第一篇:“传感技术原理与应用”课程阶段总结(1-3章)
“传感技术原理及应用”课程阶段总结
本课程要求掌握
1.所讲类型传感器的变换原理、结构及特点、变换电路
2.所讲类型传感器测量的物理量
一、传感器的基础知识
√1.定义、输出为电量的传感器组成及各部分的作用
按被测物理量
2.分类
按工作原理
3.传感器的静(掌握)、动态特性(了解)
上升时间时域响应时间过调量*线性度迟滞幅频特性静态 重复性
动态 频域 相频特性灵敏度一阶系统二阶系统
二、传感器部分
1.电阻式传感器
V视在分辨力:V=n电位器式传感器负载误差金属电阻的应变效应(原理、定量关系)电阻丝的应变灵敏度系数与电阻丝应变片的应变灵敏度系数的关系*应变式传感器桥式电路:平衡条件、电路的电压灵敏度、非线性误差补偿
温度特性补偿(电路的补偿)压阻式传感器(了解):与金属丝应变片原理的不同,特点的不同。i
自感型—电感与被测量关系,减小非线性的方法(差动形式)变换电路:交流电桥(着重是变压器电桥,看书上的推导过程)变压器型(互感式)—原理原理L、R、Q状态电涡流式电涡流强度与距离的关系检测线圆直径与被测物体直径的关系2.电感式传感器
调幅电路配用电路调频电路零点残余电压产生的原因以及减小的措施、变压器电桥。
第二篇:数据库原理与应用课程总结
数据库原理与应用课程总结
两部分内容组成:数据库的理论知识、SQL Sever 2000的使用
数据库的理论知识包括三篇,第1篇:基础篇;第2篇:设计篇;第3篇:系统篇,三部分内容之间的关系是基础篇是基础是重点,必须全面掌握;设计篇是方法论,是应用系统开发过程中的方向指南,对基础篇的应用;系统篇:是对DBMS的四性的详细解释,丰富了基础篇的内容。
一、名词概念
1、信息、数据、数据处理
2、数据库
3、数据库管理系统
4、数据库系统
5、概念模型
6、逻辑模型
7、模式
8、外模式
9、内模式
10、数据库独立性(逻辑独立性、物理独立性)
11、概念模型有关概念:实体、属性、码、域、实体型、实体集、联系、联系方式
12、关系模型的有关概念(元组、属性、主码、域、分量、关系模式)
13、函数依赖
14、完全函数依赖
15、部分函数依赖
16、传递函数依赖
17、码
18、主属性
19、非主属性 20、视图
21、可恢复性
22、并发控制性
23、安全性
24、完整性
25、关系
26、关系模式
27、实体完整性
28、参考完整性
29、自定义完整性 30、游标
二、基本理论
1、计算机数据管理三个阶段的特点(数据组织(保存)与管理、共享、数据与应用程序的独立性、数据冗余等),特别要掌握数据库系统的特点(数据组织结构化、共享性高、数据独立性强,数据由DBMS统一管理和控制)。
2、DBMSE 的数据控制功能
(1)可恢复性(2)并发控制
(3)安全性
(4)数据的完整性
结合第3篇 系统篇,掌握好如下问题
事务的概念和特点、掌握系统发生故障、并发控制出现异常的实质?
