第一篇:数字图像处理简复习重点介绍
1、数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
2、什么是图像识别与理解?
5、简述图像几何变换与图像变换的区别。
6、图像的数字化包含哪些步骤?简述这些步骤。
7、图像量化时,如果量化级比较小会出现什么现象?为什么?
8、简述二值图像与彩色图像的区别。
9、简述二值图像与灰度图像的区别。
10、简述灰度图像与彩色图像的区别。
11、简述直角坐标系中图像旋转的过程。
13、举例说明使用邻近行插值法进行空穴填充的过程。
14、举例说明使用均值插值法进行空穴填充的过程。
15、均值滤波器对高斯噪声的滤波效果如何?试分析其中的原因。
16、简述均值滤波器对椒盐噪声的滤波原理,并进行效果分析。
17、中值滤波器对椒盐噪声的滤波效果如何?试分析其中的原因。
18、使用中值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象?
19、使用均值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象? 20、写出腐蚀运算的处理过程。
21、写出膨胀运算的处理过程。
22、为什么YUV表色系适用于彩色电视的颜色表示?
23、简述白平衡方法的主要原理。
24、YUV表色系的优点是什么?
25、请简述快速傅里叶变换的原理。
26、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的高通滤波中的应用原理。
27、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的低通滤波中的应用原理。
28、小波变换在图像处理中有着广泛的应用,请简述其在图像的压缩中的应用原理。
29、什么是图像的无损压缩?给出2种无损压缩算法。
2、对于扫描结果:aaaabbbccdeeeeefffffff,若对其进行霍夫曼编码之后的结果是:f=01
e=11
a=10
b=001
c=0001
d=0000。若使用行程编码和霍夫曼编码的混合编码,压缩率是否能够比单纯使用霍夫曼编码有所提高?
31、DCT变换编码的主要思想是什么?
32、简述DCT变换编码的主要过程。
33、什么是一维行程编码?简述其与二维行程编码的主要区别。
34、什么是二维行程编码?简述其与一维行程编码的主要区别。
35、简述一维行程编码和二维行程编码的异同。
36、压缩编码算法很多,为什么还要采用混合压缩编码?请举例说明。
37、对于扫描结果:aaaabbbccdeeeeefffffff,若对其进行霍夫曼编码之后的结果是:f=01
e=11
a=10
b=001
c=0001
d=0000。若使用行程编码和霍夫曼编码的混合编码,压缩率是否能够比单纯使用行程编码有所提高?
38、连续图像和数字图像如何相互转换?
39、采用数字图像处理有何优点?
46、图像处理中正交变换的目的是什么?图像变换主要用于那些方面?
49、离散的沃尔什变换与哈达玛变换之间有那些异同?
50、什么是小波?小波基函数和傅里叶变换基函数有何区别?
51、为何称小波变换为信号的“电子显微镜”,如何实现该功能?
52、傅里叶变换、加窗傅里叶变换和小波变换的时间-频率特性有什么不同?
54、图像增强的目的是什么,它包含那些内容?
55、什么是图像平滑?试述均值滤波的基本原理。
56、什么是中值滤波,有何特点?
58、从哪些方面说明数据压缩的必要性?
59、数据没有冗余度能否压缩?为什么? 60、如何衡量图像编码压缩方法的性能?
61、一图像大小为640×48 0,256 色。用软件工具SEA(version 1、3)将其分别转成24位色BMP,24位色 JPEG,GIF(只能转成256 色)压缩格式,24位色 TI FF压缩格式,24位色TGA压缩格式,得到的文件大小分别为:921,654 字节;17,707 字节;177,152 字节;923,044 字节;768,136 字节。分别计算每种压缩图像的压缩比。62、大部分视频压缩方法是有损压缩还是无损压缩?为什么?
63、若图像上任意两像素点的亮度电平值相等或者任意两时刻同一位置上的像素的亮度电平值相等,能够说明上述两种情况下像素相关吗?为什么?
64、根据 JPEG 算法说明JPEG 图像显示时会出现马赛克现象的原因。65、讨论混合编码的优点。
66、Hu ff ma n 编码有何优缺点?
67、算术编码有何优点?举例说明其适用范围。68、JPEG 为什么要进行彩色空间转换? 69、JPEG 的量化表有何作用? 70、引起图像退化的原因有哪些?
71、盲去卷积方法中,如何选择一个合适的PSF 值?
72、什么是阈值分割技术?该技术适用于什么场景下的图像分割? 73、边缘检测的理论依据是什么?有哪些方法?各有什么特点? 74、基于图像边缘的算子分割技术的理论根据是什么? 75、什么是区域?什么是图像分割?
76、什么是Hough 变换?试述采用Hough 变换检测直线的原理。77、如何表示图像中一点的彩色值?颜色模型起什么作用?
78、色调、色饱和度和亮度的定义是什么?在表征图像一点颜色时,各起什么作用? 79、为什么有时需要将一种颜色数据表示形式转换为另一种形式?如何由RGB数值计算HSV 数值?
80、什么是彩色的减性模型和加性模型?哪一种模型更适合用于显示、图片和打印场合? 81、哪个颜色空间最接近人的视觉系统的特点?
82、为什么在某些场合下要进行彩色量化?彩色图像的量化的依据是什么? 83、抖动技术是如何利用只能显示较少颜色的设备重现含有丰富色彩图像的? 84、讨论假彩色和伪彩色的差异。
85、讨论彩色图像增强与灰度图像增强的关系。86、数学形态学主要包括哪些研究内容? 87、基于数学形态学的图像处理有何特点?
95、简述二值图像、彩色图像、灰度图像的区别。
105、图像中的细节特征大致有哪些?一般细节反映在图像中的什么地方? 106、一阶微分算子与二阶微分算子在提取图像的细节信息时,有什么异同? 107、什么是图像恢复。
108、图像复原和图像增强的主要区别是。116、举例说明直方图均衡化的基本步骤。
117、简述JPEG的压缩过程,并说明压缩的有关步骤中分别减少了哪种冗余? 118、图像锐化滤波的几种方法。
119、伪彩色增强和假彩色增强有何异同点。
120、图像编码基本原理是什么?数字图像的冗余表现有哪几种表现形式? 122、什么是直方图均衡化?
124、什么是中值滤波及其它的原理?
125、图像锐化与图像平滑有何区别与联系?
126、在彩色图像处理中,常使用HSI模型,它适于做图像处理的原因有: 128、图像增强时,平滑和锐化有哪些实现方法? 129、简述直方图均衡化的基本原理。
130、当在白天进入一个黑暗剧场时,在能看清并找到空座位时需要适应一段时间,试述发生这种现象的视觉原理。
131、说明一幅灰度图像的直方图分布与对比度之间的关系 132、对于椒盐噪声,为什么中值滤波效果比均值滤波效果好? 134、什么是图像运算?具体包括哪些? 135、图像都有哪些特征?
136、简述基于边缘检测的霍夫变换的原理。137、假彩色增强和伪彩色增强的区别是什么?
139、阐述数字图像处理与模拟图像处理相比都有哪些优点。140、简述数字图像信息的特点。
143、解释什么是马赫带效应。144、简述人的视觉过程。
145、图像可分为哪几类?并阐述各类图像的特点。
146、图像获取包括哪些步骤?各个步骤又会影响图像质量的哪些参数?
147、举例说明差影法的用处。
148、图像基本运算可以分为哪几类。
149、有哪几种常见的几何变换?
150、图像旋转会引起图像失真吗?为什么?
151、二维傅立叶变换有哪些性质?
152、图像处理中正变换的目的是什么?图像变换主要用于哪些方面。
153、图像增强的目的是什么?它通常包含哪些技术?
154、直接灰度变换增强技术通常包含哪些内容?
