第一篇:模电实验报告要求
实验二 晶体管共射极单管放大器 要求:完成实验内容1、2、3、4、5 实验报告要求:讨论静态工作点变化对放大器输出波形的影响;分析讨论在调试过程中出现的问题,总结实验的心得体会。
实验三 负反馈放大器
要求:完成实验内容1、2.(1)实验报告要求:根据实验结果,总结电压串联负反馈对放大器性能的影响。
实验四 射极跟随器
要求:完成实验内容1、2、3、4、5 实验报告要求:整理实验数据,并画出曲线UL=f(Ui);分析射极跟随器的性能和特点。
实验五 差动放大器
要求:完成实验内容1、2 实验报告要求:整理实验数据,比较静态工作点和差模电压放大倍数的实验结果和理论估算值;比较差动放大电路单端输出时CMRR的实测值与具有恒流源的差动放大器CMRR实测值;根据实验结果,总结电阻RE和恒流源的作用。
实验六 集成运算放大器的基本应用 要求:完成实验内容1、2、3、4 实验报告要求:整理实验数据,画出波形图(注意波形间的相位关系);将理论计算结果和实测数据相比较,分析产生误差的原因。
实验七 低频功率放大器─ OTL 功率放大器 要求:完成实验内容1、2.(1)实验报告要求:整理实验数据,计算静态工作点、最大不失真输出功率Pom等,并与理论值进行比较。
第二篇:模电实验报告(范文模版)
模拟电子技术
实验报告
学院:电子信息工程学院 专业: 姓名: 学号: 指导教师:
2017年】实验题目:放大电路的失真研究
【
目录
一、实验目的与知识背景..................................................................3 1.1实验目的.......................................................................................3 1.2知识背景.......................................................................................3
二、实验内容及要求..........................................................................3 2.1基本要求.......................................................................................3 2.2发挥部分.......................................................................................4
三、实验方案比较及论证..................................................................5 3.1理论分析电路的失真产生及消除................................................5 3.2具体电路设计及仿真....................................................................8
四、电路制作及测试........................................................................12 4.1正常放大、截止失真、饱和失真及双向失真...........................12 4.2交越失真.....................................................................................13 4.3非对称失真.................................................................................13
五、失真研究思考题........................................................................13
六、感想与体会...............................................................................16 6.1小组分工.....................................................................................16 6.2收获与体会.................................................................................16 6.3对课程的建议.............................................................................17
七、参考文献...................................................................................17
一、实验目的与知识背景
1.1实验目的
1.掌握失真放大电路的设计和解决电路的失真问题——针对工程问题,收集信息、查阅文献、分析现有技术的特点与局限性。提高系统地构思问题和解决问题的能力。
2.掌握消除放大电路各种失真技术——依据解决方案,实现系统或模块,在设计实现环节上体现创造性。系统地归纳模拟电子技术中失真现象。
3.具备通过现象分析电路结构特点——对设计系统进行功能和性能测试,进行必要的方案改进,提高改善电路的能力。
1.2知识背景
1.输出波形失真可发生在基本放大、功率放大和负反馈放大等放大电路中,输出波形失真有截止失真、饱和失真、双向失真、交越失真,以及输出产生的谐波失真和不对称失真等。
2.基本放大电路的研究、乙类功率放大器、负反馈消除不对称失真以及集成运放的研究与应用。
3.射极偏置电路、乙类、甲乙类功率放大电路和负反馈电路。
