倍数的特征教学反思

2023-04-21下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《倍数的特征教学反思》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《倍数的特征教学反思》。

倍数的特征教学反思

倍数的特征教学反思1

本课时是在学生学习了因数、倍数的基础上,进一步来探索2、5的倍数的特征,并体会运用特征解题的优越性,明白优化知识的便捷性。

1、联系生活,培养学生学习数学的兴趣。

在教学中,教师努力拉近数学与生活的联系。首先利用六一儿童节学生表演三种集体舞这一教学资源,创设了问题情境,在学生提出问题之后,又让学生利用百数表这一学具自主探究2、5倍数的特征,把数学和生活有机联系起来,使学生体会到数学在现实生活中的作用和价值,初步学会用数学的眼光去观察事物、思考问题,解决问题。

2、、鼓励学生独立思考,经历猜测验证的过程。

数学学习过程中充满了观察、实验、推断等探索性与挑战性活动。由于5的倍数的特征比较容易发现,我便把它调到2的倍数的特征前面来进行教学。首先让学生独立写出100以内5的倍数,独立观察,看看你有什么发现?学生很容易发现个位上是0或5的数是5的倍数。而这只是猜测,结论还需要进一步的验证。我们不能满足于学生能够得到结论就够了,而应该抱着科学严谨的态度,引导学生认识到这个结论仅仅适用于1100这个小范围。是不是在所有不等于0的自然数中都适用呢?还需要研究。在老师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。在这一过程中,学生感受到了科学严谨的态度,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的.猜想,然后逐渐扩范围大,最后得出科学的结论。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。

3、精心选题,发挥习题的探索性和趣味性。

习题的设计力争在突出重点,突破难点,遵循学生认知规律的基础上,体现趣味性、基础性、层次性、灵活性、生活性。本节课教师设计了5道练习题。在巩固练习部分,第(1)、(2)题是基本题;第(3)(4)题目的是让学生根据2、5倍数的特征灵活解决问题。第(5)题是让学生感知数学与生活的密切联系。

倍数的特征教学反思2

《3 的倍数和特征》一课是在学生自主探究2、5的倍数的特征的基础上进一步学习,我从学生的已有基础出发,把复习和导入有机结合起来,通过2、5的倍数特征的复习,设置了“陷阱”,引导学生进行猜想3的倍数的特征可能是什么,从而引发认知冲突,激发学生的求知欲望,经历新知的产生过程。

一、引发猜想,产生冲突。

前一课时,学生在发现2、5的倍数特征时,都是从个位上研究起的,所以在复习旧知时,我也特意强调了这一点。接下来我引导学生猜想3 的倍数特征是什么时,不少学生知识迁移,提出:个位上是3、6、9的数应该是3 的倍数;3 的倍数都是奇数。提出猜想,当然需要验证,很快就有学生在观察百数表后提出问题:个位上是3、6、9的数只是有些是3的位数,有些不是3的倍数;有些偶数也是3的`倍数,而有些奇数却不是3 的倍数。学生的第一猜想被自己否决了。既然没有这么明显的特征,那么在百数表里找出3的倍数,不少学生就开始了繁杂的计算,这个环节我给了他们时间慢慢去算,用意在于体会这种计算的不方便,从而去想有没有更好的方法去判断一个数是否是3 的倍数。

二、自主探究,建构特征

找3 的倍数的特征是本节课的难点,我处理这个难点时力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,始终为学生创造宽松的学习氛围,让学生自主探索并掌握找一个3的倍数的特征的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

在完成100以内的数表中找出所有3 的倍数后,我引导学生观察发现3的倍数的个位可以是0~9中任何一个数字,要判断一个数是不是3的倍数不能和判断2、5的倍数一样只看个位,打破了学生的认知平衡,然后我提出到底什么样的数才是3的倍数这一问题。这个问题的解决需要借助计数器,于是我给学生准备了简易计数器,让学生多次拨数后,观察算珠的个数有什么共同的特点。反应比较快的学生就有了发现:所用的算珠个数都是3 的倍数。在学生提出这个猜想后,全班学生再一次进行验证第二个猜想,这个验证也是在突破难点,学生在验证中掌握难点。同时,我也让学生对比了之前所用的方法,体验这个新方法的快捷与简便,让学生的印象更深刻。这个教学环节在教师的引导下克服困难,解决了力所能及的问题,达到了新的平衡,开发了学生的创新潜能。

在教学过程中让学生自主探索,虽然用了很多时间,但我认为学生探索的比较充分,学生的收获会更多。

三、巩固内化,拓展提高。

在上述教学过程中,虽然每个同学只操作了一两次,但是通过学生之间的合作交流,在教师的引导下,学生经历了一个典型的通过不完全 归纳的方法得出规律的过程。学生在这一过程中的体验,无论是方法层面,还是思想层面均将对后继的学习产生深刻的影响。

在初步感知3 的倍数的特征后,我提出了问题:一个数,在计数器上拨出它,所用数珠的颗数是3的倍数,它就是3的倍数,对吗?你是否认为我们研究出的结论对所有的数都适用呢?这两个问题的提出,意义在于通过“更大的数”和“任意找”两方面,使学生深切体验了不完全归纳法的这一要义,同时也培养了学生缜密思考问题的意识和习惯。