可恢复性部分
什么是可恢复性
故障类型
故障恢复实现技术(数据转储与建立日志文件,掌握数据转储的形式和特点,日志文件中包含的内容)
各种类型故障的排除方法
(1)事务故障(Undo处理,反向扫描日志文件)(2)系统故障(对未完成的事务Undo处理,已完成的事务Redo处理)
(3)介质故障()
并发控制
并发操作的三类数据的不一致性
并发控制的主要技术(封锁技术)
锁的类型及特点
封锁协议
并发操作的可串行性(概念、什么样的调度是正确的(所有的串行调度、具有并发操作的可串行化的调度是正确的、如何保证调度是正确的。)
安全性
保证系统安全的途径
存取控制机制的组成(定义权限、合法权限检查)
自主存取控制方法的基本操作(授权和撤销权限)
理解视图机制如何保证数据的安全
完整性
完整性的概念 完整性约束条件
完整性控制(3点:定义、检查和违约反应、完整性五元组定义)
参考完整性的三个问题(外码是否为空、被参考关系中删除和插入元组时)
3、数据模型
(1)数据模型的三要素
(2)计算机信息处理的三大世界(与数据库设计步骤的对应关系)
(3)概念模型及其表示方法()
(4)逻辑模型的三种类型及其特点(数据结构、数据操作和约束条件,特别是关系模型的特点)
4、数据库系统结构(三模式、两映射和数据独立性)
5、关系及关系操作
(1)关系模型组成(数据结构、操作和完整性;关系数据操作表示形式(代数方式、逻辑方式和SQL))
(2)关系数据结构及其有关定义(域、笛卡儿积、关系、关系模式、关系数据库)
(3)关系的完整性
(4)关系代数(传统的集合运算、专门关系运算(投影、选择、连接和除法运算)、关系代数的写法(注意三个问题、7个例题)
(5)SQL 语言
DDL语言(数据库、数据表、索引和视图)
DML语言(查询()、插入、删除和修改)
DCL语言(授权和撤销权限)
嵌入式SQL(存在问题及其对策、共享变量、游标(概念、操作步骤和打开游标的含义、游标的使用)
(6)数据规范化
基本概念(函数依赖、完全函数依赖、部分函数依赖和传递函数依赖、码、主属性和非主属性)
三类数据异常以及好模式的标准
数据规范化的原则、方法和步骤。
三、基本技术数据库设计
1、数据库设计概述
2、数据库设计的基本步骤及每个阶段的任务、方法
3、重点掌握(需求分析阶段、概念设计和逻辑设计三个阶段)
四、基本技能-SQL Server 2000的基本操作 第1部分 基本理论
一、与数据库有关的4个重要概念和1个常识
1、数据
2、数据库
3、数据库管理系统:
DBMS是位于用户与操作系统之间的一层数据管理软件,为用户或应用程序提供访问DB的方法,包括DB的建立、查询、更新及各种数据控制。
主要功能:数据定义、数据操纵、数据运行管理(4性)
DBMS总是基于某种数据模型,可以分为层次型、网状型、关系型、面向对象型DBMS。
4、数据库系统 结构组成与人员组成、理解图1.1 数据库技术 :是一门研究数据库结构、存储、管理和使用的软件学科。
5、一个常识
(1)三个阶段 每个阶段的优缺点
(2)理解数据库系统的特点(数据结构化、数据的共享性、冗余度低以及数据的独立性、数据的统一管理和控制)
二、数据模型
1、计算机信息处理的三大世界、两类模型(概念模型、结构模型),理解计算机信息处理的基本步骤。
2、数据模型(结构模型)的三要素(逻辑模型)
3、概念模型(结合数据库概念设计理解)
(1)特点
(2)基本概念(实体、属性、码、实体型、实体集、联系及联系方式)(3)表示方法 ER模型(画法)
4、常用的模型(数据结构化的基础)
(1)层次、网状和关系
(2)每种模型的数据结构、数据操作、约束和存取特点。(3)重点在关系模型(详细见第2章)
数据结构(从用户的观点:二维表)常用术语:关系、元组、属性、主码、关系模式
关系模式的表示方法
关系模型必须是规范化的数据操纵与完整性
关系数据模型的存储结构
优缺点
三、数据库系统结构
1、不同的角度(从数据库管理系统和从最终用户)
2、三模式(模式、外模式和内模式)
3、二级映象与数据独立性
4、重要概念(模式、外模式、内模式、数据的逻辑独立性与物理独立性)
四、关系数据库及其操作
1、关系模型的数学依据(建立在集合代数的基础上)
2、从集合论的角度谈关系数据结构(笛卡儿积的子集)
3、关系及关系操作
(1)关系数据结构及其有关定义(域、笛卡儿积、关系、关系模式、关系数据库)
(2)关系操作:查询操作和更新
查询操作:关系代数查询、关系演算和具有双重特点的SQL
4、关系的完整性
5、关系代数(传统的集合运算、专门关系运算(投影、选择、连接和除法运算)、关系代数的写法(注意3个问题、7个例题)、关系优化。
6、关系数据库操作的标准-SQL 语言
DDL语言(数据库、数据表、索引和视图) DML语言(查询、插入、删除和修改) DCL语言(授权和撤销权限)
嵌入式SQL(存在问题及其对策、共享变量、游标(概念、操作步骤和打开游标的含义、游标的使用)
7、什么是视图,怎样理解?有什么作用
五、数据规范化
1、基本概念(函数依赖、完全函数依赖、部分函数依赖和传递函数依赖、码、主属性和非主属性)
2、三类数据异常以及好模式的标准
3、数据规范化的原则、方法和步骤。
六、DBMSE的数据控制功能(系统篇)
结合第3篇,掌握好如下问题
1、事务的概念和特点、掌握系统发生故障、并发控制出现异常的实质?
