)新知识导入
问 1.上面标号为①的二元一次方程组和一元一次方程有什么关系?(是不是可以把其中的一个二元一次方程看做一个一元一次方程)。【运用型提问】 可能的回答:
(1)不知道;可给与提示ⅰ在一元一次方程解法中,列方程时所用的等量关系是什么?ⅱ方程组中方程②所表示的等量关系是什么?ⅲ方程②与③的等量关系相同,那么它们的区别在哪里?(已学的知识点:多项式的变换)。(2)如果假设其中一个为指数是已知的话就变成了一元一次方程;告诉同学假设x=32,让同学来解答。
(3)可以把这个方程组改写成一个一元一次方程;让同学进行演示。讲解:我们不难发现上述的方程组的第一个方程可以改写为x=2y-10,同时第二个方程就可以改写为y+2y-10=53,运用一元一次方程的解法就能够得出y=21,然后把y的值代入得x=2*21-10,得到x=32;这样我们就得到了这个方程的解。
问2 怎样知道你运算的结果是否正确呢?【分析型提问】
引导回忆起一元一次方程的解释怎么检验的.其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算。
归纳:上面的解法,是把二元一次方程组中的一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二
元一次方程组的解,我们把这种方法叫做代入消元法,简称代入法。
例2.用代入法解方程组
x-y3 3x-8y14问3.是把第一个式子代入第二个式子好还是第二个代入第一个式子好呢?为什么?【评价型提问】
让同学们都尝试一下这两个方法,然后叫几个同学回答这个问题。回答最大的可能是把第一个式子代入第二个式子,原因是这样计算比较方便 解得y=-1;
问4;现在把y的值代入那式子比较好? 【评价型提问】答:第一个 例 3 我们知道,可以用代入法解方程组
xy22 2xy40问5:这个方程组的两个方程中,y的系数有什么关系呢?利用这种关系同学们能够发现新的消元方法吗?【分析型提问】
答:y的系数都是1。第2问的回答可能:(1)无法回答;诱导学生用第一个式子减去第二个式,让学生回忆起知识点:相等的两个数减去同样相等的数得到的值依然相等。(2)用第一个式子减去第二个式子;引导学生具体演练。追问:可不可以用第二个减去第一个。
问6:联系上述方法,想一想下面一个方程组该怎么解比较方便。【综合型4x10y3.6提问】
15x10y8归纳:两个二元一次方程中同一未知数的系数相同或相反,把这两个方程的两边分别相加或相减,就能消去未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
问 7 :我们上两个方程组都是凑好的相反数或者相同的系数,那比如说2yx10这个方程能够用消元法解决呢?(探究型提问)yx53
(下次内容)问:有哪位同学来说说加减法消元解方程组的基本步骤是什么,主要的步骤是什么呢?【理解型提问】(1)先观察方程组中的两个未知数是否有相同或相反的未知数,然后选择加减法 ; 追问:那如果遇到系数不同的又要求用加减法解方程组呢?
(ⅰ不知道,则开始讲解解法;ⅱ换算成相同的系数;让学生口述解答过程)(2)
x-y3不知道;让学生坐下,然后举出具体例子,开始讲解(3)先观察方
3x-8y14程组中的两个未知数是否有相同或相反的未知数,有的话直接用,没有的话就转换出相同的系数,在进行计算;让学生口述解答过程。总结:
(二)总结 方案一: 1.问:比较加减法和代入法各有什么特点?
同学的一般无法准确的概括出具体特点,所以举出具体的例子给学生进行判断用哪个方法更合适。
2.练习:请说出下列各方程组应先消哪个元,用哪一种方法简便,为什么?
3.能力提升题
axby2x1时,小张正确的解是,小李由于看错了方程组中的C,得到方cx3y5y2x3程的解为,试求a,b,c的值。
y1
方案二: 1.带领同学一起回顾一下代入消元法的主要思想和一般步骤 主要思想:二元一次方程一元一次方程。代入法的一般步骤:
(1)变形:选择其中一个方程,那他变形为用一个未知数的代数表示另一个未知数的形式;(2)代入求解:把变形后的方程代入到另一个方程中,消元后求出未知数的值;(3)回代求解:把求得值的未知数代入到变形方程中,求出另一个未知数的值;(4)写节:用xa的形式写出方程的解。
yb2、借鉴上述代入法的思想和步骤让同学讨论加减法的主要思想和步骤。主要思想:二元一次方程一元一次方程。
①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式; ②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法); ③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值; ⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
3、布置课后作业。
第四篇:解二元一次方程组教案
解二元一次方程组——代入消元法(1)
教学目标
1、知识与技能目标
(1)会用代入法解二元一次方程组
(2)初步体会解二元一次方程组的基本思想“消元”。
(3)通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想:
(4)通过用代入消元法解二元一次方程组的训练,及选用合理、简捷的方法解方程组,培养学生的运算能力。
2、情感目标:
通过对比观察、研究探讨解决问题的方法,培养学生合作交流意识与探究精神。教学重点、难点
重点:用代入消元法解二元一次方程组。
难点:探索如何用代入消元法将“二元”转化为“一元”的过程。
教学过程
一、旧知复习
问题1:下列方程是二元一次方程吗?