倍数的特征教学反思3

这堂课主要目标是引导孩子经历探索“2的倍数的特征”的过程,培养学生抽象、总结及概括能力,初步体会“不完全推理”的一般方法。在课前独立研究前,我首先布置了这样的两个问题:思考“我们怎样去找2的倍数的特征” 、“我们采取什么方法去找2的倍数的特征?”然后再让学生按书上的要求在百数图中独立的找出100以内2和5的所有倍数。这样孩子很自然的想到“找几个2的倍数来看看”,孩子就能够理解我们为什么要在百数图上找2的倍数,找到这些数之后,也会自发地去思考这些数有什么共同特征,而不会像牵线的木偶任我们摆布。在预习作业中我还布置了另两个问题:自学书本,弄清偶数和奇数的含义;思考能同时是2和5的倍数的数的特征。

但在课堂教学中还是出现了让人啼笑皆非的事,课始,我问学生,你知道这节课我们将会研究什么问题吗?令我意想不到的是在两个班中学生的回答如出一辙——“研究偶数和奇数”,有同学在位置上窃笑,我没有立即否定,接着问,那你知道什么叫偶数和奇数吗?(我的本意是在让学生作出正确回答后再顺势而导,偶数和奇数都是与哪个数有关,哪我们这节课只是研究2的.倍数的特征吗?让他自己发现回答的不全面)可没想到的是又来了一个出人意料的回答:2 的倍数是偶数,5的倍数是奇数。既然学生的预习效果如此不理想,我决定临时改变教学策略,跳出“学程导航”的模式,重新用老方法让学生在课上再一次经历探索的过程。但是从课堂的练习看,问题还是比较严重。

于是我就有些困惑,究竟是我的教学安排出现了问题,还是在预习作业的布置中语言的交代上不够清楚呢?我们虽然主张“先学后教”,让学生课前自主探究,提倡整体预习。但我还是认为,小学生的数学思维还处在形象思维向抽象逻辑思维转变的阶段,还是需要在一定的情景中在老师的引领下合作探究,而一味盲目地让孩子独立研究,而老师又不在旁边加以及时的指导和纠正,而在认知形成的初始阶段,一旦在认识上有偏差产生错误的结论,再想反它纠正过来往往是很困难的,因为第一印象很重要。现在强调课前预习我并不反对,毕竟学习目标的指向性更明确了,长期的培养,学生的学习方法肯定会得到提高,但对数学思想方法的培养上有些弱化,另外,缺少了在具体的情景下学习,总觉得知识的习得过于直接,学生容易遗忘。因此,数学预习应因学习内容而宜,因年级而宜。

倍数的特征教学反思4

《3的倍数特征》进行了两次教学授课,第一次是新授,第二次是录课重复授课。下面就本节课前后两次上课进行如下反思:第一次上课,采用游戏的方式引入,提前给学生编号,根据编号做游戏。由于每个学生的编号不一样,所以在做游戏的时候,每个学生集中注意力,倾听游戏要求,激发了学生的学习兴趣。设置游戏的目的是复习2或5倍数的特征,同时,对3的倍数特征的学习产生求知欲。接下来是采用提出猜想,举出个例否定猜想来过渡。让学生充分地认识到依据2或5的倍数特征的思想已经行不通了,从而开始新的探索。在探索过程中借助“百数表”,让学生独立地圈出3的倍数,圈完后互相交流3的倍数的个位有什么特点,再次否定了之前的思维定式。由于个位上没有特点,所以引导学生从其他的角度观察,学生能想到横着观察、竖着观察,但对于斜着观察不能很好的发现,所以本节课中我关注到学生的思考困境,引导学生从斜着观察的角度思考探索。当学生斜着观察时能发现个位上的数字依次减1,十位上的数字依次加1,适时提出“什么是没有变的?”问题一提出,学生恍然大悟,发现:个位和十位上的数的和没有变!顺其自然的知道了3的倍数具有这样规律。经过研究每一斜行发现:个位和十位上的数的和不变,都是3的倍数。知道了这个规律后,下面开始延伸这个规律。一方面:验证百数表内其他不是3的倍数是否具有这个规律?另一方面:比100大的数,三位数、四位数、五位数等是否具有这个规律?通过两方面的验证,再次强调了这个规律是普遍存在的,而这时3的倍数特征已经归结为:一个数各位上的数的和是3的倍数,这个数就是3的倍数。知道了3的倍数特征之后通过练习巩固加强,练习的设计是三道题,这三道题设计为不同的层次,第一题是基础题,第二题是拔高题,第三题是解决问题。通过做题发现学生本节课掌握得不错。最后,对本节课的知识进行了延伸,通过出示课本第13页“你知道吗?”,让学生明白为什么2或5的倍数特征只看个位就可以了,而3的倍数特征需要看所有数位。从而达到学知识不但要知其然还要知其所以然。整个教学过程中,学生能在猜想、操作、验证、交流、归纳的数学活动中获得丰富的数学经验,同时这也有利于学生创造力的培养。通过本节课的教学以及学生的掌握情况,最终检测本节课的目标较好的达成。但反思这节课的不足,我觉得在每个环节上的过渡应该更加的自然。另外,在小组讨论的时候应多关注学生的.交流,对学生进行适时地指导。基于第一节课的优点和不足,进行了第二次的授课即录课。由于学生们已经学习了过本节课,所以对于学生们来说已经是旧知识。要把旧知识重新来讲,如果照搬之前的授课方式已经远远不够了。如何更改,这给我提出来一个新的问题。为此,这节课我做了适当的调整。本节课我更多关注的是数学方法和思维方式的培养。其中体现在:

1、学生在举例验证猜想的时候,让学生体会反例的作用,如果有一个反例的存在,就说明猜想的结论是错误的。

2、在探索3的倍数特征时,对于100以内3的倍数,应如何着手验证,怎么选取数来验证,这一环节让学生体会:在研究规律的时候,优先选择数比较多的这一组,让学生明白如果有规律更容易探索和发现。

3、在拓展规律的时候,采用举了大量的数据,证明了规律的普遍存在,让学生体会规律的适用范围。

4、在做练习的时候,第2小题,关注学生思考问题是否全面,关注学生的思考过程。

5、练习的第3小题,一道解决问题的题目,通过让学生读题、审题、分析题之后,再思考。这一道题学生展示了多种的做题方法,体现了方法的多样性,同时也说明学生的思维是活跃的。本节课中的不足,练习中第3题学生的做法没有完全的在黑板上板书,另外,本节课中学生会超前说出所有问题的答案,使得教师略显失措,我觉得这是因为我备学生还不够。在今后的教学中,我会改进自己的不足。我将更深入地研究教材、钻研教法,不断提高自己的教学水平,设计出学生更能接受和喜欢的课。

倍数的特征教学反思5

“能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:

1、确立了基本技能目标和发展性目标并重的教学目标。

本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的探索过程来发现知识,获得结论,并感悟方法。

2、理性处理教材,使教学内容生活化。

教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的`三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时收集的数据一方面激发了学生学习的兴趣,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。

3、着力改变学生的学习方式。

学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。

4、合理定位教师角色,营造民主、和谐的学习氛围。

课堂教学中只有摆正了师生关系,才可能使学生得到发展。本节课学生始终是数学学习的主人,教师是数学学习的组织者、引导者和合作者。可以从以下两方面看出:一是从师生活动的时间分配上,二是从分层探究、有针对性的适当引导上。这节课从开始到结束,气氛始终处在民主、和谐之中,生活化的学习材料、平等的师生关系和开放的探究方式,

倍数的特征教学反思6

教学内容 :新课标人教版五年级下册17—18页的内容。 教学目标:

知识目标:让学生经历2和5的倍数的特征的探索过程,理解并掌握

2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。

力目标:在学习活动中培养学生的观察、分析、比较、概括能力和

合情推理能力。

情感目标:增强学生的探索意识,进一步感受数学的奇妙。 教学重点 掌握2和5倍的数的特征及奇数、偶数的概念。

教学难点 灵活运用2和5的倍数的特征及奇数、偶数的概念进行综合判断。

教学准备

教师为学生每人准备一张顺序数字卡片。

学生每人准备一张十行十列的百数表。 二、教学设计

(一)情景创设,导入新课

师:同学们,你们喜欢玩数学游戏吗?我们今天玩一个数学游戏。同学们可以随便说出一个数,老师马上就能判断出这个数是不是2或5的倍数。如果同学们有疑问,还可以用计算器进行验证。 (学生分别报数:32、485、674、260??)

师:32是2的倍数,但不是5的倍数。485是5的倍数但不是2的倍数。674是2的倍数但不是5的倍数。260既是2的倍数也是5的倍数。你们用计算器验证的结果和老师判断的一样吗?

生1:一样。

生2:老师你是怎样迅速判断出来的呢?

师:你们想知道其中的奥秘吗?

生:(齐答)想。

师:今天我们一起来研究“2,5的倍数的特征”(板书课题:2,5的倍数的特征)。

(二)问题探究,解决问题

(媒体出示课本第4页的百数表,学生拿出学具中的百数表。)

1、提出问题

师:同学们,你们能在百数表中找出5的倍数吗?利用自己喜欢的表示方式在5的倍数上做上记号(可以用—、√、○、△等符号)。

2、自主探索,合作交流,发现规律

(学生开始找5的倍数并做记录。)

师:谁能说一说你找出了哪些5的倍数?

生:5、10、15、20、25、30、35、40??