2、可恢复性
什么是可恢复性、故障类型、故障恢复实现技术(数据转储与建立日志文件,掌握数据转储的形式和特点,日志文件中包含的内容)、各种类型故障的排除方法。
(1)事务故障(Undo处理,反向扫描日志文件)(2)系统故障(对未完成的事务Undo处理,已完成的事务Redo处理)(3)介质故障
3、并发控制
并发操作的三类数据的不一致性、并发控制的主要技术(封锁技术)、锁的类型及特点、封锁协议、并发操作的可串行性(概念、什么样的调度是正确的(所有的串行调度、具有并发操作的可串行化的调度是正确的、如何保证调度是正确的)
4、安全性:保证系统安全的途径、存取控制机制的组成(定义权限、合法权限检查)、自主存取控制方法的基本操作(授权和撤销权限)、理解视图机制如何保证数据的安全
5、完整性:完整性的概念、完整性约束条件、完整性控制(3点:定义、检查和违约反应、完整性五元组定义)
参考完整性的三个问题(外码是否为空、被参考关系中删除和插入元组时)
6、区别数据库的一致性、完整性和安全性。
第二部分 基本技术-数据库设计
1、数据库设计概述
2、数据库设计的基本步骤及每个阶段的任务、方法
3、重点掌握(需求分析阶段、概念设计和逻辑设计三个阶段)
第三部分 基本技能-SQL Server 2000的基本操作
1、数据库服务器环境配置
2、数据库及数据库对象的基本操作
3、SQL 2000的安全控制策略
4、数据库备份与还原操作
5、脚本文件
6、数据的导入与导出
需要掌握的概念
1、信息、数据、数据处理
2、数据库
3、数据库管理系统
4、数据库系统
5、概念模型
6、逻辑模型
7、模式
8、外模式
9、内模式
10、数据库独立性(逻辑独立性、物理独立性)
11、概念模型有关概念:实体、属性、码、域、实体型、实体集、联系、联系方式
12、关系模型的有关概念(元组、属性、主码、域、分量、关系模式)
13、函数依赖
14、完全函数依赖
15、部分函数依赖
16、传递函数依赖
17、码
18、主属性
19、非主属性 20、视图
21、可恢复性
22、并发控制性
23、安全性
24、完整性
25、关系
26、关系模式
27、实体完整性
28、参考完整性
29、自定义完整性 30、游标
第三篇:酶技术原理与应用
酶法提取原理
摘要:简要介绍了酶法提取的基本原理、特点及提取速率的影响因素,结合酶法在提取有效成分中的应用实例和与其他技术的联用,对酶法在中药提取领域的前景进行展望。
关键词:酶法;中药提取;综述
中药是中华民族灿烂文明中一朵盛开的奇葩,有着几千年的悠久历史。中药成分复杂且很多贵重有效成分含量很低,因此中药开发中的关键工序即为如何有效地提取中药中的有效成分。传统提取方法如煎煮、回流、浸渍、渗漉法,存在着周期长、工序多、提取率不高等缺点。酶作为一种生物催化剂,在中药提取中,对中草药细胞壁的有效成分进行分解破坏,从而降低传质阻力,提高提取率;可改变中药目标产物的生理生化性能,优化产物效用,并且酶法提取操作简单,条件温和,环保无毒,现已将其用于中药提取过程。本文就酶法的提取技术及其应用进展方面进行综述。
1酶法提取的基本原理
大多数中药为植物性草药,中药材中的有效成分多存在于植物细胞的细胞质中。在中药提取过程中,溶剂需要克服来自细胞壁及细胞间质的传质阻力。细胞壁是由纤维素、半纤维素、果胶质等物质构成的致密结构,选用合适的酶(如纤维素酶、半纤维素酶、果胶酶)对中药材进行预处理,能分解构成细胞壁的纤维素、半纤维素及果胶,从而破坏细胞壁的结构,产生局部的坍塌、溶解、疏松,减少溶剂提取时来自细胞壁和细胞间质的阻力,加快有效成分溶出细胞的速率,提高提取效率,缩短提取时间[1]。