(1)x3y7
(2)2y20(3)2x3
5(4)3xy9
问题2:你能把上面的二元一次方程改写成用x表示y(或用y表示x)的形式吗?
问题3:把(1)(2)两个方程合在一起是二元一次方程组吗?那由(3)(4)组成的呢?
x3y72x35(1){2y20
(2){3xy9
二、情境引入
老师周末和朋友一起去逛街,我们各买了1双相同的鞋,两人一共消费了600元,我的朋友买了鞋之后又去买了2件T恤,此次购物老师的朋友一共花了500元,你能帮老师计算一下鞋和T恤的价格分别是多少吗?
请说一说你的方法 还有不同的办法吗?
三、技能试炼
你有办法求出这两个方程组的解吗?
x3y72x35{(2){3xy9
2y20
这两个方程组你解出来了吗?
谁能给大家说一说解上面两个方程组的方法和思路呢?
四、例题解析:
你能想出办法求出这个方程组吗? xy22{
2x3y60解:由①,得
(1)
(2)
学生自己分析求解,教师规范解题格式
x22y
③
把③代入②,得
2(22y)3y60 解这个方程,得
y16
把y16代入③,得
(提出问题:把y的值带入到①或②中可以求出x的解吗?)
x6 所以这个方程组的解是
{x6y16
在上面求解过程中我们把其中的一个方程经过改写变形带入到另一个方程中去,使的未知数消去一个,把二元一次方程转化成了一元一次方程,我们把这种方法称为“代入消元法”。
例
2、试用代入法解下面的方程组
{2x3y0 3x2y1学生讨论交流,合作完成
归纳:通过例题你能说说用代入法解二元一次方程组的步骤有那些吗?
(1)(改写)在方程组中选一个系数简单的方程,将这个方程中的一个未知数用含另一个未知数的式子表示。(2)(代入)将变形后的式子代入另一个方程,消去一个未知数。
(3)(解方程)解一元一次方程。
(4)(带入求解)代入变形式求出另一个未知数的解。
(5)书写方程组的解。
五、随堂练习用代入法解下列方程组
(1){y32x3x2y8
(2){2x3y92x3y3
六、课时小结
1、怎样使用代入消元法?
2、用代入法解方程组要经历哪些步骤?
六、课后作业习题8.2 1、2
第五篇:《加减法解二元一次方程组》教学反思
本节课是加减法解二元一次方程组的第2课时,是在学习过直接采用加减消元法解二元一次方程组的基础上,来进一步解决较复杂的二元一次方程组的求解问题的。我应用“先学后教,当堂训练”的教学模式,对教学过程精心设计,创设情境,复习设疑,引发兴趣;提出问题,学生讨论,分散难点;自主学习与小组互动、合作学习相结合,培养学生观察能力、合作意识和探索精神;以学生自学、互学为主,把课堂还给了学生,面向全体,促进课堂动态生成,让学生全面发展,课堂教学生命化,取得了良好的课堂效果,得到了教研组听课老师的好评。但其中也有一些不足。
优点:
1、组内帮扶作用发挥的突出。虽然大家都知道加减消元法,但有些同学不太明确怎样变形成可直接加减的形式,而通过组内帮扶,正好能帮助教师分散解决个别问题,从而大大提高了这节课的课堂效率。
2、易错点强调的较好(这是听课教师的评价)。在用减法消元时,学生最容易出错的地方是减数位置是一个整体,应该每一项都变号,所以在学生展示时,我让他写出了减的具体过程,也要求大家本节课做题时也要这么做,这样就减少了错误发生的概率。
不足:
1、课前复习提问不到位。本节课要继续研究加减消元的方法,在课前我只简单的提问了可直接采用加减消元的条件及如何加减消元,但从学生做题的过程来看,学生更容易在对方程的等价变形中出错,即利用方程的简单变形,两边同时乘以同一个数,学生往往忽略等式右边的常数项,不过,这一点我在课堂教学中提醒了一下,所以在以后的备课中我还要更细致些,多从学生的角度出发思考他们的易错点。
2、加减法解二元一次方程组的一般步骤出示时间有点早。我是在学生“先学”环节中引导学生总结得出,课后认为在“后教”环节的“更正”、“讨论”后让学生自己归纳出,更能体现追求以人的发展为本的“生命化课堂”教育新理念。