(根据学生回答,教师板书)

师:(引导学生观察、思考)你发现5的倍数有什么特征? 生1:这些数都相隔5。

生2:这些数个位上有的是0,有的是5。

师:(引导学生归纳5的倍数的特征)你们说的都不错,个位上是0或5的数都是5的倍数。

(根据学生回答板书。)

师:(引导学生验证举例)刚才我们观察的是100以内的数,也就是说观察的是一位数或两位数。那么是不是任何一个自然数,只要是5的倍数,个位上一定是0或5呢?请同学们任意写一个个位上是0或5的多位数,大家判断一下。

(学生先在小组内交流,然后全班交流)

组1:我们列举的数有:500、4500、605、125这四个数,通过计算,发现都是5的倍数。

组2:我们验证了5个数,得出结论:只要个位上是0或5的数一定是5的倍数。

??

师:大家是用什么方法发现5的倍数特征的?

生答

小结学习方法:列数字——归纳特征——验证特征

下面同学们就用这种方法去寻找2的倍数特征。

3、自主探索2的倍数的特征

(学生动手做。)

师:谁来说一说2的倍数有哪些?

生:2、4、6、8、10、12、14、16、18、20??

(根据学生回答,教师板书。)

师:观察上面的数,你发现了什么规律?

生1:我发现个位上是2的数是2的倍数。

生2:我发现个位上是4、6、8的数是2的倍数。

生3:我发现个位上是0的数是2的倍数。

(板书:个位上是0、2、4、6、8的数都是2的倍数)

师:(引导验证结论)请小组内的同学任意写几个个位上是0、2、4、6、8的数验证一下。

师:刚才我们研究了2的倍数的特征。是2的倍数的数叫偶数,偶数也叫双数。 不是2的`倍数的数叫奇数,奇数也叫单数。 师:谁来举例说一下生活中的偶数和奇数。

生1:我今年12岁,12是偶数。

生2:我17日出生的,17是奇数。

生3:我们班有50人,50是偶数。

生4:数学课本107页,107是奇数。

生5:珠穆朗玛峰8848米,8848是偶数。

师:那么0是偶数吗?说出你的理由。

生:0不是奇数,0是偶数。

师:你能说明一下你的理由吗?

生:因为个位上是0的数是2的倍数,是2的倍数的数叫做偶数,所以0是偶数,也是最小的偶数。

师:同学们说的非常棒,0是偶数。

4、深入探究

(教师出示下面的两组数。112、25、248、60、72、90.) 师:仔细观察上面的两组数,你发现了什么?

生1:60、90既是2的倍数又是5的倍数

师:什么样的数既是5的倍数,也是2的倍数?

生:个位上是0的数既是2的倍数又是5的倍数。

(三)应用拓展

1、观察、交流、合作。(学生的号码从1——50)

(1)请号码是2的倍数的同学站起来。

(2)请号码是5的倍数的同学站起来。

(3)请号码既是5的倍数又是2的倍数的同学站起来。

(4)请号码是偶数的同学站起来。

(5)请号码是奇数的同学站起来。

师:通过刚才的活动你发现了什么?说出你的号码,与同学们交流。。

生1:我24号,是偶数,也是2的倍数,站起来2次。

生2:我11号,是奇数,站起来1次。

生3:我20号,是偶数,也是2的倍数,同时既是5的倍数又是2的倍数,所以我站起来3次。

师:请站起来3次的同学说出你的号码。

10、20、30、40.

师:同学们观察一下这些数的特点,说说你发现了什么? 生1:它们既是2的倍数,也是5的倍数,个位上都是0。

倍数的特征教学反思7

本节课探究3的倍数的特征之前,我还是先让学生写出50以内3的倍数,然后让学生观察这些数有何特征,大部分同学找不着规律,个别同学可能是受上节课的影响,说出了:个位上是0、1、2、3、4、5、6、7、8、9的数就是3的倍数,但马上就被其他同学推翻了。

然后我就出示计数器,依次拨出3的倍数,让学生观察一共用了几颗珠子,让学生体会到有几颗珠子就是各个数位上数的和,发现珠子的颗数正好是3的`倍数,也就是各个数位上数的和是3的倍数,那么这个数就是3的倍数。说实话,学生对于这一规律,不是很容易接受,在后来的练习中,才慢慢体会到。

“想想做做”的五道题设计得比较好,体现了分层,特别是最后一道,学生通过交流讨论后,得出了先选数后组数的思路,练习的效果比较好。

倍数的特征教学反思8

3的倍数的特征比较隐蔽,学生一般想不到从“个位上的数字之和”去研究。上课开始先让学生通过练习回顾旧知:2的倍数与5的倍数的特征。然后让学生猜想:3的倍数又有什么特征呢?这样能较好调动学生学习的积极性。由于受2的倍数与5的倍数特征的影响,有些学生很自然猜测到“个位上是0,3,6,9的数是3的倍数”、“各位上的数字加起来是3,6,9的数是3的倍数”等等,学生能想到这几点是非常不错的。

学生进行猜想后,我并没有判断学生的猜想是否正确,而是出现了百数表,让学生在百数表中圈出所有的3的倍数,让学生从表中发现3 的倍数的特征,把自己发现的在小组间交流。此时,我还是没有判断学生的发现是否正确,而是让学生打开课本自学,从课本中找3的倍数的特征,当遇到问题解决不了时,我们可以向课本求助。然后问学生“各位上的数字的和是3的倍数是什么意思?请结合举例说说。”接下来将数扩到百以上,通过各种方式举正反例通过计算来验证从而得出3的倍数的特征。最后比较验证之前的猜想与发现。当我们向课本找到结论时,我们也要质疑,通过举例来验证。鼓励学生对知识要敢于质疑,敢于通过各种方式去验证,培养学生良好的数学思维。