而且,在中药提取中酶法可作用于目标产物,改善目标产物的理化性质,提高其在提取溶剂中的溶解度,减少溶剂的用量,降低成本;也可改善目标产物的生理生化功能,从而提高其效用。
2酶法提取的特点
2.1反应条件温和,产物不易变性
酶法提取主要采用酶破坏细胞壁结构,具有反应条件温和、选择性高的特点,而酶的专一性可避免对底物外物质的破坏。在提取热稳定性差或含量较少的化学成分时,优势更为明显。杨云龙等[2]用酶法提取洋葱中黄酮类化合物,采用酶解法来处理洋葱皮,避免了因高温对黄酮类化合物结构的破坏,提高了黄酮类化合物的提取率。
2.2提高提取率,缩短提取时间
酶法预处理减少了中药材中有效成分的溶出及溶剂提取时的传质阻力,缩短了提取时间,提高了提取率,具有很大的应用价值。张文森[3]使用复合酶法提取茉莉花中有效成分,相比较传统的水提取,提取温度由85~90℃降至50℃,提取时间由3h降至1h,提取率由55%~60%升至65%~70%。
2.3降低成本,环保节能
酶法是绿色高效的植物提取技术,可利用相关的酶制剂来提高提取物的极性,从而减少有机溶剂的使用,降低成本。
2.4优化有效组分
酶法不仅可以应用在中药材的提取过程,也可对中药提取物进行酶法处理,优化有效组分,提高目标产物的药用价值。肖连冬使用碱性蛋白酶对啤酒糟麦芽蛋白进行水解,在最佳酶解条件下,麦芽蛋白的起泡性、溶解性和乳化性分别达到167%、22.68%和13.8%,比未改性前的麦芽蛋白分别提高了735%、247%和27.8%。
[4]
2.5工艺简单可行
酶法提取在原工艺条件上仅增加了1个操作单元,反应条件温和易获得,不需要对原有工艺设备进行过多的改变,对反应设备的要求较低,操作简单。姚晓琳等
[5]在研究酶法提取柑橘黄酮时,与原有醇提工艺相比,仅在乙醇浸取提取步骤前增加了一个步骤——适量酶液酶解提取。总黄酮提取率可达2.67±0.06%,提取率大幅提高。
3酶法提取的影响因素
3.1药材颗粒度
为利于酶解,需对药材进行预处理。如用粉碎机作预处理,粉碎颗粒越细,越易悬浮在酶解液中,增加有效面积而易被酶水解,加快水解速度。但粉碎过细,吸附作用过强,反而会影响扩散作用。因此通常在提取前适当粉碎,可提高酶解效率。
3.2提取溶剂
酶法提取的关键,是选择适当的溶剂。溶剂选择适当,就可以比较顺利地将需要的成分提取出来,并且可溶解较多的有效成分。选择溶剂主要注意以下3点:(1)溶剂对有效成分溶解度大,对杂质溶解度小;(2)溶剂不能与中药的成分起化学变化;(3)溶剂要经济、易得、使用安全等。现在工业生产及实验室主要采用水、乙醇等作为提取的溶剂。
3.3温度及pH
温度增高,分子运动加快,溶解、扩散速度也加快,有利于有效成分的提出,所以热提常比冷提效率高。但温度过高,有些有效成分被破坏,酶的活性降低,甚至失活,同时杂质的溶出也增多。故一般加热不超过60℃,最高不超过100℃。过高或过低的pH都会导致酶失活,pH不仅影响酶立体构象,也影响底物解离状态。在最适宜的pH下进行提取,效率最高。
3.4酶解时间
有效成分的提取率通常随提取时间的延长而增加,直到药材细胞内外有效成分的浓度达到平衡为止。所以不必无限制地延长提取时间,一般用水加热提取以每次0.5~1h为宜,用乙醇加热提取每次以1h为宜。
