判定教学反思1
《数学课程标准》中指出:“学生的数学学习内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”新课程与旧课程的本质区别是理念的不同。旧课程认为课程是知识,教师是知识的传授者,学生是知识的接受者。而新课程认为课程不仅是知识,同时也是经验,是活动,课程是教师和学生共同探求新知识的过程,学生获取知识的过程是自我建构的过程。因此,在这节课的设计上,力争创设一种符合学生认知规律的、轻松和谐的学习氛围,鼓励学生自主探究和合作交流,最终能灵活解决数学问题。以下是我对这节反思
这节课我比较满意的是:
1、对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定与性质进行了灵活的运用。注重学生的自己分析,启发学生用不同方法解决问题。
2、课堂上在与学生的对话和让学生回答问题时,有意识地锻炼学生使用规范性的几何语言。
3、注重由学生从临摹书写到自主书写,锻炼学生的动手能力。
这节课还需改进的是:
1、课堂的应变能力还需提高。对例三的研究时间过长,使后一阶段学生的思考时间较紧,由于时间关系,学生没有充分思考,虽然学生踊跃举手,但毕竟其他学生没有参与的.机会。在今后备课中,继续要充分考虑到这一点。让学生在课堂上有更多的自主学习时间,让学生在实践活动中锻炼成长。
2、板书还要精心设计。
3、没有兼顾到学生的差异,如果在分析的环节不同层次的学生能够同伴互助,那么课堂的实效性将更充分体现。
反思是为了促进发展,反思是一种有思考的学习,是一种有理性的总结,可以提高教师教学教研的水平。今后每一节普通的课,都是我不断反省、审视自己,不断完善自己基本技能、提高教学水平的载体。
判定教学反思2
《平行四边形的判定》是学生学习习近平行四边形的重要知识。一共分为4个课时。在学习习近平行四边形的判定,同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。在设计教学的亮点是充分利用小组合作学习、一题多变、一题多解、多题一法。
充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的'联系和区别,同时提升解题能力,避免了“题海战术”。
多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。
判定教学反思3
这节的主要内容是平行线的的判定方法,这也是本章的重点内容,利用同位角判定两直线平行的方法平行线的画法给出的,在画平行线时,三角尺移动要紧靠直尺,三角尺的大小不变,也就是同位角相等,利用内错角和同旁内角来判定两直线平行,我采用教科书的探讨问题的方式,通过分析,引导学生去发现这些角之间的关系,要求学生自己完成,学生在推导方法二时,总认为此时已知同位角相等,而不是经过简单的推理证明得到,这点我很困惑,之前也强调来,但作用不大,学生推导方法三时,大有好转,能用方法一或方法二得出方法三。
在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的.讲解尽可能让学生自己完成。
2、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。
3、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。
本节课对初一学生而言,本是又一个艰难的起步。但这一堂课,学生学得比较轻松,课后作业效果也很好,基本达到“轻负荷,高质量”的教学要求。
一堂课下来,遗憾也有不少。比如没有兼顾到学生的差异,不同的环节可让学生互助;对平行线判定公理的研究太长,导致后面的练习巩固时间不充分;在这堂课上,部分同学没有展示自己的勇气,一方面与教学内容的难度有关。
判定教学反思4
三角形全等的判定方法一:边边边公理,是三角形判定方法研究的第一课时。本课在教学时有三个难点:
1、体会有一组量、两组量对应相等的两个三角形不一定全等;
2、三组量对应相等的各种情况的分类;
3、利用“边边边”判定全等推理的书写格式。