1.①图像数字化:将一幅图像以数字的形式表示。主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图 像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进 行分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望 获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2.图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望 获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。比如要从一幅照片上 确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出 来的人脸区域进行分析,确定其是否是该犯罪分子。
5.①图像的几何变换:改变图像的大小或形状。比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。
②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进 行分析。比如傅里叶变换、小波变换等。
6.图像的数字化主要包含采样、量化两个过程。采样是将空域上连续的图像变换成离散采 样点集合,是对空间的离散化。经过采样之后得到的二维离散信号的最小单位是像素。量化 就是把采样点上表示亮暗信息的连续量离散化后,用数值表示出来,是对亮度大小的离散化。经过采样和量化后,数字图像可以用整数阵列的形式来描述。
7.如果量化级数过小,会出现伪轮廓现象。量化过程是将连续变化的颜色划分到有限个级 别中,必然会导致颜色信息损失。当量化级别达到一定数量时,人眼感觉不到颜色信息的丢 失。当量化级数过小时,图像灰度分辨率就会降低,颜色层次就会欠丰富,不同的颜色之间 过度就会变得突然,可能会导致伪轮廓现象。
8.二值图像是指每个像素不是黑,就是白,其灰度值没有中间过渡的图像。这种图像又称 为黑白图像。二值图像的矩阵取值非常简单,每个像素的值要么是1,要么是0,具有数据量小的特点。
彩色图像是根据三原色成像原理来实现对自然界中的色彩描述的。红、绿、蓝这三种基 色的的灰度分别用256级表示,三基色之间不同的灰度组合可以形成不同的颜色。
9.二值图像是指每个像素不是黑,就是白,其灰度值没有中间过渡的图像。这种图像又称 为黑白图像。二值图像的矩阵取值非常简单,每个像素的值要么是1,要么是0,具有数据量
小的特点。
灰度图像是指每个像素的信息由一个量化后的灰度级来描述的数字图像,灰度图像中不 包含彩色信息。标准灰度图像中每个像素的灰度值是0-255之间的一个值,灰度级数为256级。
10.灰度图像是指每个像素的信息由一个量化后的灰度级来描述的数字图像,灰度图像中不 包含彩色信息。标准灰度图像中每个像素的灰度值是0-255之间的一个值,灰度级数为256级。彩色图像是根据三原色成像原理来实现对自然界中的色彩描述的。红、绿、蓝这三种基 色的的灰度分别用256级表示,三基色之间不同的灰度组合可以形成不同的颜色。11.(1)计算旋转后行、列坐标的最大值和最小值。
(2)根据最大值和最小值,进行画布扩大,原则是以最小的面积承载全部的图像信息。
(3)计算行、列坐标的平移量。
(4)利用图像旋转公式计算每个像素点旋转后的位置。
(5)对于空穴问题,进行填充。
13.邻近插值法就是将判断为空穴位置上的像素值用其相邻行(或列)的像素值来填充。
例如对于下图中的空穴点f23进行填充时,使用相邻行的像素值来填充。即:f23=f22.14.均值插值法就是将判断为空穴位置上的像素值用其上、下、左、右像素值的均值来填充。
例如对于下图中的空穴点f23进行填充时,使用相邻行的像素值来填充。
即:f23=(f22+f24+f13+f33)/4.15.均值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其 周围的邻近像素。将模板中的全体像素的均值来替代原来的像素值的方法。
均值滤波器对高斯噪声的滤波结果较好。原因:高斯噪声是幅值近似正态分布,但分布在每点像素上。因为正态分布的均值为0,所以均值滤波可以消除噪声。
16.均值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其 周围的邻近像素。将模板中的全体像素的均值来替代原来的像素值的方法。
均值滤波器对椒盐噪声的滤波结果不好。
原因:椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。因为噪声的均值不为0,所以均值滤波不能很好地去除噪声点。
17.中值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其 周围的邻近像素。取模板中排在中间位置上的像素的灰度值替代待处理像素的值,就可以达 到滤除噪声的目的。
中值滤波器对椒盐噪声的滤波效果较好。
原因:椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。使用中值滤波时,被污染的点一般不处于中值的位置,即选择适当的点来替代污染点的值,所以处理效果好。
18.中值滤波器对椒盐噪声的滤波效果较好,对高斯噪声的处理效果不好。
中值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其 周围的邻近像素。取模板中排在中间位置上的像素的灰度值替代待处理像素的值,就可以达 到滤除噪声的目的。
原因:椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。使用中值滤波时,被污染的点一般不处于中值的位置,即选择适当的点来替代污染点的值,所以处理效果好。高斯噪声是幅值近似正态分布,但分布在每点像素上。找不到干净的点 来替代被污染的点,故处理效果不好。
19.均值滤波器对高斯噪声的滤波结果较好,对椒盐噪声的滤波结果不好。
均值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其 周围的邻近像素。将模板中的全体像素的均值来替代原来的像素值的方法。
原因: 高斯噪声是幅值近似正态分布,但分布在每点像素上。因为正态分布的均值为0,所以均值滤波可以消除噪声。椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有 干净点也有污染点。因为噪声的均值不为0,所以均值滤波不能很好地去除噪声点。20.腐蚀运算的处理过程为:
1)扫描原图,找到第一个像素值为1的目标点;
2)将预先设定好形状以及原点位置的结构元素的原点移到该点;
3)判断该结构元素所覆盖的像素值是否全部为1:
如果是,则腐蚀后图像中的相同位置上的像素值为1;
如果不是,则腐蚀后图像中的相同位置上的像素值为0; 4)重复2)和3),直到所有原图中像素处理完成。21.膨胀运算的处理过程为:
1)扫描原图,找到第一个像素值为0的背景点;
2)将预先设定好形状以及原点位置的结构元素的原点移到该点;
3)判断该结构元素所覆盖的像素值是否存在为1的目标点:
如果是,则膨胀后图像中的相同位置上的像素值为1;
如果不是,则膨胀后图像中的相同位置上的像素值为0; 4)重复2)和3),直到所有原图中像素处理完成。22.YUV表色系适用于彩色电视的颜色表示主要原因有以下3点:(1)YUV表色系具有亮度与色度相分离的特点,黑白电视接收彩色电视节目信号时,只需要将Y、U、V三路信号中的Y信号介入电视机信号即可;(2)YUV表色系具有亮度与色度相分离的特点,彩色电视机接收黑白电视节目信号时,只要将U、V两路信号置为0即可。(3)YUV表色系与RGB表色系的转换运算比较简单,便于实时进行色系之间的转换。
23.白平衡方法的主要原理是:如果原始场景中的某些像素点应该是白色的(R=G=B=255),但是由于所获取的图像中的相应像素点存在色偏,这些点的R,G,B三个分量的值不再保持相同,通过调整这三个颜色分量的值,使之达到平衡,由此获得对整幅图像的彩色平衡影射关系,通过该映射关系对整幅图像进行处理,由此达到彩色平衡的目的。24.YUV表色系的有点体现在以下2个方面:(1)亮度信号与色度信号相互独立,由Y信号构成的灰度图像与用U、V信号构成的两外两幅单色图是相互独立的。可以对这些单色图单独进行编码。(2)YUV表色系与RGB表色系的转换运算比较简单,便于实时进行色系之间的转换。
25.傅里叶变换是复杂的连加运算,计算时间代价很大。快速傅里叶变换的核心思想是,将 原函数分解成一个奇数项和一个偶数项加权和,然后对所分解的奇数项和偶数项再分别分解 成其中的奇数项和偶数项的加权和。这样,通过不断重复两项的加权和来完成原有傅里叶变 换的复杂运算,达到较少计算时间代价的目的。
26.图像经过傅里叶变换后,景物的概貌部分集中在低频区段,景物的细节部分集中在高频 区段,可以通过图像的高通滤波将图像中景物的细节提取出来。具体做法是,将傅里叶变换 得到频谱图的低频部分强制为0,而将高频部分的信息保持不变,就相当于使用一个只保持高频部分信息不变,而低频信息被完全抑制的高通滤波器作用在原始图像上。将经过这样处理后的频谱进行傅里叶逆变换,就可以得到图像的细节部分。
27.图像经过傅里叶变换后,景物的概貌部分集中在低频区段,景物的细节部分集中在高频 区段,可以通过图像的高通滤波将图像中景物的概貌提取出来。具体做法是,将傅里叶变换 得到频谱图的高频部分强制为0,而将低频部分的信息保持不变,就相当于使用一个只保持低频部分信息不变,而高频信息被完全抑制的低通滤波器作用在原始图像上。将经过这样处理后的频谱进行傅里叶逆变换,就可以得到图像的概貌部分。
28.一幅图像经过一次小波变换之后,概貌信息大多集中在低频部分,而其余部分只有微弱 的细节信息。为此,如果只保留占总数据量1/4的低频部分,对其余三个部分的系数不存储或传输,在解压时,这三个子块的系数以0来代替,则就可以省略图像部分细节信息,而画面的效果跟原始图像差别不是很大。这样,就可以得到图像压缩的目的。
29.图像的无损压缩是指压缩后的数据进行重构(或称为还原,或称为解压缩),重构后的 信息与原来的信息完全相同的压缩编码方式。无损压缩用于要求重构的信息与原始信息完全 一致的场合。常用的无损压缩算法包含行程编码、霍夫曼编码等。30.原始扫描结果所占空间为:22*8=176(bits)单纯霍夫曼编码的结果是:*********01010101,共占53(bits)。压缩比为:176:53.Hufman与行程编码混合: ***00511701,共占3+2+3+3+3+4+3+4+3+2+3+2= 35(bits),压缩比为176:35.即压缩比有所提高。