3.5酶的用量
随着酶的浓度的升高,与底物的接触面积增大,酶解反应速率增大。但当酶的浓度达到过饱和时,底物浓度相对较低,酶与底物竞争,会对酶产生抑制作用,酶得不到充分利用,造成浪费。
4酶法提取在中药领域的应用实例
4.1酶法作用于植物细胞壁
植物细胞壁及细胞间质中的纤维素、半纤维素、果胶等具有大分子结构的物质是中药提取中传质的主要阻力来源。所以采用酶法提取,分解破坏植物细胞的细胞壁,多采用纤维素酶、半纤维素酶、果胶酶。
(1)纤维素酶。纤维素是由β-D-葡萄糖以1,4-β葡萄糖苷键连接,用纤维素酶酶解可以破坏β-D-葡萄糖苷键,使细胞壁破坏,有利于对有效成分的提取。项雷文等[6]通过正交实验法研究了纤维素酶法提取杭白菊中总黄酮的主要工艺参数(酶添加量、酶解时间、酶解温度和pH)对总黄酮提取率的影响。得到纤维素酶法提取的最佳条件为:酶添加量0.5%、酶解时间2.5h、酶解温度55℃、pH5.0,此条件下总黄酮提取率比对照组提高了19.2%。
(2)果胶酶。果胶酶是作用于果胶复合物的酶的总称。果胶酶有两种:果胶甲酯酶和多聚半乳糖醛酸酶。周向荣等[7]利用盐渍藠头提取其风味物质,考查了pH值、温度、加热时间、商品果胶酶添加量对盐渍藠头中蒜素提取效果的影响。在果胶酶同原料比为0.6%~1.2%,pH3.4、温度50℃、提取时间2~4h的条件下,蒜素的提取率可达到较高水平(0.21~0.27g/100ML),且出汁效果较好(90%~92%),固形物含量较高(19.2~19.8Brix),能较好地保持藠头特有的香气。
(3)半纤维素酶。戴瑜等[8]研究了半纤维素酶法提取杜仲叶中主要有效成分,即苯丙素类的绿原酸(CHA),通过单因素试验、正交试验和方差分析确定了半纤维素酶法提取杜仲叶中绿原酸的最佳操作条件。结果表明:加入996U/g半纤维素酶0.45%、pH4.0、温度40℃,得率最高可达38.01mg/g。
(4)复合酶。采用两种或两种以上的酶按一定比例进行组合,进行中药提取,可以较大地加快提取速率,提高提取率。吴国卿等[9]研究了复合酶法提取野木瓜汁的工艺。以野木瓜为原料,采用复合酶法提取野木瓜汁。确定了果胶酶与纤维素酶的最佳添加比例为1︰6。复合酶提取野木瓜汁的最佳酶解工艺条件为:复合酶添加量1.0%,酶解温度45℃,pH4.0,酶解时间2.5h,在此最佳条件下,野木瓜出汁率可达56.7%,比空白样的出汁率13.7%高出43.0%。
4.2酶法作用于目标产物
对于有效成分中立体结构大的物质,可使用葡萄糖苷酶、转苷酶、淀粉酶等进行分解糖苷键等,改变理化性质,增大极性,减少有机溶剂的用量,降低成本,且改变生理生化性质,提高效用。
(1)转苷酶。许明淑等[10]在提取银杏叶黄酮时,使用Suhong475转苷酶和糖基配体对银杏叶进行处理,提高黄酮苷元、黄酮苷的极性,进而在30%乙醇溶剂中提取。此时的提取率相当于60%乙醇提取条件下的提取率。郁军等[11]使用淀粉酶和环糊精转糖苷酶(cGTase)处理甜菊糖作用于甜菊糖苷,破坏了甜菊苷的结构,与未用酶法处理过的甜菊糖相比较,有效地改善了甜菊糖的后苦味。
(2)葡萄糖苷酶。殷涌光等[12]从松针中提取松针黄酮,即8-葡萄糖苷酶松针总黄酮(PNF),使用葡萄糖苷酶酶解PNF,酶解温度40℃,酶添加量1/1000,底物质量浓度0.6g/L,酶解时间5h,经过修饰后的PNF对自由基清除率、羟基自由基清除率、超氧阴离子清除率及对铁离子的还原能力都有明显地提高。