本节课的重点是探索三角形全等的“边边边”的条件;了解三角形的稳定性及其在生活中的应用;运用三角形全等的“边边边”的条件判别两个三角形是否全等,并能解决一些简单的实际问题。
有学生的预习,难点1的突破还是可以很快进行的,但是反例的列举还不够。难点2是学生分类解决问题能力的检验,学生能够很顺利地分成四类:三条边、两边一角、两角一边、三个角,但是不能更加细致地分类,不能进一步把两边一角分为两边及其它们的夹角、两边及其中一边的对角;不能把两角一边进一步分为两角及其夹边、两角及其中一角的对边。从课上的实施看,四种情况的分类基本做得比较好。课后细想,进一步的分类,本课也可以不再进行,可以到下一课再细化。理由是:学习是一个循序渐进的过程,没有必要每一次的新知引进都要一步到位,况且本课要处理的问题还是挺多的,课堂教学要有所侧重。难点3的'引导较好,但是学生全等推理的书写格式还有待于继续训练。证明全等的准备条件在写两个三角形全等之前就要书写说明;直接条件直接写,隐含条件要挖掘。
从本课的教学情况看,学生的预习还需指导,学生对课本上探究2的操作比较粗糙,课堂上需要教者认真示范引领;课堂容量的把握要适度,本课我安排了两个例题,一个开放型填空题和四个解答证明题,学生的思维训练是充分的,四个证明题也是有学生上黑板板演的,多数同学是能够全部完成,但是不可否认,还是有同学没有来得及,作一个角等于已知角的教学还不很充分,全面提高学生的教学质量要真正得到保证。
在课堂上让学生能参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法。通过三角形稳定性的实例,让学生产生了学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下了基础。
判定教学反思5
对教材没有进行充分的研究,在本例题的基础上再进行拓展延伸,并适当进行应用,课堂内容显得有些不丰满,不充实,没有很好的培养学生的发散思维,题目准备很多,但是不够精练,时间上把握不是很准,教学任务完成的不够完美。
应注意几点:
1、充分备课,研究教材和大纲,在备课上多下功夫。
2、课堂内容不在多而在精,能够培养学生的发散思维,举一反三的能力。
3、在利用自主互助学习型课堂的过程中,要把握好度,既要让学生有独立思考的时间,还要在适当的时候培养互助的习惯,养成不依赖他人,又要互相帮助的`习惯。
4、不断学习,提高自己的教学水平,多研究教法,因材施教,研究一套适合学生和自己的一套教学方法。
判定教学反思6
今天在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:
(一)突出重点,实现教学目标
《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。
(二)导课自然,成功引入新课
首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的'兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
(三)设置有梯度,学生易于接受
在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。有着良好的效果
这节课,也有不足的地方:
(一)在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。
(二)上课的节奏有点快。在以后的教学中能多加以改正。美中不足的是性质二的应用本节课安排的例题,习题有点少,在以后的教学中应多补充些例题及习题。
判定教学反思7
1、根据本节课内容特点和八年级学生思维活动的特点,采用了探究教学法,通过实验操作、设疑思考、巩固掌握等腰三角形的性质,等腰三角形“等边对等角”、“等腰三线合一”特征,等腰三角形的判定方法。
2、巩固运用等腰三角形的性质,判定方法,思考解决问题的方法和策略.在教学中应注重训练学生的正确表达数学文字语言和符号语言的转化。
3、教学中应自然地渗透数学思想方法,如:分类讨论等,学生初步形成有分类讨论的意识,巩固运用———熟识基本图形“角平分线——平行线——等腰三角形”使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的