二、实验内容及要求
2.1基本要求
1.输入一标准正弦波,频率2kHz,幅度50mV,输出正弦波频率2kHz,幅度1V。
2.a.输出以下各种类型的波形:(1)标准正弦波
(2)顶部、底部、双向失真(3)交越失真 b.设计电路并改进。
c.讨论产生失真的机理,阐述解决问题的办法。2.2发挥部分
a.输出不对称失真的波形。b.设计电路并改进。
c.讨论产生失真的机理,阐述解决问题的办法。
三、实验方案比较及论证
3.1理论分析电路的失真产生及消除
a.正常放大、截止失真、饱和失真及双向失真
(1)饱和失真
产生原因:静态工作点过高
如图3-1-1,当静态工作点太高时,放大器能对输入的负半周信号实施正常的放大,而当输入信号为正半周时,因太大了,使三极管进入饱和区,ic=βib的关系将不成立,输出电流将不随输入电流而变化,输出电压也不随输入信号而变化,产生输出波形的失真。这种失真是因工作点取的太高,输入正半周信号时,三极管进入饱和区而产生的失真,所以称为饱和失真。
(2)截止失真
产生原因:静态工作点过低
如图3-1-1所示为工作点太低的情况,由图可见,当工作点太低时,放大器能对输入的正半周信号实施正常的放大,而当输入信号为负半周时,因将小于三极管的开启电压,三极管将进入截止区,ib=0,ic=0,输出电压u0=uCE=Vcc将不随输入信号而变化,产生输出波形的失真。
(3)双向失真
产生原因:输入信号过大、电路放大倍数太大、直流偏置太小。
工作点偏高,输出波形易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。此时静态工作点合适,但输入波形的幅度超过了直流的最大幅度,当输出信号过大时可能会出现饱和失真与截止失真一块儿出现的失真现象,称之为双向失真。
消除方法:
顶部或底部失真:调节电位器,变化静态工作点; 双向失真:适当减小输入电压
b.交越失真
产生原因:
交越失真是乙类推挽放大器所特
有的失真。在推挽放大器中,由两只晶体管分别在输入信号的正、负半周导通,对正、负半周信号进行放大。而乙类放大器的特点是不给晶体管建立静态偏置,使其导通的时间恰好为信号的半个周期。但是,由于晶体管的输入特性曲线在Ube较小时是弯曲的,晶体管基本上不导通,即存在死区电压V r。当输入信号电压小于死区电压时,两只晶体管基本上都不导通。这样,当输入信号为正弦波时,输出信号将不再是正弦波,即产生了失真。这种失真是由于两只晶体管在交替工 克服交越失真:
作时“交接”不好而产生的,称为交越失真。
为了克服交越失真的影响,可以通过改进电路的方法来实现。采用甲乙类双电源互补对称电路法和甲乙类单电源互补对称电路。甲乙类互补对称法电路原理如下图1所示。由图1可见,T3组成前置放大级,T1和T2组成互补输出级。静态时,在D1,D2上产生的压降为T1,T2提供了一个适当的偏压,使之处于微导通状态。由于电路的对称,静态时 icl=ic2,iL=0,vo=0。有信号时,由于电路工作在甲乙类,即使Vi很小,基本上也可以进行线性放大。但是图1的缺点就是其偏置电压不易调整,改进电路如图2所示,在图2中流人T4的基极电流远小于流过R1、R2的电流,则由图可以求出Vce=VBE∙(R1+R2)/R2,因此,利用T4管的VBE基本为一固定值,只要调整R1、R2的比值,就可以改变T1、T2的偏压值。
图1图2
c.非对称失真
输出
产生原因:
不对称失真也是推挽放大器所特有的失真。它是由于推挽管特性不对称,而使输入信号的正、负半周不对称。
消除办法:
加入负反馈,利用失真减小失真。
3.2具体电路设计及仿真
a.正常放大、截止失真、饱和失真及双向失真
(1)仿真电路
VCCR3500kΩKey=A12VR215kΩC2+50 %XSC1_+AC1XFG110µFR115kΩQ110µFR5100kΩR41kΩ+Ext Trig2N2222A__B(2)仿真波形
静态工作点居中时,输出正常波形;适当调节滑动变阻器使得阻值变大,出现顶部失真;适当调节滑动变阻器使得阻值变小,出现底部失真。输入:
输出:
正常正弦波形 双向失真
顶部失真 底部失真
b.交越失真
(1)仿真电路
VCC12VR110kΩ+Ext Trig+_A_+B_XSC1XFG1Q1S1键 = A D11N40012N2222D21N4001Q4R215kΩR310kΩ2N4403VEE-12V(2)仿真波形 输入:
输出:
交越失真 改善后波形
c.非对称失真
(1)仿真电路
(2)仿真波形 输入:
输出:
不对称失真波形 改善后波形
四、电路制作及测试
4.1正常放大、截止失真、饱和失真及双向失真
顶部失真(截止失真)双向失真
底部失真(饱和失真)正常放大 4.2交越失真
交越失真 消除交越失真
4.3非对称失真
非对称失真 减小非对称失真 实验得,非对称失真时,失真率为:(2.26-1.87)/4.13=9.44% 引入负反馈之后,失真率为:(240-238)/478=0.42% 故可见,引入反馈后,失真得到明显改善。
五、失真研究思考题
1、NPN型组成的共射放大电路和PNP型组成的共射放大电路在截止和饱和失真方面的不同。
答:NPN型:顶部失真属于截止失真,底部失真属于饱和失真。
PNP型:顶部失真属于饱和失真,底部失真属于截止失真。
2、共基放大电路、共集放大电路与共射放大电路在截止和饱和失真方面的不同。答:共射电路及共集电路都既有饱和失真又有截止失真:截止失真是因为三极管直流工作点过低产生的失真,而饱和失真为直流工作点过高产生的失真。
共基电路有饱和失真,无截止失真,因为共基电路的解法不用考虑三极管的截止电压,故不存在截止失真。
3、改变下图射极偏置电路电路哪些参数可解决上述失真。
答:解决饱和失真:通过调大Rb1或调小Rb2,使得Rb2分压减小,Ube减小,则发射极电流减小,直流工作点降低,饱和失真得到解决。
解决截止失真:通过调小Rb1或调大Rb2,使得Rb2分压增大,Ube增大,则发射极电流增大,直流工作点升高,截止失真得到解决。
解决双向失真:调整直流工作点使其位于中间位置或减小输入信号。
4、双电源供电的功率放大器改成单电源供电会出现哪种失真? 如何使单电源供电的功率放大器不失真?