在教学中,我能有效获取课堂生成资源,同时也注重方法的指导。比如:同桌举例验证时,涉及到了“123456”是否是3的倍数,先给予学生思考的时间,让后问:还有更加简便的方法吗?老师有效引导,让学生去发现“去3法”能给我们的判断带来很大的方便。还有在方框里填数等。有较好的教学机智与课堂驾驭能力,如:在百数表圈3的'倍数时,我的课件中有个数“99”忘记没有圈好,学生发现了这问题。在这里,我是表扬了发现此问题的学生,老师故意说:我是特意没有圈的,看我们的学生观察是否仔细,考虑问题是否全面……,把原本的错误变成良好的教学资源。练习的设计业很有层次与梯度,联系生活实际。

本节课也有很多不足的地方:百数表中的数据太多,部分学生的发现是乱七八糟的;在举例验证的过程中,学生的计算还不够,学生亲自从算中去体会更好;总结不太及时,从及时总结中提炼、提升会更好。

倍数的特征教学反思9

今天我教学了3的倍数的特征,我首先复习2、5的倍数的特征,然后我出示了几个不同的四位数,问生:谁能很快判断出哪些是3的倍数?想知道有什么窍门吗?这们引入课题很顺当,学生也很有兴趣。下面,我先让学生写出50以内3的倍数,再观察:3的倍数有什么特点?学生一时很难发现,仍从个位上的.数去观察,但马上被其他同学否定,当时我心里有点担心怎么看不来呢?,我启发学生再看看个位和十位上的数,通过交流后,在部分学生马上发现把每个数的数字加起来的和除以3都是正好除的,我让学生用这个发现对书上第76页的表格100以内的数进行验证一下,学生验证后我又让学生从100以外的数来验证。从而得出了3的倍数的特征。再通过用1、2、6可以写成哪些三位数?这些三位数是3的倍数吗?由此有什么发现?让学生进一步明白3的倍数跟数字的位置没有关系,只跟各位上数的和有关系。这样学生在完成想想做做第5题时学生思考时就不会漏写了。最后,通过后面的练习,我觉得在教学某些知识时,最好老师不要轻易下结论,只有让他们自己在反复实践中自己得出结论,才能牢固地掌握知识。

倍数的特征教学反思10

这节课新授知识较为简单,很适合让学生预习。所以课前我印制了百数表让学生圈出5的倍数和2的倍数,并设计了两个问题:1、观察5的倍数,想想这些数有什么特征?2、观察2的倍数,又有什么特征呢?一上课就小组交流这两个问题,同学们兴致高涨,足以看出预习效果是很好的。通过这样的教学,节省了很多时间,课堂作业可以当堂完成。从作业情况来看,大部分同学做得还不错。一小部分同学运用知识的能力欠佳,比如:写出5个奇数是这样写的:5、15、25、35、45.虽然这样写不能算错,但是这些学生可能对5的倍数与奇数的概念有些混淆。

在0、1、5、8,四张卡片中选出两张数字卡片,按要求组成两位数。

1、组成的数是偶数的有( )

2、组成的数是5的倍数的有( )

3、组成的数既是2的`倍数、又是5的倍数的有( )。

这道题部分同学答案不全,想想还是正常的,其实这道题对于中等以下的学生来说确实有难度的。

倍数的特征教学反思11

课堂总会有生成,不管一节课的教学步骤设计的有多严密、多紧凑,课堂教学中总会有新的问题产生,反思本节课的教学有成功也有不足:

1、导入部分

不足之处:

应该说导入部分形式单一,显得过于死板,如果通过一个小游戏,让学生考考老师,用教师的准确判断激发学生学习本课内容的兴趣,由此引出课题,从而调动学生学习的积极性,把探索的问题抛给学生,激起学生探索的欲望,进而引导学生说出更大的数字,此时教师仍然能准确判断,于是让学生更为佩服老师,想进行探究的欲望会更浓,接下来的探究过程便水到渠成,课堂气氛也会因此而高涨。

2、重点教学环节的设计

成功之处:

探索5的倍数的特征,先引导学生找出2的倍数,并指导找的方法,然后发现、总结2的倍数的特征。这样学生有了一个探索方法,引导学生总结探究方法后,我便放手让学生自己去探索5的'倍数的特征了,在合作交流中学生体会到了学习数学的快乐,同时也给了学生一个自主探索的空间,一个交流互动的平台,也使他们获得了学习数学的成功体验。

不足之处:

课堂生成教师要及时准确地把握,并注意语言的艺术性,教师必须进入状态,与学生融为一体。

3、教具学具的使用方面

成功之处:

我利用百数表,把1-100的数字中5的倍数,2的倍数通过让学生用不同的符号标出,给学生的感观一个有力的冲击。2、5的倍数的特征变得更直观,更明显,学生的印象会更深刻。

不足之处:

点找的很准确,应用合理。但现在想想,如果把这个百数表制成课件,用多媒体演示出来,而且让2和5的倍数用颜色标出,并在变色闪烁的过程中有声音的提示效果或许会更好些。

教学后的思考:

(1)是否需要验证发现的规律(2、5的倍数的特征),在哪个环节验证效果好。

(2)如何强化学生的知识,使重点更为突出,学生有眼前一亮的感觉。

(3)备学生很重要

在探究的过程中,课堂气氛没有预想的那么好,在练习中学生才开始活跃起来。也许在对数学活动的探索中,学生不够自信,只是试着说。教师需要做些什么,得以改变学生的状态。

倍数的特征教学反思12

心理学原理表明,新异的刺激可以引起学生的注意和兴趣。在教学中,根据不同的教材和要求,采取不同的教学方法,能够引起学生学习的兴趣,有利于创设良好的课堂气氛。

教学3的倍数特征这一课时,教师组织学生进行下列巩固练习:

下列数中3的倍数有:

1435451003328767488

学生利用3的倍数的特征一下子就回答了上面的.问题,得到了老师的肯定。这时我接着说:“我们来一场老师、学生打擂台怎么样?看谁说的3的倍数的数最多,我们看谁能考倒老师。”这时同学们兴趣盎然,纷纷出题来考老师。

生:42

师:111

生:78

师:57

生:81

师:20xx

生:6891

…………

这时师故意出错:369041

学生马上发现了这个数不是3的倍数,师问:“你能不能改一改其中的某个数字使它成为3的倍数。”

生:“可以将1改为2。”

生:“可以将4改为5。”

生:“可以将1改为5。”

生:“可以将1改为8。”

生:“可以将4改为2”

生:“可以将4改为8”

学生回答完后,我及时提问:“你们为什么不改其中的3、6、9和0呢?”学生通过思考回答:“因为0、6、3、9每一个数都是3的倍数,所以只要改4和1这两个数就行了。”这时我及时指出:“判断一个数是不是3的倍数可以用筛选法来判断,在各数位的数字中先筛去3的倍数或和为3的倍数的数字,若余下的数字之和是3的倍数,原数就是3的倍数,否则就不是。”这时我逐渐地出示下列这组数要求学生马上判断是否3的倍数。

56

561

5617

56178

561784

5617849

…………

这个巩固练习,有效地调动了学生的积极性,不断激起学生认知的内驱力,使学生在探索的过程中,主动学习、主动探索,带来了内心的满足感。

倍数的特征教学反思13

【初次实践】

课始,让学生任意报数,师生比赛谁先判断出这个数是不是3的倍数,正当我沉浸在游戏的情境之中,几个“不识时务者”打乱了课前的预想。“老师,我知道其中的秘密,只要把各个数位上的数加起来,看看是不是3的倍数就行了!”“对!在数学书上就有这句话。”……又有几个学生偷偷地打开了数学书。“怎么办?”谜底都被学生揭开了。面对这一生成,我没有死守教案,而是果断地调整了预设,变“探索”为“验证”,将结论板书在黑板上,让学生理解这句话的意思,然后组织学生将百数表中3的倍数圈出来,验证是不是具有这样的特征,最后进行一系列巩固练习……

[反思]

课堂上经常会出现类似上述案例中的“超前行为”,即有些学生提前把要探究的新知识和盘托出。我们的习惯做法就是变“探索”为“验证”,当然有些知识的教学采用这种方式是有效的,然而本课中“验证”的过程真能取代“探究发现”的过程吗?仅仅举几个例子试一试,验证方法单一,思维含量低,学生充其量只能算是执行操作命令的“计算器”,又能获得哪些有益的发展?如果经常进行这样的教学,还容易使学生形成浮躁浅薄,不求甚解,甚至只要结论的不良学习风气。怎么办,置之不理吗?如果这样,不仅没有尊重学生已有的知识经验,而且在已经揭开“谜底”的情况下,再试图引导学生进行猜想、实验、发现,体验遭受挫折后取得成功的那种激动,也只能是一种奢望。那么又该如何激发学生探究的热情,促使学生进行深入探究呢?

【再次实践】

(与第一次教学情况基本相同,有些学生能够正确地判断一个数是不是3的倍数,这时一些学生却依然感到困惑,我设法将这一困惑激发出来。)

师:同学们真能干,这么快就知道了3的倍数的特征,上节课我们学习了2、5的倍数的特征只和什么有关?

生:只和一个数的个位有关。

师:与今天学习的知识比较一下,你有什么疑问吗?

生1:为什么判断一个数是不是3的倍数只看个位不行?

生2:为什么判断一个数是不是2、5的倍数只看个位,而判断是不是3的倍数要看各位上数的和?