4、通过对问题的分析及实际问题的解决,注重培养学生之间的`合作、交流意识与语言表达能力,增强小组合作意识。进一步提高学生说理和逻辑思维的能力,逐步培养用数学的意识。主动探求新知的动机。获得研究的乐趣,久而久之甚至发展为志趣。
5、存在的问题:
(1)对腰三角形性质,判定应用及知识的拓展方面较薄弱,显得深度不够。
(2)课堂中虽有学生自主探索活动。但放得还不够,仅局限于教材中的一些知识探索显得平淡无奇。
(3)在时间安排上,过于注重了学生知识形成过程,而对知识应用及拓展部分时间仓促,未能达到理想效果。
判定教学反思8
一、课前的准备与预设
课题:三角形全等的判定(一)(复习课)
教学目标:
1、知识目标:使学生进一步熟悉三角形全等的判定定理1的内容,加深对等腰三角形性质的理解,达到学生系统获取知识的目的。
2、能力目标:通过一题多变,培养学生的发散思维能力,让学生善于观察图形,积极进行直觉猜想,提高学生分析问题、解决问题的能力。
3、情感目标:培养学生敢于发现的探索精神,实事求是的科学精神和勇往直前的进取精神。
教学重、难点:从复杂多变的图形中探究满足定理的条件。
教学方法:以“引导──探究”为主,“启发──讨论”
教学思路:首先,课前,教师给出复习提纲,让学生带着问题自学教材P--P(三课时);其次,围绕本节课的复习内容,要求每位同学撰写一篇小论文;第三,上课时,先由学生结合论文总结知识要点,然后从P例2展开,通过“连接BC、EF”两次辅助线,让学生寻找全等三角形(为说明方便,把BF、CE交点记为O)。再用“SAS”证明△BEO≌△CFO受挫后,用剪纸的方法发现它们的确重合,为教学“ASA”埋下伏笔。
例2、已知,如图,AB=AC,E、F分别是AB、AC上的点,且AE=AF。
求证:△ABF≌△ACE
二、课中的生成与处理
在上这节课时,并没有按笔者的设计方向发展。自然,设计中的“连接BC”,经讨论,分别有两学生论证了△ABF≌△ACE和△BCE≌△CBF。接着,我对条件中的“AE=AF”加上着重号,让学生仿照上面做法,对图形稍作变化(意在提醒“连接EF”)编一道几何题。话音刚落,一生举手发言:“我把△AEC绕点A旋转一定角度,此题就变成了P的例4”。另一生紧接着说:“作射线AO交BC边于D点,则AD是∠BAC的角平分线,图中有更多的全等三角形。”这时我心中不禁为之一震,我为课前的粗浅设计和公开课上出这样的意外情况而震惊!更为学生的发散思维而折服!
怎么就没有学生站起来说连接EF呢?该如何是好?是用“这两种编法留到课后大家讨论”搪塞过去,按原计划讲完这节课?还是按学生思路探索结论?如果这样探索下去,这节课内容是完成不了的;如果阻止学生探索,岂不扼杀了学生的求知欲望和创新意识?
这个问题的实质就是当前教学改革中面对的以传授知识为中心,还是以培养能力为中心;以教师为中心,还是以学生为中心;重解题的发展、探索过程,还是重固有知识的运用;是提高学生的整体素质,还是增加学生知识的素质教育问题。换言之,执教者是采取按照事先预设好的思路,把学生一步一步地引向窄小的通道,这种注入式的传统教学模式进行教学,还是采取让学生自主发展、自我探究的这种“设疑---探究---解答”的开放式教学模式进行教学,这也是运用传统教学观,还是现代教学观指导课堂教学的问题。
于是我果断地改变了原来的教学设计,肯定和表扬这两个学生的编法,继续探究问题的解决思路。问:“AD为什么是∠BAC的角平分线呢?”问题一放开,学生的思路也开阔了。一学生马上回答:“因为△BCE≌△CBF,所以∠OCB=∠OBC,所以OB=OC”(原来,“等腰三角形的判定”他也自学了!)再利用“SAS”证明△ABO≌△ACO”,所以∠BAO=∠CAO。受其启发,另一学生说也可以用“SSS”证明△ABO≌△ACO。这样一来,学生的积极性更高涨了。又有一学生说用“SAS”证明△AEO≌△AFO也可以达到目的。此时,有一学生可能太激动,说:“老师,我要编一题:请问图中有哪些相等的线段、相等的角?”……这节课在热烈的气氛中结束。
三、课后的收获与体会
(一)学生的收获