(3)复合酶。两种以上的酶的应用,既可以对植物细胞壁进行作用,也可以对有效成分进行优化。董捷等[13]在研究油菜花粉萌发孔通透性时采用了复合酶法中温淀粉酶和复合纤维素酶的组合。结果表明:用中温淀粉酶和复合纤维素酶处理花粉后,每克花粉上清液中可溶性糖含量最高可达到(0.365±0.017g),与空白相比提高了53%。
5酶法提取技术与其他技术的联用
某些中药采用酶法提取时收率明显提高,具有较大的应用潜力,但该技术同时也存在着一定的局限性。酶法的最佳反应条件需要严格控制,条件微小的波动,也有可能引起酶活性的大大下降。实验中的酶有可能会与实验中其他的化学物质发生反应,会影响反应速率和产物的纯度。故实验室或工业生产中,多采用酶法与其他技术的联合进行中药提取,可扬长补短,发挥协同作用,提高有效成分的提取效率。
5.1酶法协同超声波
赵玉等[14]采用复合酶法协同超声波提取南瓜水溶性多糖,试验将两种独立的提取方法进行协同作用,考察协同作用对提取效果的影响,并与单一超声波法、复合酶解法相比较。原料经复合酶酶解处理,超声10min后,多糖提取率为25.94%,提取率明显高于单一使用超声波、复合酶法的提取。
5.2酶法协同超高压提取
超声波在使用时,在破碎细胞的同时,会引起温度急剧上升,费用较高。而超高压提取可在低温条件下应用,不会引起温度的剧烈变化,不会引起酶的活性降低,在热敏物质的提取中应用将会更为广泛。奚海燕等[15]在超高压辅助酶法提取大米蛋白的研究中,首先在400MPa下对大米进行预处理,后加碱性蛋白酶量1.4%,温度58℃,pH8.3,时间4h及液固比9︰1进行处理,大米蛋白质的提取率为78.72%,而只用碱性蛋白酶进行处理的提取率为70%,提取率提高显著。
5.3酶法协同微波提取
与传统的溶剂提取法相比,微波法批处理量较大,萃取效率高、省时,而且选择性较好,可提高萃取效率和产品纯度。王文平等[16]首次采用微波辅助酶法提取薏苡仁粗多糖,并对提取工艺进行了探讨。在单因素试验的基础上,采用正交试验优化其工艺,得到的最佳提取工艺为:微波功率560W,料液比1︰30,提取时间4min,提取得率达22.61%。
6酶法提取技术的应用前景
酶法强化中药提取由于反应特异性强、条件温和易获得、提取时间短、提取率高、绿色节能等已引起广泛的关注,必将成为中药开发的重要手段,具有较大的应用潜力,且随着对酶法技术的不断研究,酶法与其他技术如超声波、超高压、微波等技术的联用也将成为中药提取的另一个热点研究方向
第四篇:传感器原理及应用课程总结
绪论 传感器定义:传感器是将各种非电量按一定规律转换成便于处理和传输的另一种物理量的装置。
组成:敏感元转,转换元件(调制作用),测量电路
分类:按输入量分类,按测量原理分类,按结构型和物理型分类【第2页】
第一章
静态特性:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为稳态特性。
Y=a0+a1X+a2X2+…+anXn 【第4页 公式1-1 线性度:在规定条件下,传感器校准曲线与拟合直线间最大偏差裕满量程(F·S)输出值的百分比称为线性度。δL=±ΔYmax/YF·S×100%
灵敏度:指到达稳定工作状态时输出变化量与引起次变化的输入变化量之比。