……

师:同学们思考问题确实比较深入,提出了非常有研究价值的问题。那我们先来研究一下2、5的倍数为什么只和它的个位有关。

(学生尝试探索,教师适时引导学生从简单数开始研究,借助小棒或其他方法进行解释。)

生1:我在摆小棒时发现,十位上摆几就是几十,它肯定是2、5的倍数,因此只要看个位摆几就可以了。

生2:其实不用摆小棒也可以,我们组发现每个数都可以拆成一个整十数加个位数,整十数当然都是2、5的倍数,所以这个数的个位是几就决定了它是否是2、5的倍数。

师:同学们想到用“拆数”的方法来研究,是个好办法。

生3:是否是3的倍数只看个位就不行了。比如13,虽然个位上是3的倍数,但10却不是3的倍数;12虽然个位不是3的倍数,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的数和个位上的数合起来是不是3的倍数就行了。

生4:我也是这样想的,我还发现十位上余下的数正好和十位上的数字一样。

生5:(面带困惑)起初,我也是这样想的,可是在试三十几、四十几时就不行了。余下的数和十位上的数不一样了,比如40除以3只余1,余下的数就和十位数字不同。

生(部分):对。

生4:其实40不要拆成39和1,你拆成36和4,余下的数不就和十位数字相同了吗?

生6:也就是说整十数都可以拆成十位上的数字和一个3的倍数的数。这样只要看十位上的数和个位上的和是不是3的倍数就可以了。

师:同学们确实很厉害!那三位数、四位数是不是也有这样的规律呢?

学生用“拆数”的方法继续研究三、四位数,发现和两位数一样,只不过千位、百位上余下的数要依次加到下一位上进行研究。3的倍数的特征在学生头脑中越来越清晰。

师:同学们通过自己的探索,你们不仅发现了3的倍数的特征,还弄清了为什么有这样的特征。现在你还有哪些新的探索想法呢?

生1:我想知道4的倍数有什么特征?

生2:我知道,应该只要看末两位就行了,因为整百、整千数一定都是4的倍数。

师:你能把学到的方法及时应用,非常棒!

生3:7或9的倍数有什么特征呢?

……

师:同学们又提出了一些新的、非常有价值的问题,课后可以继续进行探索。

[反思]

1. 找准知识间的冲突,激发探究的愿望。学生刚刚学习了2、5的倍数的特征,知道只要看一个数的个位,因此在学习3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的'倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

2. 激活学习中的困惑,让探究走向深入。创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学习中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学习中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学习中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。

3. 沟通知识间的联系,让学生不断探究。显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的好奇心,促使学生不断探究,将学习由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。

倍数的特征教学反思14

《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展。

新的课程理念要求我们在教学中尽可能地为学生提供一个自主、合作、探究机会,其宗旨也就在于培养学生在实际的学习活动中,善于发现问题和提出问题的能力,灵活运用知识去解决问题的能力,在研究和解决问题的过程中学会合作。3的倍数的特征,有规律可循,容易上成机械刻板、枯燥无味的课,学生虽能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计采用了启发与发现相结合的教学方法,激励学生大胆猜想,动手实践,去发现规律,形成技能,升华至应用于生活。

本课主要使学生在原有认知的基础上产生认知冲突,进而产生新的探索欲望,突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的`培养。当然,培养学生的创造个性,仅仅停留在教学活动的情境上是不够的,教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的机会,激发学生的创新欲望,学生的创造意识才能得以培养,个性才能充分发展。本课重点是要理解3的倍数特征,能够准确判断一个数是不是3的倍数。我采用的是复习导入,先和学生们一起回忆了一下

2、5的倍数特征,然后出示本课的教学目标。新授环节先让学生猜测一下3的倍数会有哪些特征呢?接着采用数形结合的方法,学生动手操作,在1~100的数字卡里找一找3的倍数,然后用自己喜欢的符号圈起来,然后观察小组讨论汇报。发现3的倍数特征不像

2、5的倍数特征一样,看一个数的末尾了,引导学生是不是要看这个数其它的数位上的数呢?学生发现也不是很难。教材中有提示,学生回家预习后也会清楚叙述出3的倍数特征是一个数各个数位上数字相加的和。找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。

这节课结束后,我感觉最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的效果。

倍数的特征教学反思15

站在跳板上学习数学——3的倍数的特征教学反思

《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展 。

“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学习中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的`错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。

其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的倍数特征则不然,一个数是不是3的倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。

《3的倍数特征》教学反思

《3的倍数特征》是小学数学五年级教学内容,它是在学生初步认识了因数和倍数以及2、5倍数特征的基础上进行学习的,是求最大公因数和最小公倍数的重要基础,也是学习约分和通过的必要前提。3的倍数的特征迥然区别于2、5倍数的特征,3的倍数的特征的发现过程与2、5倍数的特征的发现过程有着显著的差异。那么在学习“

2、5倍数的特征”之后继续学习“3的倍数的特征”,如何处理前面的学习经验与后续学习的关系?如何结合学习的内容,合理设计探究的台阶?这些既构成了教学的难点,同时也是教学中可以挖掘的资源,处理好这些问题,将会使学生经历更有效的探究活动,从而积累更为宝贵的数学活动经验,积淀基本的数学思想,进而彰显这一内容的教学价值。本节课有以下特点: 一、一环多效,目标明确