学生在自学的基础上,把判定定理1内容与等腰三角形性质有机地结合起来,并能迁移到三角形全等的其他判定定理中,获取了较大容量的知识,培养了思维的广阔性、变通性、灵活性等思维品质,激发了学习数学的兴趣,孕育了获取知识的探索精神,提高了分析问题,解决问题的能力,其重要意义比做几题练习题要大得多。
(二)教师的体会
通过教学,我深刻地体会到:学生创新学习精神、创新学习意识、创新学习思维、创新学习方法的培养应当成为素质教育的重点。而课堂教学则是落实素质教育的主阵地,因此,在课堂教学中,应让学生感受、理解知识产生和发
展的过程,激发学生独立思考和创新学习的`意识,提高学生获取新知识并能运用知识去分析和解决问题的能力,变学生由“学会”转向“会学”再到“创造学”,变由教师“教”转向学生“学”与“创”,把培养学生创新学习精神放在首位。为此,在教学中应努力做到以下几点:
1、变教案为学案。教案既要有教师的教学过程的教学活动、教法,又要有学生的学习过程和学习活动、学法,充分突出学生的主体地位,让学生有质疑问难、实践操作的时间和空间。
2、创设学生氛围,变革教学模式。
(1)应有学生与老师一起平等地探讨教材的机会,不定向学生的思维,营造宽松民主的学习氛围;
(2)实行参与式教学,让学生大胆地动脑、动口、动手,允许学生发表自己的观点,提高学生课堂教学的参与度;
(3)教师要有驾驭课堂的能力,能及时调整教学策略,实行开放式教学。
3、引进激励机制,激发求知动力。
(1)要阶段性地进行效果反馈,不断强化学生的学习动机;
(2)要因材施教,分层次教学,让各层次学生都有一种成就感;
(3)开展各类学习竞赛活动,调动创新学习的兴趣。
四、后期的反思与提升
课堂之所以是充满生命活力的,就因为我们面对的是一个个鲜活的富有个性的生命体。课堂教学的价值就在于每一节课都是不可预设、不可复制的生命历程。追求生命的意义应成为数学教学的起点和归宿。作为教师要勇于直面学生的非预设生成,积极地对待,冷静地处理,把学生的这些非预设生成尽可能转化为自己的教学资源。
第一,教师要重视课前的备课。不能错误地认为,既然课堂是生成的,课程改革以后应该简化备课,甚至不要备课。孰不知,没有备课时的全面考虑与周密设计,哪有课堂上的有效引导;没有上课前的胸有成竹,哪有课堂中的游刃有余。所以,课程改革以后不是不要备课,而是给备课提出了更高的要求。在备课中既要关注教材,更要关注学生。要考虑不同的学生会有哪些不同的思考,可能会出现哪些解决的方法。使自己的教学设计更符合学生的认知能力。
第二,教师要转变教学观念,树立正确的学生观。理念决定行为,教师要更新教学观念,树立以学生为主体的意识,要学会尊重和欣赏学生,舍得放弃自己的权威。教师要学会倾听,善于倾听学生的回答。学生会说了,也就得到发展了,这也是课堂教学的最终落脚点。教师还要沉得住气,舍得让学生说,要让学生把话说完,在学生尚未阐述清楚观点时,切莫随便发表自己的看法,这体现了对学生的尊重。更重要的是,要倾听学生发言的背后,他在想些什么,为什么会这么想。即使学生说错了,也要分析一下为什么错了,为错找出病因,然后对症下药。
第三,教师要追求精心的预设和课堂生成的合理利用。课堂是动态生成的,它的生成性来自于教师对教育的科学和艺术的把握,来自于课堂的开放性。课堂教学中讲究师生平等,学习问题需要师生平等地研究。知识是不能置顶的,它应该是无限生成,发展的。似天一样高,如海一般阔,学生不应该是笼中鸟,网中鱼,给予他们自由的空间和展示的平台,他们就可以充分地表达自己,肯定自己,而我们必须做到的只是信任,引导和参与。
总之,数学课堂教学要真正体现“以学生的发展为本”的教学理念,教师就必须转变教学观念,创造性地运用教材,创造性地设计学习活动,从而有效促进基于学生的生活实践或学习探究活动的预设生成中,让学习主体的认知结构、自主探究、创新能力与个性发展等方面持续地、动态地生成于开放合作,积极互动的课堂学习环境中,把课堂还给学生,让课堂充满生命活力。
判定教学反思9
平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。在设计《平行四边形的判定》一节内容时我在第一课时主要探讨平行四边形的判定的四种方法,在探讨时按照性质的探讨思路:从边、角、平分线三点来分别探讨,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我要求学生将每种判定的'数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。第二课时我主要是利用判定来证明平行四边形以及进行计算。