答:单电源供电影响了输入输出电压范围,进而限制了电路的动态范围,导致信号失真。解决单电源供电失真的办法为给回路中串联一个储能电容。
5、造成单级放大电路失真的器件有哪些?Re的作用是什么?
答:造成单级放大电路失真的器件有基极电阻、直流偏置电压电源等;Re是电路的负反馈电阻,能够稳定放大电路的直流工作点。
6、负反馈可解决波形失真,解决的是哪类失真?
答:负反馈能在一定程度上抑制管子的非线性失真,但不对反馈环外的失真起作用。非线性失真包括交越失真、不对称失真等。
7、消除交越失真为什么要用二极管?
答:二极管静态时需要导通,所以产生两个0.7V的压降(硅管),而这两个压降刚好为T1与T2提供两个适当的偏置电压,使T1和T2处于微导通状态,这样就克服了因门限电压产生的交越失真。
8、放大电路加入负载后会出现失真吗?为什么?
答:会。因为负载电阻越大,放大倍数就越高,输出的信号幅度也就越大,越容易进入饱和或截止区,越容易失真。
9、如何测量放大电路的输入电阻、输出电阻和通频带。
答:测量输入电阻:分别测量出电路的输入端电压Ui和输入端的电流Ii,则输入电阻Ri=ui/Ii,这个输入电阻可能是动态的,不同的电压下可能不相同。
测量输出电阻:分别接入不同的输出负载R1和R2,分别测量出电路的输出端电压Uo1、Uo2,则由于输出电流I1和I2分别等于I1=Uo1/R1、I2=Uo2/R2,输出电动势E=I1×Ro+Uo1=I2×Ro+Uo2,所以得到方程:Uo1/R1×Ro+Uo1=Uo2/R2×Ro+Uo2。则解出输出电阻:Ro=(Uo2+Uo1)×(R1+R2)/(Uo1×R2-Uo2×R1)
测量通频带:
幅频特性及通频带的测试能使用仪器的条件下通常用扫频法:利用扫频仪直接在屏幕上显示出放大器的输出信号幅度随频率变化的曲线,即Au-f曲线。在屏幕显示的幅频特性曲线上测出通频带BW。
10、用场效应管组成的放大电路或运算放大器同样会产生所研究的失真吗? 答:不一定。
11、当温度升高,晶体管组成的电路刚刚产生静态工作点漂移,使电路产生某种失真,此时由场效应管组成的电路也同样失真吗?为什么?