31.DCT变换编码的思想是利用离散余弦变换对数据信息强度的集中特性,可以将数据中视觉上容易察觉的部分与不容易察觉的部分进行分离,由此可以达到进行有损压缩的目的。32.第一步,将图像分成8*8的子块;
第二步,对每个子块进行DCT变换;
第三步,将变换后的系数矩阵进行量化,量化后,得到的矩阵左上角数值较大,右下部 分为0; 第四步,对量化后的矩阵进行Z形扫描,以使得矩阵中为0的元素尽可能多的连在一起;
第五步,对Z扫描结果进行行程编码; 第六步,进行熵编码。
33.一维行程编码是里利用一行上像素的相关性,逐行对图像进行扫描,然后对扫描的结果 进行编码。一维行程编码只考虑了消除行内像素之间的相关性,没有考虑到某种方向之间的 相关性;而二维行程编码是按照一定的扫描路线进行扫描,既可以消除行内像素之间水平方 向的相关性,又可以消除像素垂直方向的相关性。34.二维行程编码是利用图像的二维信息的强相关性,对图像按照一定的扫描路线进行扫描,遍历所有的像素点,获得点点相邻的关系后进行一维行程编码的方法。这样,既可以消除 行内像素之间水平方向的相关性,又可以消除像素垂直方向的相关性。而一维行程编码只考 虑了消除行内像素之间的相关性,没有考虑到某种方向之间的相关性; 35.一维行程编码是里利用一行上像素的相关性,逐行对图像进行扫描,然后对扫描的结果 进行编码。一维行程编码只考虑了消除行内像素之间的相关性,没有考虑到某种方向之间的 相关性。
二维行程编码是利用图像的二维信息的强相关性,对图像按照一定的扫描路线进行扫描,遍历所有的像素点,获得点点相邻的关系后进行一维行程编码的方法。这样,既可以消除 行内像素之间水平方向的相关性,又可以消除像素垂直方向的相关性。
36.压缩编码算法很多,比如行程编码、霍夫曼编码等。每种不同的压缩编码方法具有各自 不同的特点。比如行程编码擅长对多个重复数据连续出现的情况进行编码;霍夫曼编码则可 以有效地将出现频率高、低不同的数据进行编码。如果将不同的编码方式巧妙的结合在一起,则可以达到更高的压缩率,这就是混合压缩编码的思想。37.原始扫描结果所占空间为:22*8=176(bits)单纯行程编码的结果是:4a3b2c1d5e7f,共占6(3+8)=66(bits)。压缩比为:176:66 Hufman与行程编码混合: ***00511701,共占3+2+3+3+3+4+3+4+3+2+3+2=35(bits),压缩比为176:35.即故压缩比有所提高。
38.数字图像将图像看成是许多大小相同、形状一致的像素组成。这样,数字图像可以 用二维矩阵表示。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/ 数字转化器(ADC)得到原始的数字图像信号。图像的数字 化包括离散和量化两个主要步骤。在空间将连续坐标过程称为离散化,而进一步将图像的幅 度值(可能是灰度或色彩)整数化的过程称为量化。
39.数字图像处理与光学等模拟方式相比具有以下鲜明的特点:.具有数字信号处理技术共有的特点。(1)处理精度高。(2)重现性能好。(3)灵活 性高。.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。.数字图像处理技术适用面宽。.数字图像处理技术综合性强。
46.正交变换可以使得图像能量主要集中分布在低频率成分上,边缘和线信息反映在高 频率成分上。因此正交变换广泛应用在图像增强、图像恢复、特征提取、图像编码压缩和形 状分析等方面。
49.哈达玛(Hadamard)变换和沃尔什(Wal sh)变换的变换核都是由1,-1 组成的正交 方阵。它们不同的地方在于变换矩阵的行列排列次序不同。哈达玛变换每行的列率排列是没 有规则的,沃尔什变换的列率是由小到大。
50.小波信号的非零点是有限的。它与傅里叶变换的基函数(三角函数、指数信号)是 不同的,傅里叶变换的基函数从负无穷到正无穷都是等幅振荡的。
51.小波变换的伸缩因子的变化,使得可以在不同尺度上观察信号,所以又称电子显微 镜。实现小波变换可以应用Mall at 的快速算法。52.傅里叶变换使得时间信号变成了频域信号,加窗傅里叶变换使得时间信号变成了时 频信号,但是窗口是固定的,小波变换同样变成了视频信号,但是时频的窗口是变化的。54.图像增强是指对图像的某些特征,如边缘、轮廓、对比度等进行强调或锐化,以 便于显示、观察或进一步分析与处理。
55.为了去除或减弱图像中的噪声,可以对图像进行平滑处理,称为图像平滑。大部分 的噪声都可以看作是随机信号,它们对图像的影响可以看作是孤立的。对于某一像素而言,如果它与周围像素点相比,有明显的不同,我们就认为该点被噪声感染了。基于这样的分析,我们可以用求均值的方法,来判断每一点是否含有噪声,并用适当的方法消除所发现的噪声。56.中值滤波是非线性的处理方法,在去噪的同时可以兼顾到边界信息的保留。
中值滤波首先选一个含有奇数点的窗口W,将这个窗口在图像上扫描,把该窗口中所含的 像素点按灰度级的升(或降)序排列,取位于中间的灰度值,来代替该点的灰度值。58.采用数字技术会使信号处理的性能大为提高,但其数据量的增加也是十分惊人的。图像数据更是多媒体、网络通信等技术重点研究的压缩对象。不加压缩的图像数据是计算机 的处理速度、通信信道的容量等所无法承受的。
这样的数据率是与当前信息存储介质的容量、计算机的总线速度以及网络的传输率不相 匹配的。尽管人们在存储介质、总线结构和网络性能等方面不断有新的突破,但数据量的增 长速度远超过硬件设施的提高水平,以上的矛盾仍然无法缓解。
如果将上述图像信号压缩几倍、十几倍,甚至上百倍,将十分有利于图像的传输和存储。可见,在现有硬件设施条件下,对图像信号本身进行压缩是解决上述矛盾的主要出路。59.图像数据量大,同时冗余数据也是客观存在的。一般图像中存在着以下数据冗余因 素:(1)编码冗余;(2)像素间的相关性形成的冗余;(3)视觉特性和显示设备引起的冗余。
理论上,数据没有冗余度是不压缩的,否则无法解码出原始数据。但在大部分应用场合 下采用有损压缩,数据没有冗余度也可以进行压缩。
60.一般地,图像压缩应能做到压缩比大、算法简单、易于用硬件和软件实现、压缩和 解压缩实时性好、解压缩恢复的图像失真小等。但这些指标对同一压缩方法很难统一,在实 际系统中往往需要抓住主要矛盾,全面权衡。常用的图像压缩技术指标有:(1)图像熵与平均码长;(2)图像冗余度与编码效率;(3)压缩比;(4)客观评价SNR;(5)主观评价。图像的主客观两种评价之间存在着密切的联系。但一般来说,客观评价高的主观评价也高,因此在图像编码的质量评价时,首先作客观评价,以主观评价为参考。
61.不计算较小的文件头和彩色查找表(LTU)的数据量,原始图像的数据量为:
640×4 8 0× 1 byt e=3 07,200 byt e。
经转换后各种格式的压缩比如下:
24位色 BMP格式:
307,20 0/ 921,654= 0.333(增加了冗余度)
24位色 JPEG 格式:07 , 20 0/ 17 ,707 =17.3 5
GIF 压缩格式:
307,20 0/ 177,152= 1.73
24位色 TIFF压缩格式: 307,20 0/ 923,044= 0.333(增加了冗余度)
24位色 TGA压缩格式: 307,20 0/ 768,136= 0.400(增加了冗余度)
62.视频比静态图像数据量更大,同时可压缩的冗余信息更多。大部分视频压缩方法是 以人眼感觉无明显失真为依据的,因此采用有损压缩。事实上,视频可以看成是一幅幅不同 但相关的静态图像的时间序列。因此,静态图像的压缩技术和标准可以直接应用于视频的单 帧图像。另外,利用视频帧间信息的冗余可以大大提高视频的压缩比。
63.不能。像素的空间相关性和时间相关性是以空间和时间的相邻性为基础的。因此,图像上任意两像素点的亮度电平值相等或者任意两时刻同一位置上的像素的亮度电平值相 等带有偶然性,不能说明两像素相关。
64.由于JPEG 算法将整幅图像分成若干个8×8 的子块,解码也是以子块为单位的,所 以块间的解码误差可能反映为方块效应,在视觉上会出现马赛克现象。
65.混合编码一般指将预测编码与变换编码相结合进行编码的方法。预测编码根据相邻 像素相关性来确定后继像素的预测值,若用差值进行编码则可以压缩数据量;变换编码对原 始图像进行正交变换,在变换域进行抽样达到压缩的目的;混合编码将两种编码方法结合起 来,可以发挥两种编码方法的优点,取得更好的效果。
66.Hu ff ma n 编码在无失真的编码方法中效率优于其他编码方法,是一种最佳变长码,其平均码长接近于熵值。但当信源数据成分复杂时,庞大的信源集致使Huff ma n 码表较大,码表生成的计算量增加,编译码速度相应变慢;另外不等长编码致使硬件译码电路实现困难。上述原因致使Huff ma n 编码的实际应用受到限制。
67.在信源符号概率接近的条件下,算术编码效率高于Huff ma n 编码。因此,在扩展 的JPEG 系统中用算术编码取代了Huff ma n 编码。另外,算术编码除了常见的基于概率统计的模式外,还有自适应模式。在这种模式下,各个符号的初始概率相同,它们依据出现的符号而发生变化。这种模式特别适用于不便于进行符号概率统计的实际场合中。68.JPEG 算法处理的是单独的彩色分量图像,所以来自其他彩色空间的图像数据要以
JPEG格式保存,需要进行彩色空间的转换,如将RGB空间、YCRCB空间或转换为YUV空间等。
69.量化的目的是为了压缩数据,同时也是图像质量下降的主要原因。所以设计合理的 量化器十分重要。在保证图像质量的前提下,为了获得较高的压缩比,JPEG 量化器利用人 眼的空间视觉特性,相对于高频成分对低频成分采用较小的量化间隔和较少的比特数。又根 据人眼对亮度信号比色度信号敏感的原理,对图像的亮度分量和图像的色差分量使用不同的 量化表——亮度量化表和色差量化表。量化表的元素即为量化间隔。对于CCIR 601标准电 视图像,JPEG 标准提供了最佳的亮度和色度量化表。根据不同的应用需要,用户还可以设 计或选择其他的量化表。
70.造成图像退化的原因很多,大致可分为以下几个方面:
(1)射线辐射、大气湍流等造成的照片畸变。
(2)模拟图像数字化的过程中,由于会损失部分细节,造成图像质量下降。
(3)镜头聚焦不准产生的散焦模糊。
(4)成像系统中始终存在的噪声干扰。
(5)拍摄时,相机与景物之间的相对运动产生的运动模糊。