【第7页 公式1-2】 动态特性:指传感器对随时间变化的输入量的响应特性。(传感器的动态特性是传感器的输出值能够真实地再现变化着的输入量能力的反映。)【第10~11页,0,1,2阶数学模型】 幅频特性,相频特性【第13~15页】
对系统响应测试时,常采用正弦和阶跃两种输入信号。这是由于任何周期函数都可以用傅里叶级数分解为各次谐波分量,并把它近似地表示为这些正弦量之和。而节约信号则是最基本的瞬变信号。
第二章(应变传感器 与 压阻式传感器相联系)
金属应变片,特点:1.精度高,测量范围广。2.频率响应特性好。3.结构简单,尺寸小,质量轻。4.可在高(低)温、告诉、高压、强烈震动、强磁场及核辐射和化学腐蚀等恶劣条件下正常工作。5.易于实现小型化,固态化。6.价格低廉,品种多样,便于选择。
缺点:大应变状态时明显非线性,半导体传感器非线性严重;输出信号微弱,抗干扰能力差;不能显示应力场中应力梯度变化。
金属丝:应变系数【第20页 公式2-6】
金属应变片:【第23页 公式2-7】 横向效应:金属应变片由于敏感栅的两端为半圆弧形的横栅,测量应变时,构件的轴向应变ε使敏感栅电阻发生变化,其横向应变εr也将使敏感栅半圆弧部分的电阻发生变化,应变片的这种既受轴向应变影响,又受横向应变影响而引起电阻变化的现象称为横向效应。温度误差:温度漂移→温度误差→因环境温度改变而引起电阻变化的两个主要因素:其一是应变片的电阻丝具有一定温度系数;其二是电阻丝材料与测试材料的线膨胀系数不同。
【公式2-16,17,18】(补偿方式?)
应变极限:【第25页 公式2-11】与测量电路联系起来看 测量电路:电桥: 相邻相异,相对相同【第30页 公式2-27】
应用:看书后习题【第332页】
第三章
电容表达式:C=ε0εrS/dε=ε0εr
三种类型:变面积型,变介质介电常数型,变间距型【第46页】
变间距型,采用差动式电容传感器,使灵敏度提高已被,而且使非线性误差可以减小一个数量级。线性度极大减少?【第49页】 测量电路:【第53页 图3-10】
差动脉冲宽度调制电路:分析【第55页】
误差分析:寄生分布电容,边缘效应【第59页】
边缘效应:边缘效应的影响相当于传感器并联一个附加电容,引起了传感器的灵敏度下降和非线性增加。消除方法:增大初始电容C0,即增大极板面积,减小极板间距,加装等位环。寄生分布电容:一般电容传感器的电容值很小,如果激励电源频率较低,则电容传感器的容抗很大。因此,对传感器绝缘电阻要求很高;另一方面传感器除有极板间电容外,极板与周围物体也产生电容联系,这种电容称为寄生电容。寄生电容极不稳定,导致传感器特性不稳定,产生严重干扰。措施:静电屏蔽,将电容器极板放置在金属壳体内,并将壳体与大地相连。电极引出线也必须用屏蔽线,屏蔽线外套要求接地良好。
第四章
电涡流传感器
电涡流传感器工作原理:当被测物体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电L均发生变化,越是把位移量转化为电量。
为何说被测导体是传感器一部分:1.无被测导体,不发生电涡流效应,必要条件。2.被测导体变化,传感器特性也变化。
如何测,测量参数,影响因素【第89页】
第五章
压电式传感器是一种典型的有缘传感器。
压电效应:某些电介质,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在他的两个表面上产生符号相反的电荷;当外力去掉后,又重新恢复不带电状态。压电陶瓷和晶体有何不同,有极性为何不显电性 电致伸缩效应 正负压电效应