答:场效应管不会形成波形失真,但放大倍数同样会因为温度的变化发生变化。三极管的温度漂移是由于温度上升时,静态工作点向上漂移,形成饱和失真。而场效应管不同,随着温度的上升,静态工作点不会上移反而会下移,饱和失真不可能形成。另一方面,温度的上升会导致场效应管的门限电压进一步下降,因此原电路的一定能保持场效应管处于打开状态,因此也不会产生截止失真。综上所述,虽然温度漂移会对场效应管放大电路的静态工作点和放大倍数造成影响,但场效应管本身的特性决定了温度的升高并不会引起失真。
12、归纳失真现象,并阐述解决失真的技术。答:失真现象归纳见3.1 解决失真的核心技术:调节直流工作点使其合适、利用二极管抬高电平、引入负反馈。
六、感想与体会
6.1小组分工
本人在该实验中负责基本部分和发挥部分的板子焊接制作,以及参与板子的测试。
6.2收获与体会
这门基于模拟电子技术的实践课虽然时间很短,但是收获颇丰,我觉得相比于理论知识的钻研,更重要的是锻炼了实践动手能力,提升了自己分析解决问题的能力。
将近七周的时间里,我们小组完成了关于非线性失真的电路设计及焊接,对于放大电路饱和、截止、双向、不对称等非线性失真的电路结构、产生原因及失真现象的改善有了相当的认识,同时对于晶体管的型号、引脚等参数特性也有了一定的认识。
这之外的收获是,真正通过不断地实验、不断地检查纠错,拥有了不断查找板子无法调试出波形甚至三极管冒烟烧坏的错误原因。一方面是初次接触,不懂得三极管的放置也是有规律的;另一方面,焊接过程中容易犯低级错误,比如最后一个发挥部分,焊好了电路之后检查了三遍,调试了两边出现的都是乱波,冷静下来仔细分析结果,猜想应该还是焊接出错了。果不其然,再次检查发现输入引脚根本没有接入电路。所以通过这样的教训,我们也意识到平时不应该只关注理论知识的学习,还需要培养锻炼我们的实践能力、动手操作能力。
6.3对课程的建议
建议发挥部分可以多给出几个参考题目。另外感觉这门课很有价值,可以适当增加教学深度。
七、参考文献
[1]路勇,刘颖.模拟集成电路基础[M].北京:中国铁道出版社, 2016 [2]刘贵栋,电子电路的 Multisim 仿真实践,哈尔滨工业大学出版社,2008
第三篇:模电综合实验报告
《模电综合实验》报告
题 目指导老师学生姓名学 院专业班级学生学号
直流稳压电源与RC振荡电路的设计
通信与信息工程学院
电信 班
2012年 06月 24 日
一.实验目的:
1.了解RC桥式正弦波振荡器的工作原理; 2.掌握桥式振荡器的设计;
3.掌握桥式正弦波振荡器的调试方法;
4.要求学会选择变压器,整流二极管,滤波电容及集成稳压器来设计直流稳压电源;
5.掌握直流稳压电路的调试及主要技术指标的测量方法;
6.培养独立思考,独立准备资料,独立设计规定功能的模拟电子系统的能力;
二、设计任务和要求
1设计任务
设计一集成直流稳压电源,满足:
当输入电压在220V交流时,输出直流电压为正负12V。输出纹波电压小于5mv。稳压电源内阻在10欧姆左右。
设计一个RC桥式正弦波振荡器,并用设计的电源供电,使输出正弦波频率10KHz。
2设计要求
选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源。
掌握直流稳压电源的调试及主要技术指标的测试方法。
具有体积小,外围电路简单,工作性能可靠,通用性强和使用方法简单等优点。本电路选用的是LM7812CT三端稳压器和LM7912CT三端稳压器,它们的输出电压分别为+12V和-12V电压。一般输入要比输出电压高3V—5V,以保证集成稳压器工作在线性区域,实现良好的稳压作用。但输入电压又不能太高,否则 集成三端稳压器上压降太大,发热严重。RC桥式正弦波振荡器的原理
RC桥式振荡器的设计图
1.RC桥式振荡电路由RC串并联选频网络和同相放大电路组成,图中RC选频网络形成正反馈电路,决定振荡频率f0、R3、R4形成负反馈回路,决定起振的幅值条件,D4、D5是稳幅元件。
该电路的振荡频率
f0=(1)2RC起振幅值条件
(4)总电路图:连接各模块电路。
2.电路安装、调试
(1)自己动手用万用板焊接电路。
(2)在每个模块电路的输入端加一信号,测试输出端信号,以验证每个模块能否达到所规定的指标。
(3)将各模块电路连起来,整体调试,并测量该系统的各项指标。
五、设计过程
1设计总思路
(1)电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。(2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。
(3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。
(4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给振荡器。
选滤波电容
选择470uF和0.01uF的电容。
选振荡器器件
选频电阻选680Ω,选频电容选22nf,集成管选op07.六、实验数据及误差分析
1、变压口输出电压(正19.36V,负19.34V)
2、整流后电压(正17.0V,负17.2V)
3、滤波后电压(正25.6V,负25.0V)
4、输出直流电压(正11.96V,负11.8V)
6、纹波电压(0.13mV)
7、振荡后输出电压:7.6V
8、输出频率:10.244KHZ
9、反馈系数:26.05%
误差分析:
一、仪器误差:任何仪器都有一定的精度,但会有一些剩余误差。
二、人为误差:由于人的感官的鉴别能力的局限性,在读数方面都会产生误差。
三、外界条件影响:温度、湿度、风力、日照、气压、大气折光等因素,必然会造成误差。
七、Multisim仿真测试
变压部分
输入电压220V50Hz 有效值测量
输入输出电压波形
稳压后的波形
最终输出波形
0操作动手能力,在学习的过程中,他们也教会了我们如何做人,如何做事,再次郑重感谢老师!你们辛苦了!