(6)底片感光、图像显示时会造成记录显示失真。
(7)成像系统的像差、非线性畸变、有限带宽等造成的图像失真。
(8)
携带遥感仪器的飞行器运动的不稳定,以及地球自转等因素引起的照片几何失真。71.对具有加性噪声的模糊图像作盲图像复原的方法一般有两种:直接测量法和间接估 计法。MATLAB 提供了DECONVBLI ND 函数进行盲图像复原。该函数采用最大似然算法 对模糊图像进行去卷积处理,返回去模糊的图像和相应的点扩散函数PSF。
72.可用一个灰度级阈值T 进行分割,分割出目标区域与背景区域,这种方法我们称 为灰度阈值分割方法。通常用于图像中目标和背景具有不同的灰度集合:目标灰度集合与背 景灰度集合。
73.边缘检测这是基于幅度不连续性进行的分割方法。通常采用差分、梯度、拉普拉斯 算子及各种高通滤波处理方法对图像进行边缘检测。
74.通过差分、梯度、拉普拉斯算子及各种高通滤波处理方法对图像边缘进行增强,然 后再进行一次门限化的处理,便可以将边缘增强的方法用于边缘检测,最后根据边缘来进行 图像分割。
75.区域可以认为是图像中具有相互连通、一致属性的像素集合,图像分割就是指把图 像分成互不重叠的区域并提取出感兴趣目标的技术。
76.霍夫变换的基本思想是点-线的对偶性。图像变换前在图像空间,变换后在参数空 间。在图像空间中的直线上的每一个点都会映射到参数空间中的相同参数,所以只要找到这 个参数就可以找到图像空间中的直线。Hough 变换就是根据这个原理检测直线的。77.图像中一点的彩色值颜色三维空间中的一个点来表示,每个点有三个分量,不同的 颜色空间各分量的含义不同。
颜色模型规定了颜色的建立、描述和观察方式。颜色模型都是建立在三维空间中的,所 以与颜色空间密不可分。78.HSV 模型由色度(H),饱和度(S),亮度(V)三个分量组成的,与人的视觉特 性比较接近。HSV 颜色模型用Muns ell三维空间坐标系统表示。
色调(H)表示颜色的种类,用角度来标定,用-180~180或0 0~360度量。
色饱和度(S)表示颜色的深浅,在径向方向上的用离开中心线的距离表示。用百分比 来度量,从0%到完全饱和的100%。
亮度(V)表示颜色的明亮程度,用垂直轴表示。也通常用百分比度量,从0%(黑)到100%(白)。
79.实际应用中常用的颜色空间很多,有RGB、HSV、HSI、YUV、YIQ 等。目前常
用的颜色空间可分为两类,一类是面向硬设备的,比方说彩色显示器、打印机等,另一类面 向以彩色处理为目的的应用,面向硬设备的最常用的颜色空间是RGB颜色空间,而面向颜 色处理的最常用颜色空间是HSI 颜色空间以及HSV 颜色空间。针对不同的应用目的采用不 同的彩色空间可能更合适,因此,有时需要将一种颜色数据表示形式转换为另一种形式。80.由三基色混配各种颜色通常有两种方法:相加混色法和相减混色法。相加混色和相 减混色的主要区别表现在以下三个方面:
(1)相加混色是由发光体发出的光相加而产生的各种颜色,而相减混色是先有白色光,然后从中减去某些成份(吸收)得到各种颜色。
(2)相加混色的三基色是红、绿、蓝,而相减混色的三基色是黄、青、品红。也就是
16说,相加混色的补色就是相减混色的基色。
(3)相加混色和相减混色有不同的规律。
彩色电视机显示的颜色是通过相加混色产生的。而彩色电影和幻灯片等与绘画原料、打 印机打印图片等是通过相减混色产生各种颜色的。
81.在许多实用系统中,大量应用的是HSV 模型,这个模型是由色度(H),饱和度(S),亮度(V)三个分量组成的,与人的视觉特性比较接近。该模型的重要性在于:一方面消除 了亮度成分V 在图像中与颜色信息的联系,另一方面色调H 和饱和度S 分量与人的视觉感 受密切相关。基于人的视觉系统的颜色感觉特性,这些特征使HSV 模型成为一个研究图像 处理的重要工具。
82.彩色空间的连续空间。如果对连续空间进行适当的量化后再计算,则计算量要少得 多。如在实际处理中,需要将HSV 三个分量进行量化以减少特征值的数量。
83.抖动法是一种利用仅能重现较少颜色种类的设备来显示含有丰富色彩图像的有效的 方法。产生抖动图像可以有多种方式,但是基本原理都是一样的:采用能直接显示其色彩的 像素模式来替换那些其色彩不能直接显示的像素。抖动技术利用了空间混色原理——人的肉 眼能将两种不同颜色的相邻像素融合成第三种颜色。
84.假彩色处理的对象是三基色描绘的自然图像或同一景物的多光谱图像。对自然图像,假彩色的处理方法之一是将人们所关注的目标物映射为与原色不同的假彩色,即原有的彩色 图像变换成给定彩色分布的图像。而伪彩色增强是将灰度或单一波段的图像变换为彩色图 像,从而把人眼不能区分的微小的灰度差别显示为明显的色彩差异,更便于解译和提取有用 信息。彩色图像中的彩色根据黑白图像的灰度级或其他图像特征(如空间频率成分)人为给 定。
85.在真彩色增强中,尽管对R、G、B各分量(相当于三个灰度图像)直接使用对灰度 图的增强方法可以增加图像中可视细节亮度,但得到的增强图像中的色调有可能完全没有意 义。这是因为在增强图中对应同一个像素的R、G、B这三个分量都发生了变化,它们的相对数值与原来不同了,从而导致原图像颜色的较大变化,且这种变化很难控制。灰度图像增强技术有助于研究彩色图像增强技术,但彩色图像增强特别需要注意增强后图像的色调和色饱和度的满意度。
86.数学态学图像处理的基本思想是利用结构元素作为“探针”在图像中不断移动,在 此过程中收集图像的信息、分析图像各部分间的相互关系,从而了解图像的结构特征。结构 元素的选择十分重要,根据探测研究图像的不同结构特点,结构元素可携带形态、大小、灰 度、色度等信息。不同点的集合形成具有不同性质的结构元素。由于不同的结构元素可以用 来检测图像不同侧面的特征,因此设计符合人的视觉特性的结构元素是分析图像的重要步 骤。用形态学算子及其组合来进行图像形状和结构的分析及处理,可以解决抑制噪声、特征 提取、边缘检测、形状识别、纹理分析、图像恢复与重建等方面的问题。87.利用数学形态学进行图像处理有其独有的一些特性:
(1)它反映的是一幅图像中像素点间的逻辑关系,而不是简单的数值关系。
(2)它是一种非线性的图像处理方法,并且具有不可逆性。
(3)它可以并行实现。
(4)它可以用来描述和定义图像的各种集合参数和特征。
95.二值图像是指每个像素不是黑,就是白,其灰度值没有中间过渡的图像。这种图像又称为黑白图像。二值图像的矩阵取值非常简单,每个像素的值要么是1,要么是0,具有数据量小的特点。
彩色图像是根据三原色成像原理来实现对自然界中的色彩描述的。红、绿、蓝这三种基色的的灰度分别用256级表示,三基色之间不同的灰度组合可以形成不同的颜色。
灰度图像是指每个像素的信息由一个量化后的灰度级来描述的数字图像,灰度图像中不包含彩色信息。标准灰度图像中每个像素的灰度值是0-255之间的一个值,灰度级数为256级。
105.图像的细节是指画面中的灰度变化情况,包含了图像的孤立点、细线、画面突变等。孤立点大都是图像的噪声点,画面突变一般体现在目标物的边缘灰度部分。
106.一阶微分算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映的边界比较清晰;二阶微分算子获得的边界是比较细致的边界。反映的边界信息包括了许多的细节信息,但是所反映的边界不是太清晰。
107.图像恢复,是一种使退化了的图像去除退化因素,并以最大保真度恢复成原来图像的技术。
108.图像增强主要是一个主观过程,而图像复原主要是一个客观过程;图像增强不考虑图像是何退化的, 而图像复原需知道图像退化的机制和过程等先验知识。
116.直方图均衡化是通过灰度变换将一幅图象转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。
直方图均衡化变换:设灰度变换s=f(r)为斜率有限的非减连续可微函数,它将输入图象Ii(x,y)转换为输出图象Io(x,y),输入图象的直方图为Hi(r),输出图象的直方图为Ho(s),则根据直方图的含义,经过灰度变换后对应的小面积元相等:Ho(s)ds=Hi(r)dr 直方图修正的例子
假设有一幅图像,共有6 4(6 4个象素,8个灰度级,进行直方图均衡化处理。根据公式可得:
s2=0.19+0.25+0.2l=0.65,s3=0.19+0.25+0.2l+0.16=0.8l,s4=0.89,s5=0.95,s6=0.98,s7=1.00 由于这里只取8个等间距的灰度级,变换后的s值也只能选择最靠近的一个灰度级的值。因此,根据上述计算值可近似地选取:
S0≈1/7,s 1≈3/7,s2≈5/7,s3≈6/7,s4≈6/7,s5≈1,s6≈l,s7≈1。
可见,新图像将只有5个不同的灰度等级,于是我们可以重新定义其符号:
S0’=l/7,s1’=3/7,s2’=5/7,s3’=6/7,s4’=l。因为由rO=0经变换映射到sO=1/7,所以有n0=790个象素取sO这个灰度值;由rl=3/7映射到sl=3/7,所以有1 02 3个象素取s 1这一灰度值;依次类推,有850个象素取s2=5/7这一灰度值;由于r3和r4均映射到s3=6/7这一灰度值,所以有656+329=98 5个象素都取这一灰度值;同理,有245+1 22+81=448个象素都取s4=1这一灰度值。上述值除以n=4096,便可以得到新的直方图。
117.分块->颜色空间转换->零偏置转换->DCT变换->量化->符号编码。颜色空间转换,减少了心理视觉冗余;零偏置转换,减少了编码冗余;量化减少了心理视觉冗余;符号编码由于是霍夫曼编码加行程编码,因此即减少了编码冗余(霍夫曼编码)又减少了像素冗余(行程编码)。
JPEG2000的过程:图像分片、直流电平(DC)位移,分量变换,离散小波变换、量化,熵编码。
118.(1)直接以梯度值代替;(2)辅以门限判断;(3)给边缘规定一个特定的灰度级;(4)给背景规定灰度级;(5)根据梯度二值化图像。
119.伪彩色增强是对一幅灰度图像经过三种变换得到三幅图像,进行彩色合成得到一幅彩色图像;
假彩色增强则是对一幅彩色图像进行处理得到与原图象不同的彩色图像;主要差异在于处理对象不同。相同点是利用人眼对彩色的分辨能力高于灰度分辨能力的特点,将目标用人眼敏感的颜色表示。
120.虽然表示图像需要大量的数据,但图像数据是高度相关的,或者说存在冗余(Redundancy)信息,去掉这些冗余信息后可以有效压缩图像,同时又不会损害图像的有效信息。数字图像的冗余主要表现为以下几种形式:空间冗余、时间冗余、视觉冗余、信息熵冗余、结构冗余和知识冗余。