利用性质与判定的互逆,学生对四个判定的掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。
几何证明题一直是学生的一个弱点。初二的学生按照课标不要求些规范的证明过程,但是考试却要求书写严格的过程,由于没有规范的例题示范以及有关习题,所以学生的几何证明题仍然是一个弱项,因此习题课上有部分学生仍然存在会分析,但是书写不规范的情况,这在今后的学习中是一个需要改变和提高部分。
判定教学反思10
《数学课程标准》要求:让学生成为行为主体“动手实践、自主探索、合作交流 ”。以上述思想为出发点,本节课的教学设计体现了活动性、开放性、探究性、合作性、体验性。
教学流程:创设情境,激发求知欲——合作交流,探索新知——应用拓展,达成目标——归纳总结,深化目标
1.关于探索
两个三角形相似条件的探索,本设计没有按照教科书那样直接指导学生按部就班地画一个角,两个角这样的程序进行。而是首先在新旧知识的转折处,创设有助于学生自主学习的问题情境——能否配制一张完全一样的玻璃来引导学生探索并深入研究。使学生经历“直观感觉――动手感知――理性思维”的活动过程,在教师指导下生动活泼地、主动地、富有个性地学习,真正感受数学创造与探索的乐趣。
2.关于应用
三角形相似的判定方法的应用是本节的一个重点,在运用时,如何找准相等的两组对应角是一个难点。本设计注重了习题的发展性作用,层层深入,逐一突
破难点。同时根据变式分层的思想,设计具有一定跨度的问题串,组织学生进行变式训练,使每个学生都得到充分的发展。
3.课堂组织
本课采用“自主探索,合作交流”这一教学组织形式,鼓励学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,能在倾听别人意见的过程中,逐渐完善自己的想法,感受到与同伴交流中获益的快乐。
4.关于评价方式:
本章定位于以直观几何为主体、附以一定程度上的说理和简单推理。本节课关注的是学生能否主动参与小组合作,积极探索。为此,教师要特别关注学生个性化的学习需求以及对个性化学习的恰当评价在课堂教学中,给学生留有充足的.时间,发表自己的观点,教师应及时表扬和鼓励,这有助于学生认识自我,建立自信,发挥评价的教育功能。
5.遗憾之处:
①题量过大,课堂时间安排较紧,有些问题落实的还不够深入。
②有些题虽然学生做了,教师讲了,但没有从题目本身往深处挖掘,仅是为做题而做题。
6.反思之处:
反思一,集体的智慧是无穷的,一定继续发扬团结协作的好作风;反思二,教材的内涵是无尽的,一定要挖掘到一定的深广度;反思三,教师的经验是宝贵的,一定要开诚不公的交流;反思四,工作的责任心是必要的,一定要无私奉献;反思五,教师的工作是高尚的,来不的半点虚假。
总之,教师的教学技艺和水平在每天的工作中慢慢的提高,我会把教学反思一直坚持下去,因为它是我们教学提高的催化剂,更是学生学习进步的助力器。
判定教学反思11
昨天对三角形全等进行复习,教学目的是:使学生能灵活运用“SSS”、“SAS”、“ASA”、“AAS”和“HL”来判定三角形全等;体会文字命题转化为数学符号语言的过程,掌握文字命题的证明。
对于本单元的知识内容,学生很容易掌握,但是,与单纯的知识内容相比,更重要的是利用这些知识内容解决问题。因此,本课的复习就是重在证明题的分析方法上。
这一课的.教学案设计是这样的,预习导学部分安排复习了定义、性质、判定方法;安排复习三角形全等的条件思路;安排复习找三角形全等的条件时经常见到的隐含条件;三个对应相等的条件不能使三角形全等的情况及其反例。前置学习第二部分的三个选择题,有效地复习了“对应相等”、“两边夹角”、“边边角”和“角角角”不能的注意点。又安排了两次全等的证明题,并由命题的证明归纳文字命题:“等腰三角形底边的中点到两腰的距离相等”,为学习文字命题的证明作好了准备,也训练了学生语言表达能力。