第四篇:模电课程设计要求
模拟电子技术课程设计A任务书
一、课程设计的性质
本课程是在前导验证性实验基础上,进行更高层次命题的课程设计,是在教师指导下独立查阅资料、设计、安装和调试特定功能的电子电路。对于提高学生的电子工程素质和科学实验能力非常重要,是电子技术人才培养成长的必由之路。
二、课程设计目的本课程旨在培养学生模拟电子电路知识,解决模拟电子技术方面常见实际问题的能力,促使学生积累实际电子制作经验,准备走向更复杂更实用的应用领域,是参加“全国大学生电子竞赛”前的技能培训课程之一。目的在于巩固基础、注重设计、训练技能、追求创新、走向实用。
三、课程设计要求
1、根据下面所给出的五个题目自行选择一个完成设计;
2、学生自行查找与设计题目有关的参考资料;
3、提出设计方案,写出设计步骤,并进行理论设计;
4、熟悉用计算机软件进行辅助电路设计方法,并对所设计的电路进行仿真;
5、购买元器件并进行电路的焊接、组装;
6、熟悉常用电子仪器操作使用和测试方法;
7、学习电子电路的调试和测试技术,完善作品功能。
8、撰写设计报告;
四、模拟电子技术课程设计的方法与步骤
设计一个电子电路系统时,首先必须明确系统的设计任务,根据任务进行方案选择,然后对方案中的各部分进行单元的设计、参数计算和器件选择,最后将各部分连接在一起,画出一个符合设计要求的完整系统电路图。
1、设计任务分析
对系统的设计任务进行具体分析,充分了解系统的性能、指标内容及要求,以便明确系统应完成的任务。
2、方案论证
这一步的工作要求是把系统的任务分配给若干个单元电路,并画出一个能表示各单元功 1
能的整机原理框图。
方案选择的重要任务是根据掌握的知识和资料,针对系统提出的任务、要求和条件,完成系统的功能设计。在这个过程中要勇于探索和创新,力争做到设计方案合理、可靠、经济、功能齐全、技术先进,并且对方案要不断进行可行性和优缺点的分析,最后设计出一个完整框图。框图必须正确反映系统应完成的任务和各组成部分功能,清楚表示系统的基本组成和相互关系。
3、方案实现
1)单元电路设计
单元电路是整机的一部分,只有把各单元电路设计好才能提高整体设计水平。每个单元电路设计前都需明确本单元电路的任务,详细拟订出单元电路的性能指标,与前后级之间的关系,分析电路的组成形式。具体设计时可以模仿成熟的先进电路,也可以进行创新或改进,但都必须保证性能要求。而且,不仅单元电路本身要设计合理,各单元电路间也要相互配合,注意各部分的输入信号、输出信号和控制信号的关系。
2)参数计算
为保证单元电路达到功能指标的要求,就需要用电子技术知识对参数进行计算。例如,放大电路中各阻值、放大倍数的计算,振荡器中电阻、电容、振荡频率等参数的计算。只有很好地理解电路的工作原理,正确利用计算公式,计算的参数才能满足设计要求。
3)器件选择
阻容元件的选择:电阻和电容种类很多,正确选择电阻和电容是很重要的。不同的电路对电阻和电容性能要求也不同,有些电路对电容的漏电要求很严,还有些电路对电阻、电容的性能和容量要求很高。例如滤波电路中常用大容量铝电解电容,为滤掉高频通常还需并联小容量瓷片电容。设计时要根据电路的要求选择性能和参数合适的阻容元件,并要注意功耗、容量、频率和耐压范围是否满足要求。
分立元件的选择:分立元件包括二极管、晶体三极管、光电二
(三)极管、晶闸管等。根据其用途分别进行选择。选择的器件种类不同,注意事项也不同。例如选择晶体三极管时,首先注意是选择NPN型还是PNP型管,是高频管还是低频管,是大功率还是小功率,并注意管子的参数是否满足电路设计指标的要求。
集成电路的选择:由于集成电路可以实现很多单元电路甚至整机电路的功能,所以选用集成电路来设计单元电路和总体电路既方便又灵活,它不仅使系统体积缩小,而且性能可靠,便于调试及运用,在设计电路时颇受欢迎。集成电路有模拟集成电路和数字集成电路。国内外已生出大量集成电路,其器件的型号、原理、功能、特征可查阅有关手册。选择的集