122.将原图象的直方图通过变换函数修正为均匀的直方图,然后按均衡直方图修正原图象。图象均衡化处理后,图象的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图象看起来就更清晰了。
124.中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值。
中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。
125.区别:图像锐化是用于增强边缘,导致高频分量增强,会使图像清晰;图像平滑用于消除图像噪声,但是也容易引起边缘的模糊。联系:都属于图像增强,改善图像效果。126.1、在HIS 模型中亮度分量与色度分量是分开的;
2、色调与饱和度的概念与人的感知联系紧密。
128.平滑的实现方法:邻域平均法,中值滤波,多图像平均法,频域低通滤波法。锐化的实现方法:微分法,高通滤波法。
129.直方图均衡化方法的基本思想是,对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减。从而达到清晰图像的目的。因为灰度分布可在直方图中描述,所以该图像增强方法是基于图像的灰度直方图。
130.人的视觉绝对不能同时在整个亮度适应范围工作,它是利用改变其亮度适应级来完成亮度适应的。即所谓的亮度适应范围。同整个亮度适应范围相比,能同时鉴别的光强度级的总范围很小。因此,白天进入黑暗剧场时,人的视觉系统需要改变亮度适应级,因此,需要适应一段时间,亮度适应级才能被改变。
131.直方图的峰值集中在低端,则图象较暗,反之,图象较亮。直方图的峰值集中在某个区域,图象昏暗,而图象中物体和背景差别很大的图象,其直方图具有双峰特性,总之直方图分布越均匀,图像对比度越好。
132.椒盐噪声是复制近似相等但随机分布在不同的位置上,图像中又干净点也有污染点。中值滤波是选择适当的点来代替污染点的值,所以处理效果好。因为噪声的均值不为0,所以均值滤波不能很好地去除噪声。
134.图像的运算是指以像素点的幅度值为运算单元的图像运算。这种运算包括点运算、代数运算和几何运算。
135.①幅度特征。在所有的图像特征中最基本的是图像的幅度特征。可以在某一像素点或其邻域内作出幅度的测量,可以直接从图像像素的灰度值,或从某些线性、非线性变换后构成新的图像幅度的空间来求得各式各样的图像的幅度特征图。②直方图特征。一幅数字图像可以看作是一个二维随机过程的一个样本,可以用联合概率分布来描述。通过对图像的各像素幅度值可以设法估计出图像的概率分布,从而形成图像的直方图特征。③变换系数特征。由于图像的二维变换得出的系数反映了二维变换后图像在频率域的分布情况,因此常常用二维的傅里叶变换作为一种图像特征的提取方法。④点和线条的特征。图像中点的特征含义是,其幅度与其邻区的幅度有显著的不同;图像中线条的特征意味着它在截面上的幅度分布出现凹凸状,也就是说在线段的法向上幅度有明显的起伏。⑤灰度边沿特征。图像的灰度、纹 理的改变或不连续是图像的重要特征,它可以指示图像内各种物体的实际情况。⑥纹理特征。纹理可以分为人工纹理和自然纹理。人工纹理是由自然背景上的符号排列组成,这些符号可以是线条、点、字母、数字等。自然纹理是具有重复性排列现象的自然景象。
136.把直线上点的坐标变换到过点的直线的系数域,通过利用共线和直线相交的关系,使直线的提取问题转化为计数问题。
137.假彩色增强是将一幅彩色图像映射到另一幅彩色图像,从而达到增强彩色对比,使某些图像达到更加醒目的目的。伪彩色增强是把一幅黑白域不同灰度级映射为一幅彩色图像的技术手段。
139:数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化,所以数字图像处理具有很好的再现性。
数字图像处理的主要优点是:精度高、再现性好、通用性、灵活性强。
140:数字图像是物体的一个数字表示,是以数字格式存放的图像,它是目前社会生活中最常见的一种信息媒体,它传递着物理世界事务状态的信息,是人类获取外界信息的主要途径。143:是指视觉的主观感受在亮度有变化的地方出现虚幻的明亮或黑暗的条纹。
马赫带效应的出现是人类的视觉系统造成的。生理学对马赫带效应的解释是:人类的视觉系统有增强边缘对比度的机制。
144:视觉是人类的重要功能。视觉过程是一个非常复杂的过程。主要有三个:光学过程、化学过程和神经处理过程。
当人眼接收光刺激时,首先是条件反射,由视网膜神经进行处理。随后图像信号通过视觉通道反映到大脑皮层,大脑皮层做出相应的处理:存储图像、信息处理、特征提取,决策和描述。最终做出反应。
145: 图像有许多种分类方法,按照图像的动态特性,可以分为静止图像和运动图像;按照图像的色彩,可以分为灰度图像和彩色图像;按照图像的维数,可分为二维图像、三维图像和多维图像。
二值图像:只有黑白两种颜色。
亮度图像:像素灰度级用8bit表示,介于黑色和白色之间的256中灰度中的一种。索引图像:颜色是预先定义好的,有256种彩色,通过索引来表示,每个像素占8bit。RGB图像:真彩色图像,每一个像素由红、绿和蓝三个字节组合而成。可产生1670万种不同的颜色。
146:图像的获取即图像的数字化过程,包括扫描、采样和量化。
图像的采样:将空间上连续的图像变换成离散点的操作称为采样。一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差。
图像的量化:经采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理。将像素灰度转换成离散的整数值的过程叫量化。量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。147:将同一景物在不同时间拍摄的图像或同一景物在不同波段的图像相减,这就是差影法。
差值图像提供了图像间的差值信息,能用于指导动态监测、运动目标的检测和跟踪、图像背景的消除及目标识别等。
148:点运算、代数运算、逻辑运算和几何运算。149:图像的位置变换(平移、镜像、旋转)、形状变换(放大、缩小)及图像的复合变换等。
150:会的。因为图像旋转以后,会出现空白点,有些信息丢失,需要对这些点进行灰度级的插值处理。
151:可分离性、平移性质、周期性和共轭对称性、旋转性质、分配率、尺度变换等。152:是根据图像在变换域的某些性质对其进行处理。
用于在频域进行图像分析、图像增强及图像压缩等工作。
153:是采用某种技术手段,感受图像的视觉效果,或将图像转换成更适合人眼观察和机器分析、识别的形式,以便从图像中获取更有用的信息。
空间域增强技术:点处理,模板处理即邻域处理。频率域增强技术:高、低通滤波、同态滤波等。
154:直接灰度变换属于点处理技术,关键是设计合适的映射函数。包含的技术有:灰度线性变换、分段线性变换、反转变换、对数变换、幂次变换、灰度切分。
155.高斯平滑滤波:高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。若使用理想滤波器,会在图像中产生振铃现象。采用高斯滤波器的话,系统函数是平滑的,避免了振铃现象。
第二篇:《数字图像处理》
实验五 图像的几何变换
一.实验目的及要求
掌握图像几何变换的基本原理,熟练掌握数字图像的缩放、旋转、平移、镜像和转置的基本原理及其MATLAB编程实现方法。
二、实验内容
(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。
1.图像缩放 clear all, close all I = imread('cameraman.tif');Scale = 1.35;
% 将图像放大1.35倍
J1 = imresize(I, Scale, 'nearest');
% using the nearest neighbor interpolation J2 = imresize(I, Scale, 'bilinear');
% using the bilinear interpolation imshow(I), title('Original Image');figure, imshow(J1), title('Resized Image--using the nearest neighbor interpolation ');figure, imshow(J2), title('Resized Image--using the bilinear interpolation ');help imresize
% 查看imresize使用帮助
1.95倍
I = imread('cameraman.tif');Scale = 1.96;
% 将图像放大1.96倍
J1 = imresize(I, Scale, 'nearest');
% using the nearest neighbor interpolation J2 = imresize(I, Scale, 'bilinear');
% using the bilinear interpolation imshow(I), title('Original Image');figure, imshow(J1), title('Resized Image--using the nearest neighbor interpolation ');figure, imshow(J2), title('Resized Image--using the bilinear interpolation ');
说明:
注意观察不同插值方法的图像表现; 改变图像缩放因子Scale,重做上述实验。2.图像旋转
clear all, close all I = imread('cameraman.tif');Theta = 45;
% 将图像逆时针旋转45。
J1 = imrotate(I, Theta, 'nearest');
% using the nearest neighbor interpolation Theta =-45;
% 将图像顺时针旋转45。
J2 = imrotate(I, Theta, 'bilinear', 'crop');% using bilinear interpolation and crops the output image imshow(I), title('Original Image');figure, imshow(J1), title('Rotated Image--using the nearest neighbor interpolation ');figure, imshow(J2), title(' Rotated Image--using the bilinear interpolation ');% 查看imrotate使用帮助 help imrotate %-------