(一)在知识链接部分,利用表格先让学生判断哪些数是2的倍数,哪些数 是5的倍数,既复习了旧知,又充分调动了学生的学习积极性。在随后的巩固练习中又利用此表中数,让学生判断哪些数还是3的倍数,不但让学生巩固了新知,而且为今后继续研究的2、5、3倍数之间的联系埋下伏笔。

(二)随后的换位提问,由学生出数,老师判断这部分承载着两个作用。

1、激发起学生的求知欲望

2、通过学生验证老师判断是否正确,明确判断一个数是否是3的倍数的验证方法,为后面的多次验证打下基础。

(二)引出课题后,我们先让孩子尝试做导学案上的36□,□中填几就是3 的倍数,很多孩子因为思维定势会想到填0、3、6、9,通过验证发现答案是正确的,由此很多孩子会认为3的倍数的特征是个位上是0、3、6、9的数就是3的倍数。但肯定也有孩子发现这句话的片面性,从而判断这个猜想不成立。到此,我们并没有引导孩子们去研究3的倍数的特征究竟是什么,而是尊重孩子们的这种猜测,引导孩子结合之前的方框填数思考,在什么情况下这句话成立,使孩子们能从不同角度去看3的倍数的特征,也为后面判断一个数是否是3的倍数的方法的灵活性做好铺垫。

二、适时引领,突破重点

从建立猜想到自我否定猜想,是一个真实而自然的过程。在经历了这一过程之后,学生陷入探究困境的体验无疑将会更为深刻。此时,教师基于学生的强烈心里需求提出新的研究思路,恰当地体现了教师在探究过程中的引领作用。

本节课的难点是学生自主发现3的倍数的特征,我们教研组在研讨时,最初借鉴的是出示57 75 45 54 249 942一组数,想引导学生发现3的倍数特征不但与个位数字无关,与每个数字所在的数位也没有关系,从而使学生发现与各个数位上的数的和有关。但实际实践中,我们发现,学生很难发现与每个数字各个数位上的数的和有关。于是,我们再次研讨,修改设计,发现学生根据每组两个数很难发现这组数的和都是3的倍数,是不是和一样的多出几个数,并且先出简单的学生易发现的,是3的倍数的和不是3的倍数的都出两组,便于学生对特征的发现。由此我们改成了现在的四组数。①12 201 111②66 804 2316③25 1114 1231④19 4006 2044用此方法,再次实践,学生很容易发现了3的倍数特征与一个数各个数位上的数的和有关。

三、设计简约,注重实效

通过不完全归纳得到某一结论的可靠性,取决于所研究的对象的代表性,研究的对象的覆盖面越广,代表性越强,结论的可靠性就越高。通过列举其他的数验证,使学生深切体验了不完全归纳法的这一要义,同时也培养了学生缜密思考问题的意识和习惯。

学生在验证是否一个数各个数位上的数的和是3的倍数,这个数就是3的倍数时,我们本来的设计是以填空的形式来引导学生进行举例验证,但实践中发现这种方法由于字太多,学生理解起来好像很费力,于是又改成了提示性的问题,改后字少了学生却反而更糊涂了。再次研讨,我们决定采用表格的形式,简洁明了,实践发现,这种形式便于学生的理解,效果较上面两种方法都好。

下载倍数的特征教学反思word格式文档
下载倍数的特征教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    3的倍数特征教学反思

    3的倍数的特征 ——教学反思 济阳县澄波湖学校 赵娜 《3的倍数的特征》是学生在学习过2、5倍数特征之后的又一内容,因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易......

    《3的倍数的特征》教学反思

    《3的倍数的特征》教学反思1 今天我教学了3的倍数的特征,我首先复习2、5的倍数的特征,然后我出示了几个不同的四位数,问生:谁能很快判断出哪些是3的倍数?想知道有什么窍门吗?这们......

    3的倍数特征教学反思

    3的倍数特征教学反思15篇 3的倍数特征教学反思1 “能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:1、确立了基本技能目标和发展性目标并重的......

    3的倍数的特征教学反思

    3的倍数的特征教学反思 常路中心小学王慧 《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在......

    《3的倍数的特征》教学反思

    《3的倍数的特征》教学反思 今天学习了《3的倍数的特征》。有了昨天学生自学《2和5的倍数的特征》做基础,孩子们自学起来找到了些许门道。而我也显得不那么急躁,不急于发言,而......

    《3的倍数的特征》教学反思

    《3的倍数的特征》教学反思 本节课设计让学生先复习2,5的倍数特征,然后让学生先猜测一下3的倍数会有哪些特征,一部分学生很自然会猜测3的倍数也是看个位是否是3,6,9,这个时候就......

    《3的倍数的特征》的教学反思

    《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其......

    《3的倍数的特征》教学反思

    《3的倍数的特征》教学反思范文1 《3的倍数的特征》本节课的教学活动,注重学生实践操作,展开探究活动,组织学生进行交流和探讨,注重培养学生发现问题,解决问题的能力,让学生经历......