成电路不仅要在功能和特性上实现设计方案,而且要满足功耗、电压、速度、价格等多方面的要求。
安装调试:
安装与调试过程应按照先局部后整机的原则,安装时要注意元器件的布局及走线的合理,以及万能板与外围器件联接处的定位。调试时根据信号的流向逐块调试,使各功能块都要达到各自技术指标的要求,然后把它们连接起来进行统调和系统测试。调试包括调整与测试两部分,调整主要是调节电路中可变元器件或更换器件,使之达到性能的改善。测试是采用电子仪器测量相关点的数据与波形,以便准确判断设计电路的性能。装配前必须对元器件进行性能参数测试。
五、设计题目
题目1: 波形发生电路
要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形
发生器。
基本指标: 输出频率分别为:102HZ、103HZ和104Hz;输出电压峰峰值VPP≥20V
发挥部分:方波占空比可调。
题目2: 音频功率放大电路
要求:设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8。基本指标:频带宽50HZ~20kHZ,输出波形基本不失真;电路输出功率大于8W;
输入灵敏度为100mV,输入阻抗不低于47K。
题目3:有源带通滤波器
要求:设计1有源带通滤波器,其3db带通范围为50Hz-20KHz。
基本指标:带内电压变化小于0.5db,带外电压比大于20db(10KHz与10Hz的输出电压之比,10KHz与30Khz输出电压之比大于20db),矩形系数尽量小。
本题要求选用分立元件和集成运算放大器构成,不得采用现成滤波集成模块。
题目4:串联型直流稳压电源
要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。
指标:
1、输出电压6V、9V两档,同时具备正负极性输出;
2、输出电流:额定电流为150mA,最大电流为500mA;
3、在最大输出电流的时候纹波电压峰值▲Vop-p≤5mv;
题目5:水温监测及控制电路
要求:设计并制作一个水温监控电路,把一杯水的温度控制在50°C,误差正负2°C。加热装
置不限。
1、检测电路采用热敏电阻Rt(NTC)作为测温元件。
3、设计温度检测电路和温度控制电路。
4、温度测量标准以现成的温度计为标准。
发挥部分:可制作实时的温度显示电路。
五、设计报告内容
1、设计题目
2、设计任务和要求
3、原理电路设计:
(1)方案比较与确定;(2)整体电路框图的确定(3)单元电路设计及元件选择;
4、电路调试过程与结果:
理论设计数据、实测数据、误差分析,必要的波形图
5、总结
总结作品的优点和不足的地方,以后可能的改进方案,通过这次课程设计的心得体会。附录:完整的电路图和装配图。
六、主要参考书目:
1、童诗白、华成英,《模拟电子技术基础》
2、康华光,《电子技术基础》模拟部分
3、赵淑范王宪伟,《电子技术实验与课程设计》
第五篇:直流稳压电源设计实验报告(模电)
直流稳压电源的设计实验报告
一、实验目的
1.学会选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源 2.掌握直流稳压电源的调试及主要技术指标的测量方法
二、实验任务
利用7812、7912设计一个输出±12V、1A的直流稳压电源;
三、实验要求
1)画出系统电路图,并画出变压器输出、滤波电路输出及稳压输出的电压波形; 2)输入工频220V交流电的情况下,确定变压器变比; 3)在满载情况下选择滤波电容的大小(取5倍工频半周期); 4)求滤波电路的输出电压;
5)说明三端稳压器输入、输出端电容的作用及选取的容值。
四、实验原理
1.直流电源的基本组成
变压器:将220V的电网电压转化成所需要的交流电压。整流电路:利用二极管的单向导电性,将正负交替的交流电压变换成单一方向的直流脉动电压。