图像旋转30顺时针逆时针
clear all, close all I = imread('cameraman.tif');Theta = 30;
% 将图像逆时针旋转30。
J1 = imrotate(I, Theta, 'nearest');
% using the nearest neighbor interpolation Theta =-30;
% 将图像顺时针旋转30。
J2 = imrotate(I, Theta, 'bilinear', 'crop');% using bilinear interpolation and crops the output image imshow(I), title('Original Image');figure, imshow(J1), title('Rotated Image--using the nearest neighbor interpolation ');figure, imshow(J2), title(' Rotated Image--using the bilinear interpolation ');7 说明:
注意观察不同插值方法和输出图像后处理方法的图像表现; 改变旋转角度大小和方向,重做上述实验。
3.图像水平镜象
clear all, close all I = imread('cameraman.tif');I1 = flipdim(I,2);
I2 = flipdim(I,1);figure(1), subplot(1,2,1), imshow(I);subplot(1,2,2), imshow(I1);figure(2), subplot(2,1,1), imshow(I);subplot(2,1,2), imshow(I2);%----
(二)用MATLAB编程实现以下图像几何变换(参考自编讲义相关章节)
1.图像扭曲变换 2.球面变换
三、实验设备
1.PIII以上微机; 2.MATLAB6.5;
四、预习与思考
1.预习实验内容,阅读教材熟悉实验原理;
2.查阅资料,熟悉实验中涉及的有关MATLAB函数;
3.利用课余时间,采用MATLAB底层函数编程实现实验内容
(二)中的图像平移、图像转置等几何变换。
五、实验报告要求
1.简述试验的目的和试验原理;
2.叙述各段程序功能,改变有关函数的参数,分析比较实验结果; 3.打印出所编写的实验程序。4.写出本实验的心得体会及意见。
实验六
数字图像处理应用
一.实验目的及要求
1.利用MATLAB提供的图像处理函数实现图像中物体属性的测量; 2.训练综合运用MATLAB图像处理函数的能力; 3.了解数字图像处理基本应用。
二、实验内容
以大米粒特性测量为例,综合应用课程中图像分割、形态学滤波、图像增强、图像特征提取等图像处理方法,实现大米粒特性自动测量。实验过程简述:
1. 读取和显示图像 2. 估计图像背景 3. 获取背景均匀的图像 4. 图像增强 5. 图像二值化分割 6. 区域标记及为彩色处理
7. 测量图像中的区域特性(面积、质心等)
8.统计大米粒的特性分布规律。
(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结 果。熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。
% Read and Display an Image clear, close all,close all;I = imread('rice.png');
figure, imshow(I)
% Use Morphological Opening to Estimate the Background
background = imopen(I,strel('disk',15));
figure, imshow(background);
%Display the Background Approximation as a Surface
figure, surf(double(background(1:8:end,1:8:end))),zlim([0 255]);set(gca,'ydir','reverse');% Subtract the Background Image from the Original Image I2 = imsubtract(I,background);figure, imshow(I2)% Adjust the Image Contrast I3 = imadjust(I2, stretchlim(I2), [0 1]);figure, imshow(I3);% Apply Thresholding to the Image level = graythresh(I3);bw = im2bw(I3,level);figure, imshow(bw)% Determine the Number of Objects in the Image [labeled,numObjects] = bwlabel(bw,4);
% Label components.numObjects % Examine the Label Matrix RGB_label = label2rgb(labeled, @spring, 'c', 'shuffle');figure, imshow(RGB_label);% Measure Object Properties in the Image graindata = regionprops(labeled,'basic')allgrains = [graindata.Area];% Compute Statistical Properties of Objects in the Image max(allgrains);biggrain = find(allgrains==695)mean(allgrains);figure, hist(allgrains,20);12
(详见MATLAB IPT的 帮助文档demo中的Correcting Nonuniform Illumination)
(二)查看MATLAB IPT 帮助文档,研究其它应用演示
三、实验设备 1.PIII以上微机; 2.MATLAB6.5;
四、预习与思考
1.预习实验内容,阅读教材熟悉实验原理; 2.查阅资料,熟悉实验中涉及的有关函数。
3.利用课余时间,采用MATLAB函数编程实现实验内容
(二)。
五、实验报告要求
1.简述试验的目的和试验原理;
2.叙述各段程序功能,改变有关函数的参数,分析比较实验结果; 3.打印出所编写的实验程序。4.写出本实验的心得体会及意见。
第三篇:数字图像处理
中南大学
数字图像处理实验 实验名称:空间滤波和频域滤波
班级:电子信息0802班
姓名:李哲 学号:0909080609 实验日期:2010年12月22日
目录
一,实验目的„„„„„„„„„„„„„„„„„„„„„„„3 二,给图像添加噪声„„„„„„„„„„„„„„„„„„„„4 三,对被噪声污染的图像进行中值滤波和均值滤波„„„„„„„5 四,对图像进行空间域的锐化„„„„„„„„„„„„„„„„6 五,MATLAB以外函数空间滤波和图像锐化„„„„„„„„„„7 六,自带函数傅立叶变换和反变换„„„„„„„„„„„„„„8 七,低通滤波器程序„„„„„„„„„„„„„„„„„„„„9 八,心得体会 „„„„„„„„„„„„„„„„„„„„„„10 九,参考文献 „„„„„„„„„„„„„„„„„„„„„„10
一、实验目的 1,空间滤波:
图像平滑主要目的是减少噪声。噪声有很多种类,不同的噪声有不同的抑制措施。本实验要求用平滑线性滤波和中值滤波2种最典型、最常用的处理算法进行程序设计,学习如何对已被噪声污染的图像进行“净化”。通过平滑处理,对结果图像加以比较,得出自己的实验结论。学习如何用锐化处理技术来加强图像的目标边界和图像细节,对图像进行梯度算子、拉普拉斯算子,使图像的某些特征(如边缘、轮廓等)得以进一步的增强及突出。本实验锐化处理主要在空间域中进行 2,频域滤波:
掌握傅里叶变换的基本性质; 掌握傅里叶正变换和反变换; 通过实验了解二维频谱的分布特点; 掌握怎样利用傅立叶变换进行频域滤波
利用MATLAB程序数字图像的傅立叶变换并且进行频域滤波
二,给图像添加椒盐噪声或者高斯噪声: 原理:利用MATLAB自带函数添加噪声 程序代码:A=imread('onion.png');I=rgb2gray(A);imshow(I);J = imnoise(I,'salt & pepper',0.05);figure,imshow(J),title('椒盐噪声');%添加椒盐噪声 K = imnoise(I,'gaussian',0,0.03);
figure,imshow(K),title('高斯噪声');%添加高斯噪声
三,对被噪声污染的图像进行中值滤波和均值滤波: 原理:自带函数进行中值滤波和均值滤波 源程序:A=imread('onion.png');I=rgb2gray(A);J = imnoise(I,'salt & pepper',0.05);k2=medfilt2(J,[5 5]);k3=medfilt2(J,[7 7]);imshow(J),title('原图');figure,imshow(k2),title('中值滤波5*5模板');figure,imshow(k3),title('中值滤波7*7模板');
四,对图像进行空间域的锐化: 原理:自带函数进行空间锐化。源程序:I=imread('coins.png');subplot(121),imshow(I),title('原图像');H=fspecial('sobel');I2=filter2(H ,I);subplot(122),imshow(I2),title('sobel算子锐化图像');
五,MATLAB以外函数空间滤波和图像锐化:
源程序:I = imread('eight.tif');J = imnoise(I,'salt & pepper',0.02);K = medfilt2(J);imshow(J);title('噪声干扰图像')figure, imshow(K);title('medfilt2滤波图像')X=J;a=2;b=2;k=floor(a*b/2)+1;[M,N]=size(X);uint8 Y=zeros(M,N);funBox=zeros(a,b);temp=zeros(a*b);