测量电路:原理 【第105页】
内部泄露:传感器内部不可能没有泄露,外电路负载也不可能无穷大,只有外力以较高频率不断地作用,传感器的电荷才能得以补充,从这个意义上讲,压电晶体不适合于静态测量。电压放大器【第106页 图5-17 公式5-18】模值,峰峰值,理想输出
电荷放大器
压电加速度传感器【第110页】阻尼系数,固有频率
第六章
数字式传感器:直接采用数字式传感器可将被测参数直接转换成数字信号输出【第114页】 光栅式传感器:由照明系统、光栅副和光电接收元件组成。
摩尔条纹形成【第120页】
辨向原理:如果能够在物体正向移动时,将得到的脉冲数累加,而物体反向移动时可从已累加的脉冲数中减去反向移动的脉冲数,这样就能得到正确的测量结果。
细分技术【第123页】 光栅传感器特性
第八章 霍尔效应,霍尔系数【第167页】
为何选N型材料:输出电势小,受温度影响小,线性度较好 磁敏传感器温度补偿:【第173页】半导体材料的电阻率、迁移率和载流子浓度等随温度变化的缘故。因此,霍尔元件性能参数,如内阻、霍尔电势等都将随温度变化。为减少霍尔元件温度误差,可:1.选温度系数小的材料。2.采用恒温措施。3.采用恒流源供电。4.采用补偿电路 为何尺寸,外形有要求? 测量电路,概念,两种符号,各种特性,形状系数,不等位电势
光敏传感器
光电效应
外光电效应:在光线作用下,物体内的电子逸出物体表面,向外发射的现象称为外光电效应。内光电效应:受光照的物体导电率发生变化,活产生光生电动势的效应叫内光电效应 各种元件的基本特性,原理 负载,功率的选择
应用【第367页 例8-5】
光电传感器的类型及应用【第201页】
类型划分,按原理,按测量量(连续,断续)
光纤传感器 特点,原理,计算公式,结构,分类
特点:1.电绝缘2.抗电磁干扰3.非侵入性4.高灵敏度5.容易实现队被测信号的远距离监控 原理:斯奈尔定理:当光由光密物质射出至光疏物质时,发生折射,其折射角大于入射角。
【第245页】
结构:发送器、敏感元件、光接收器、信号处理系统以及光纤构成公式E=Asin(ωt+ ø)
第五篇:微机原理与接口技术课程总结
10电子班《微机原理与接口技术》课程总结提要
一、围绕本课程的教学内容,除了阅读教材外你还看了哪些资料?请归纳简述其内容。
二、请陈述当前你对微控制器工作系统的认识
三、请综合运用51单片机的中断系统、定时/计数器、串行口,从实际应用出发做一个设计。这个设计可以是个新产品,也可以是对身边生活中某个环节或产品的改善;这个设计从电子专业的角度要合理可行。请清楚地阐述这个设计的功能、技术环节。不用描绘具体电路,用框图示意即可。
四、本学期的《微机原理与接口技术》课是第一次把微机原理、接口技术、单片机整合在一门课中,并赋予了72学时的课堂教学和36学时的实验学时。请从教学内容、实验内容、学时安排、教师对课程的把握等方面对本课的教学提出意见。
注:
①、对于撰写提要中的问题不能泛泛而论,希望确实通过自己的理解与想法具体说明;
②、要求字数在2000~4000之间;
③、课程总结将计入本课考核成绩;
④、请各位同学截止到7月5日24点,把课程总结的电子版发到我的教学邮箱:xyredleaf_homework_1@126.com
任课教师:洪小叶
2012-6-26
有什么问题及时沟通。