滤波电路:将脉动电压中的文波成分滤掉,使输出为比较平滑的直流电压。稳压电路:使输出的电压保持稳定。
4.2 变压模块
变压器:将220V的电网电压转化成所需要的交流电压。
4.2 整流桥模块
整流电路的任务是将交流电变换为直流电。完成这一任务主要是靠二极管的单向导电作用,因此二极管是构成整流电路的关键元件。管D1~D4接成电桥的形式,故有桥式整流电路之称。
由上面的电路图,可以得出输出电压平均值:Uo(AV)0.9U2,由此可以得U215V即可
即变压器副边电压的有效值为15V 计算匝数比为 220/15=15 2.器件选择的一般原则 选择整流器
流过二极管的的平均电流: ID=1/2 IL 在此实验设计中IL的大小大约为1A 反向电压的最大值:Urm=2U2 选择二极管时为了安全起见,选择二极管的最大整流电路IDF应大于流过二极管的平均电流ID即0.5A,二极管的反向峰值电压Urm应大于电路中实际承受最大反向电压的一倍。
实验中我们采用的是1B4B42封装好的单相桥式电路。4.2 滤波模块
3.3滤波电路
交流电经整流电路后可变为脉动直流电,但其中含有较大的交流分量,为使设备上用纯净的交流电,还必须用滤波电路滤除脉动电压中的交流成分。常见的滤波电路有:电容滤波电路、电感滤波电路、电感电容滤波电路以及型滤波电路。在此电路中,由于电容滤波电路电路较为简单、且能得到较好的效果,故选用此电路。滤波电容一般选几十至几千微法的电解电容,由于RlC(3~5)
T,故选4200uF/25V的电解电容。
2图3-4 滤波电路
图3-5 滤波后的电压
输出直流电压UL与U2的关系:
UL=(1.1~1.2)U2 变压器副边电流有效值:
I2=(1.5~2)IL
4、稳压电路
A.根据实验要求,选用三端固定式输出集成稳压器MC78012CT和LM79012CT B.为防止自激震荡,在输入端接一个0.1~0.33uF的电容C1 C.为消除高频噪声和改善输出地瞬态特性输出端要接一个1uF以上的电容C2
五、实验设计
1.变压器的选择
根据实验要求,输出±12V,1A的直流稳压电源,负载电阻:
RL≥12Ω
变压器副边电压: 变压器的副边电压为有效值为15V 变压器的变压比:n1:n2=220/15=15 变压器的副边电压图像
实验过程中通过确定通过稳压管的电压控制在15—17V之间,来调节变压器的副边电压,确定匝数比为15:1 电路图:
仿真波形:
2、整流模块
3.整流二极管的选择
流过负载的电流:
IL≤1A 流过二极管的电流:
ID=1/2IL=0.5A 二极管所能承受的极间反向电压:
Urm=2U2*2=2*15*2=42.4V 所以选择二极管时ID>=0.5A,Urm>=42.4V 设计过程中我们选用的是1B4B42
2.滤波电容的选择
时间常数:
τ=RLC0=5*T/2=0.05s 取RL=12Ω,则
C0=4.2mF 电容所能承受的最大电压:Urm=2U2*2=2*15*1.1=23.3V(考虑到电网电压波动10%)
仿真电路:
仿真结果:
4.其他
防自激震荡电容:
C1=330nF 消高频噪声电容:
C2=1uF
5、稳压电路
由于LM7812输出的最大电流为1.5A
要求输出的最大电流为1A 在输出电阻的两端并联为1A的整流二极管1N4001
六、.实验电路图:
根据原件的选择,连接电路图:如下所示
七、实验总结
本次实验,我们充分理解并掌握了直流稳压电源设计的过程方法,特别是在实验过程中我们相互帮助学习,提高了自我学习的能力,也提高的团队协作的能力,在试验中,我们自己学会去解决问题,发现问题,相信对以后的学习会有很大帮助。另外,通过本实验,我们学会了直流电压源的设计方法,也对Multisim这个软件有了初步的认识和了解,为以后其他后续课程提供了帮助。在实验过程中我们也获得了很多的经验教训。通过本次不仅对我们知识水平有很大帮助,更重要的是提高了我们自我学习的能力和团队协作的能力。