for i=1:M-a
for j=1:N-b
funBox=X(i:i+a,j:j+b);
temp=funBox(:);
tempSort=sort(temp);
Y(i,j)=tempSort(k);
end;end;figure, imshow(Y);title('滤波图像')
六,利用Matlab的图像处理工具箱中提供的函数实现图像的傅立叶变换和反变换: 源程序:
A=imread('onion.png');f=rgb2gray(A);subplot(131),imshow(f),title('原图');F=fft2(f);% 快速傅立叶变换
subplot(132),imshow(F),title('傅里叶变换')Fabs=abs(F);% 求幅频绝对值 Fc=fftshift(Fabs);% 中心移位 SFc=log(1+Fc);% 对数变换
iFc1=ifftshift(Fc);% 中心移位的逆变换,绝对值 iF2=ifft2(iFc1);% 快速傅立叶变换的逆变换
subplot(133),imshow(iF2),title('快速傅立叶变换的逆变换')
七,低通滤波器程序:
I=imread('testpat1.png');subplot(221),imshow(I);title('原始图像')J1=imnoise(I,'gaussian',0.02);% 叠加高斯白噪声
subplot(222),imshow(J1);title('添加高斯白噪声的图像')f=double(J1);
% 数据类型转换 g=fft2(f);
% 傅立叶变换 g=fftshift(g);
[M,N]=size(g);nn=2;
% 二阶巴特沃斯(Butterworth)低通滤波器 d0=50;
% 设置截止频率 m=fix(M/2);n=fix(N/2);for i=1:M for j=1:N
d=sqrt((i-m)^2+(j-n)^2);
h=1/(1+0.414*(d/d0)^(2*nn));% 计算低通滤波器传递函数
result(i,j)=h*g(i,j);end end result=ifftshift(result);J2=ifft2(result);J3=uint8(real(J2));subplot(223),imshow(J3);title('低通滤波后图像')
心得体会
1,进一步熟悉了Matlab软件、编程以及图像处理工具箱 2,学会利用自带函数对图像做简单的处理,例如:均值化等。3,熟练了一些基本函数的运用,例如fspecial,imfilter等。4,加深了对MATLAB编程的理解。
5,对于试验中的出现的一些问题,懂得怎样去处理。6,通过实际操作,增强了自己的动手能力,把理论用于实践。
参考文献:数字图像处理第二版
MATLAB教程
第四篇:《数字图像处理》期末考试重点总结
*数字图像处理的主要内容及特点
图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。
(1)处理精度高,再现性好。(2)易于控制处理效果。(3)处理的多样性。(4)图像数据量庞大。(5)图像处理技术综合性强。*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。图像增强不存在通用理论。
图像增强的方法:空间域方法和变换域方法。*图像反转:S=L-1-r 1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。
*对数变换 S=C*log(1+r)c为常数,r>=0 作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。
对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;
*幂律(伽马)变换 s=c*(r+ɛ)ɤ
伽马小于1时减小图像对比度,伽马大于1时增大对比度。
*灰度直方图 :是数字图像中各灰度级与其出现的频数间的统计关系。*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。
直方图均衡化变换函数必须为严格单调递增函数。直方图均衡化的特点:
1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制
*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法
*空间滤波即直接对图像像素进行处理。
获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。
*平滑滤波器用于模糊处理和减小噪声。
平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。
优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。负面效应:模糊了图像的边缘,因为边缘也是由图像灰度的尖锐变化造成的。空间均值处理的重要应用是,为了对感兴趣的物体得到一个粗略的描述而模糊一幅图像。
*中值滤波器机理:将像素邻域内灰度的中值代替该像素的值; 对于处理脉冲噪声非常有效,该种噪声也称为椒盐噪声; *量化:把采样点上对应的亮度连续变化区间转换为单个特定数码的过程,称之为量化,即采样点亮度的离散化。
*灰度图像:指每个像素的信息由一个量化的灰度级来描述的图像,它只有亮度信息,没有颜色信息。*图像锐化滤波的几种方法。
答:(1)直接以梯度值代替;(2)辅以门限判断;(3)给边缘规定一个特定的灰度级;(4)给背景规定灰度级;(5)根据梯度二值化图像。*伪彩色增强和假彩色增强有何异同点。
答:伪彩色增强是对一幅灰度图像经过三种变换得到三幅图像,进行彩色合成得到一幅彩色图像;假彩色增强则是对一幅彩色图像进行处理得到与原图象不同的彩色图像;主要差异在于处理对象不同。相同点是利用人眼对彩色的分辨能力高于灰度分辨能力的特点,将目标用人眼敏感的颜色表示。
*图像编码基本原理是什么?数字图像的冗余表现有哪几种表现形式?
答:虽然表示图像需要大量的数据,但图像数据是高度相关的,或者说存在冗余(Redundancy)信息,去掉这些冗余信息后可以有效压缩图像,同时又不会损害图像的有效信息。
数字图像的冗余主要表现为以下几种形式:空间冗余、时间冗余、视觉冗余、信息熵冗余、结构冗余和知识冗余。*什么是中值滤波,有何特点?
答:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。特点:它是一种非线性的图像平滑法,它对脉冲干扰级椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。*图像增强的目的是什么?
答:对图像进行加工,使其结果比原始图像更适用于特定应用。“特定”一词表明图像增强技术是面向问题的。*图像锐化与图像平滑有何区别与联系?
答:区别:图像锐化是用于增强边缘,导致高频分量增强,会使图像清晰;图像平滑用于消除图像噪声,但是也容易引起边缘的模糊。联系:都属于图像增强,改善图像效果。*图像复原和图像增强的主要区别是:
图像增强主要是一个主观过程,而图像复原主要是一个客观过程;图像增强不考虑图像是如何退化的,而图像复原需知道图像退化的机制和过程等先验知识
*图像增强时,平滑和锐化有哪些实现方法?
平滑的实现方法:邻域平均法,中值滤波,多图像平均法,频域低通滤波法。
锐化的实现方法:微分法,高通滤波法。
*对于椒盐噪声,为什么中值滤波效果比均值滤波效果好? 椒盐噪声是复制近似相等但随机分布在不同的位置上,图像中又干净点也有污染点。中值滤波是选择适当的点来代替污染点的值,所以处理效果好。因为噪声的均值不为0,所以均值滤波不能很好地去除噪声。
*什么是区域?什么是图像分割?
区域可以认为是图像中具有相互连通、一致属性的像素集合。图像分割时把图像分成互不重叠的区域并提取出感兴趣目标的技术。*图像中微分算子的特点
1.一阶微分产生较粗的边缘,二阶微分产生的边缘则较细; 2.对于孤立的噪声点,在该点及其周围点上,二阶微分比一阶微分的响应要强很多;3.二阶微分有一个过渡,即从正回到负,在图像中,表现为双线。
*二维图像函数f(x,y)的拉普拉斯变换定义为:
锐化图像= 原图像+ 拉普拉斯图像
*对于数字图像处理而言,离散傅里叶变换和其反变换必定存在。
用(-1)x+y乘以f(x,y),可以将F(u,v)原点变换到频率坐标的(M/2,N/2)处。在决定形状特点时,相位信息非常重要。
*理想滤波器的在频域的剖面图类似于盒滤波器(矩形窗口),因此相应的空间滤波具有sinc函数的形状。
sinc函数的中心波瓣(主瓣)是引起模糊的主因,而外侧较小的波瓣(旁瓣)是造成振铃的主要原因。*巴特沃斯低通滤波器(BLPF)
1阶的巴特沃斯滤波器没有振铃; 2阶的滤波器振铃通常很微小;
20阶的巴特沃斯滤波器就非常类似于理想低通滤波器了。*高斯低通滤波器(GLPF)
高斯低通滤波器没有振铃
在需要严格控制低频和高频之间截止频率过渡的情况下,巴特沃斯滤波器是个更合适的选择,但其代价是可能产生振铃现象。
*图像变换:将定义在图像空间的原图像,以某种形式转换到另外一些空间,并利用这些空间的特有性质方便进行一定的加工。离散余弦变换主要用于图像的压缩,压缩方法是给高频系数大间隔量化,低频部分小间隔量化。
*图像复原技术的主要目的是以预先确定的目标来改善图像,尽可能的减少或消除图像质量的下降,恢复被退化图像的本来面目。图像退化的部分原因:1.光学成像器件的相差;2.成像衍射;3.成像过程的非线性系统噪声。*图像退化/复原模型
图像复原处理的关键是建立退化模型,原图像f(x,y)是通过一个系统H及加入一来加性噪声n(x,y)而退化成一幅图像g(x ,y)
g(x,y)=H[f(x,y)]+n(x,y)*谐波均值滤波器对于盐粒噪声效果较好,但不适用于胡椒噪声。它善于处理高斯噪声那样的其他噪声。*逆谐波均值滤波器
当值为正时,可消除胡椒噪声; 当值为负时,可消除盐粒噪声; 当值为0时,其简化为算术均值滤波器。*中值滤波器
对于某些类型的随机噪声,中值滤波器可提供良好的去噪能力,且比同尺寸的线性平滑滤波器引起的模糊更少
在存在单极和双极脉冲噪声的情况下,中值滤波器尤其有效。*简述基于边缘检测的霍夫变换的原理。
把直线上点的坐标变换到过点的直线的系数域,通过利用共线和直线相交的关系,使直线的提取问题转化为计数问题。*数字图像的定义,什么是数字图象处理?