在前置学习的基础上,我让学生上台叙述例题1的证明思路,并由两条题目的分析思路的探究体会怎样分析和总结证题时常有的合理联想,如“由垂直想互余,互余多了自有同角或等角的余角相等”、“由角平分线想折叠”等等。接着学习例2和练习学习文字命题的证明步骤:根据题意画图形,结合图形写“已知”和“求证”,认真分析得“证明”。
这一课复习安排的内容比较多,学生思维训练很充分,证明和分析方法体会得不少,学生动手写证明的全过程偏少,文字命题的训练占全课的比重较小。
收获:
利用学生主动的探究,学生对三角形判定和性质掌握比较好,而且由于学生对每一个判定和性质都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。
不足:
1、学生识别图形的能力差、如:“ASA”与“AAS”“HL”判别不清。
2、几何证明题一直是学生的一个弱点。学生存在会分析,但是书写不规范的情况。
3、构造三角形全等的能力不足。如:适当添加辅助线解决问题。
4、从复杂图形中抽出基本图形的能力不足,导致问题解决不了等。这些在今后的学习中是一个需要改变和提高部分
判定教学反思12
本节是高一《必修2》第二章第三节第一课时的内容。本节课所要达到的知识目标是:
(1)掌握线面垂直的定义;
(2)掌握线面垂直的判定定理,并能利用判定定理证明一些简单的线面垂直问题。
所要达到的知识目标很明确,但学生的实际情况是空间想象能力较弱。所以本节课我先是以生活实例让学生比较直观的认识线面垂直,同时让学生自己动手比划找出线面垂直的条件,鼓励学生自己给出线面垂直的定义。然后,引导学生探索发现线面垂直的判定定理。最后,利用判定定理证明一些简单线面垂直问题。本节课我最满意的地方是线面垂直定义、定理的引入。最大亮点是我依次给出了三个设问,大胆鼓励让学生自己动手比划,再结合生活实例,得出结论。设问:
(1)如果一条直线和平面内的一条直线垂直,那么这条直线一定能和这个平面垂直吗?
(2)如果一条直线和平面内的无数条直线都垂直,那这条直线一定与这个平面垂直吗?
(3)如果一条直线和平面内的任意一条直线都垂直,那这条直线一定和这个平面垂直吗?
完全放开让学生自己动手比划,让学生在动手的过程中发现问题,最后由他们自己总结出定义。
这个过程使学生很有成就感,而且极大的调动了学生学习兴趣和积极性。好些学生说:“立体几何太有兴趣了,根本没有想象的难嘛!”之后,我又给出设问:如果一条直线和平面内的两条直线垂直,那这条直线一定与这个平面垂直吗?然后还是由学生动手比划得出结论。为了使他们的结论更具有说服力,我又举了生活中的实例,比如教室的墙拐角所体现的线面垂直等。最后得出本节课的重点知识线面垂直的判定定理。这部分之所以感到满意,是因为所有的内容基本都是让学生亲自动手比划得出的,这使他们对定义的理解更到位,更深刻。以至于在后面的实践证明中原本很愁人的`地方反而比较顺手,学生也一直比较兴奋,课堂气氛很活跃。之后的作业反馈,大部分学生都能证明出一些简单的线面垂直问题,这也说明我的这堂课的确是比较成功的一堂课。通过这堂课,让我对立体几何这部分的教学有了全新的看法:一定要以最大的可能让学生自己动手,自己比划,发现问题,试着自己
总结规律,得出结论。要努力把他们的态度从“要我学”变为“我要学”升华为“我爱学”
判定教学反思13
1﹑在空间中,平面与平面之间的位置关系有两种,一种是平行,一种是相交,而垂直是相交中一种非常重要的位置关系,它的应用很多,充分的把线线垂直﹑线面垂直﹑面面垂直之间的互相转换表现的淋漓尽致。
2 ﹑平面与平面垂直的定义是通过二面角给出的,二面角这个难点的内容已经在上一节课中完成,给这节课留下了比较充裕的时间来探讨平面与平面垂直的判定定理。
3﹑本节课在上一节课二面角的基础上,让学生观察地理、建筑学以及生活中具体的实例,使学生很快的观察出两个平面是直二面角的特点。让学生类比平面与平面平行的证明方法即线线平行得到线面平行再到面面平行,将平面与平面的垂直转化成直线与平面的垂直的'问题,从而得到了平面与平面的垂直的判定定理。提高了学生的想象力,类比能力,让学生学会多角度分析和思考问题,感受从旧知识转化到新知识得快乐,培养学生的创新精神。
4﹑注重学生的逻辑推理的严密性,给时间学生书写过程,规范书写。
判定教学反思14