数字图像是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。
数字图像处理,就是利用计算机技术或其他数字技术,对图像信息进行某些数学运算和各种加工处理,以改善图像的视觉效果和提高图像实用性的技术。
*图像分割就是指把图像分成互不重叠的区域并提取出感兴趣目标的技术和过程。
*在计算数字梯度的实践中,Prewitt算子和Sobel算子是最常用的。*高斯拉普拉斯(LoG)
*阈值分割方法总结
优点:简单、高效。局限性:对于目标和背景灰度级有明显差别的图像分割效果较好。对于目标和背景灰度一致性或均匀性较差的图像分割效果不好。只能将图像分割为两个区域,对于含有多个目标的图像分割几乎难以奏效。
*对于彩色图像,通常用以区别颜色的特性是 色调、饱和度、亮度。
*一个基本的数字图像处理系统由图像输入、图像存储、图像输出、图像通信、图像处理和分析5个模块组成。
*低通滤波法是使 高频成分 受到抑制而让 低频成分 顺利通过,从而实现图像平滑。
*多年来建立了许多纹理分析法,这些方法大体可分为 统计分析法 和结构分析法两大类。*图像压缩系统是有 编码器 和 解码器 两个截然不同的结构块组成的。
*图像数字化过程包括三个步骤:采样、量化和扫描
*数据压缩技术应用了数据固有的冗余性和不相干性,将一个大的数据文件转换成较小的文件。
*基本的形态学运算是腐蚀和膨胀。先腐蚀后膨胀的过程为开运算,先膨胀后腐蚀的过程为闭运算。
*灰度分辨率是指在灰度级别中可分辨的最小变化。
空间分辨率是图像中可分辨的最小细节。
*因为图像分割的结果图像为二值图像,所以通常又称图像分割为图像的(二值化处理)。
*(腐蚀)是一种消除连通域的边界点,使边界向内收缩的处理。*(膨胀)是将与目标区域的背景点合并到该目标物中,使目标物边界向外部扩张的处理。
*对于(椒盐)噪声,中值滤波效果比均值滤波效果好。
*常用的彩色增强方法有真彩色增强技术、假彩色增强技术和 伪彩色 增强三种。
*常用的灰度内插法有 最近邻元法、双线性内插法 和(双)三次内插法。
*假彩色增强和伪彩色增强的区别是什么? 假彩色增强是将一幅彩色图像映射到另一幅彩色图像,从而达到增强彩色对比,使某些图像达到更加醒目的目的。伪彩色增强是把一幅黑白域不同灰度级映射为一幅彩色图像的技术手段。
*图像编码基本原理是什么?数字图像的冗余表现有哪几种表现形式?
虽然表示图像需要大量的数据,但图像数据是高度相关的,或者说存在冗余(Redundancy)信息,去掉这些冗余信息后可以有效压缩图像,同时又不会损害图像的有效信息。数字图像的冗余主要表现为以下几种形式:空间冗余、时间冗余、视觉冗余、信息熵冗余、结构冗余和知识冗余。
第五篇:数字图像处理读书笔记
数字图像处理读书笔记
本学期的数字图像处理课程已经进行了3周了,通过这3周的学习让我对数字图像处理有了一定的认知和理解。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。这门课程的前三章主要讲解了数字图像的目的、特点、应用和发展,图像的数字化显示与图像变换。
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。
一般来讲,对图像进行处理(或加工、分析)的主要目的有三个方面:(1)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。(2)提取图像中所包含的某些特征或特殊信息,这些被提取的特征或信息
往往为计算机分析图像提供便利。提取特征或信息的过程是模式识别或计算机视觉的预处理。提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。(3)图像数据的变换、编码和压缩,以便于图像的存储和传输。不管是何种目的的图像处理,都需要由计算机和图像专用设备组成的图像处理系统对图像数据进行输入、加工和输出。数字图像处理有以下几点基本特点:(1)目前,数字图像处理的信息大多是二维信息,处理信息量很大。如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。因此对计算机的计算速度、存储容量等要求较高。(2)数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要求。(3)数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。因此,图像处理中信息压缩的潜力很大。(4)由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。(5)数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大。由于人的视觉系统很复杂,受环境条件、视觉性能、人的情绪爱好以及知识状况影响很大,作为图像质量的评价还有待进一步深入的研究。另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究。例如,什么是感知的初始基元,基元是如何组成的,局部与全局感知的关系,优先敏感的结构、属性和时间特征等,这些都是心理学和神经心理学正在着力研究的课题。
在数字图像处理中图像的数字化显示是基础。将模拟图像转化成数字图像的过程就是图形、图像的数字化过程。这个过程主要包含采样、量化和编码三个步骤。
1.采样 采样的实质就是要用多少点来描述一幅图像,采样结果质量的高低就是用前面所说的图像分辨率来衡量。简单来讲,对二维空间上连续的图像在水平和垂直方向上等间距地分割成矩形网状结构,所形成的微小方格称为像素点。一副图像就被采样成有限个像素点构成的集合。采样频率是指一秒钟内采样的次数,它反映了采样点之间的间隔大小。采样频率越高,得到的图像样本越逼真,图像的质量越高,但要求的存储量也越大。在进行采样时,采样点间隔大小的选取很重要,它决定了采样后的图像能真实地反映原图像的程度。一般来说,原图像中的画面越复杂,色彩越丰富,则采样间隔应越小。
由于二维图像的采样是一维的推广,根据信号的采样定理,要从取样样本中精确地复原图像,可得到图像采样的奈奎斯特(Nyquist)定理:图像采样的频率必须大于或等于源图像最高频率分量的两倍。
2.量化 量化是指要使用多大范围的数值来表示图像采样之后的每一个点。量化的结果是图像能够容纳的颜色总数,它反映了采样的质量。例如:如果以4位存储一个点,就表示图像只能有16种颜色;若采用16位存储一个点,则有216=65536种颜色。所以,量化位数越来越大,表示图像可以拥有更多的颜色,自然可以产生更为细致的图像效果。但是,也会占用更大的存储空间。两者的基本问题都是视觉效果和存储空间的取舍。假设有一幅黑白灰度的照片,因为它在水平于垂直方向上的灰度变化都是连续的,都可认为有无数个像素,而且任一点上灰度的取值都是从黑到白可以有无限个可能值。通过沿水平和垂直方向的等间隔采样可将这幅模拟图像分解为近似的有限个像素,每个像素的取值代表该像素的灰度(亮度)。对灰度进行量化,使其取值变为有限个可能值。经过这样采样和量化得到的一幅空间上表现为离散分布的有限个像素,灰度取值上表现为有限个离散的可能值的图像称为数字图像。只要水平和垂直方向采样点数足够多,量化比特数足够大,数字图像的质量就比原始模拟图像毫不逊色。在量化时所确定的离散取值个数称为量化级数。为表示量化的色彩值(或亮度值)所需的二进制位数称为量化字长,一般可用8位、16位、24位或更高的量化字长来表示图像的颜色;量化字长越大,则越能真实第反映原有的图像的颜色,但得到的数字图像的容量也越大。
3.压缩编码数字化后得到的图像数据量十分巨大,必须采用编码技术来压缩其信息量。在一定意义上讲,编码压缩技术是实现图像传输与储存的关键。
数学里的变换,指一个图形(或表达式)到另一个图形(或表达式)的演变。图象变换是函数的一种作图方法。已知一个函数的图象,通过某种或多种连续方式变换,得到另一个与之相关的函数的图象,这样的作图方法叫做图象变换。
在图像变换中傅立叶变换就是应用最广泛的一种变换。数字图像经二维离散傅立叶变换后,其空间域处理可变换为变换域处理,它具有很多明显的优点,最突出的是算法运算次数将大大减少,并可采用二维数字滤波技术进行所需要的各种图像处理。
二位离散余弦变换其去相关性近似于K-L(Karhunen-Loeve)最佳变换,算法复杂度适中,易于硬件实现,且具有抗干扰能力强等优点,因此,DCT及IDCT被广泛应用于H.261、H.263、H.264、JPEG、MPEG等视频压缩标准中。
小波分解可以覆盖整个频域(提供了一个数学上完备的描述);小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性; 小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口);小波变换实现上有快速算法(Mallat小波分解算法)。小波变换是一种信号的时间——尺度分析方法,他具有多分辨率分析的特点,而且在时频两域都具有表征信号
局部特征的能力,是一种窗口大小固定不变但其形状可变,时间窗和频率窗都可变的时频局部化分析方法。即再低频部分具有较高的频率分辨率和时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜。
小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的时间一频率窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引起人们的重视,其应用领域来越来越广泛。