这一节课的教学重点是等腰三角形的判定定理及其应用,难点根据题目所给条件进行适当的说理,教学方法主要是讨论、探索、启发式,运用辅助工具是多媒体课件。
开始上课时先让学生观察生活中一组都含有等腰三角形的图片,让学生体会数学来源于生活,生活中存在数学美,接着引导学生说出这组图片的特点,从而引出本节课要探究的主要内容即本节课的课题《等腰三角形的判定》。
在教学过程中,先让学生动手做以下的实验:
在白纸上画一条线段BC,以BC为一边分别以B、C为顶点,画两个相等的角(用量角器),这两角的另一边交于点A,让学生比较AC与AB的长度?设疑问:通过以上实践你得出什么结论?让学生思考、猜想、总结归纳出结论,让学生体验知识产生的过程,激发学生探求知识的欲望,接着为让学生证明实验的结论,用多媒体来演示三角形的翻折过程,并引导学生总结实验的结论。进一步提问学生:本结论的前提条件是什么?已知什么?结论是什么?如何用数学语言把这个结论的'意思表达出来?让学生思考两分钟后,挑选一个学生回答,在学生回答过程中引导并在黑板上板书出来,目的是让学生很好地理解这个结论的意思。然后引出:我们通过实践得出这个结论作用是用它来识别等腰三角形,也就是我们这节课的重点内容:等腰三角形的判定,与前面提到的课题前后呼应,接着引入如何利用判定定理解答一些问题,在讲例题与练习的过程中,题目由浅到深,题型由口答到动手写,在这过程,让学生能够充分的掌握与运用,老师只是从旁引导,并给予一定的帮助与纠正。
总之,本节课较好地完成了教学目标,让学生体会数学来源于生活,生活中存在数学美,让学生能很好地理解等腰三角形的判定定理的含义及利用其来简单说理。但静下心来,认真思考,发现这节课我还有许多不足之处:
1、如果在板书用数学语言表达实验结论:在一个△ABC中,如果∠B=∠C,那么AB=AC的之前在黑板上画出一个三角形引导学生指出∠B所对的边是哪一条边,∠C所对的边是哪一条边后,再把用数学语言表达结论板书出来的效果比直接板书的效果好。
2、在教学过程中,忽略等腰三角形的性质定理与判定定理的区别。
3、在教学过程中有时语速过快,语言不是很简练。
判定教学反思15
利用性质与判定的互逆,学生对四个判定定理的掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的数学表达和语言能力。
今后应加强的方面:八年级按照课标不要求书写规范的证明过程,学生的几何证明题仍然是一个弱项,因此有部分学生仍然存在会分析,但是书写不规范,这在今后的'教学中需要加强对学生的训练。
判定教学反思
判定教学反思1
《全等三角形的判定》这一课,要求学生会通过观察几何图形识别两个三角形全等,并能通过正确的分类动手探索出两个三角形全等的条件。具体说:
(1)正确识别两个三角形全等——会将两个三角形相等的边和角对应重叠在一起,看是否重合;
(2)相信判定两个三角形全等不一定要3条边和3个角都相等,可能一边或一角相等就足够(这个判断不一定要正确,但要有这种想法,探索命题的真假才有可能);
(3)能正确地将三角形的6个元素按条件的个数分成:①一个元素:一个边或一条角对应相等。②两个元素:两边或一边一角或两角对应相等。③三个元素:三边或两边和一角或一边和两角或三角对应相等。或者按:①边(一条边或两条边或三条边分别对应相等),②角(一个角或两个角或三个角分别对应相等),③边和角[一条边和一个角或一条边和两个角(又分为角边角和角角边两种)或两条边和一个角(又分为边角边和边边角两种)分别对应相等];
(4)能将分好的三大类(12小类)条件用画图的方法进行验证,找出能判定两个三角形全等的.三条公理和一条定理;
(5)能用这四个判定,直接判定两个三角形是否全等或能补充一个条件使两个三角形全等。
基于知识的完整性和分类的数学思想的渗透,我认为这个教学设计体现了知识与技能目标。增强学生的观察、猜想和动手操作能力。
判定教学反思2
在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
2、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;用几何画板设计游戏“米奇走迷宫”,在游戏中检验学生运用知识的熟练程度。而每一个环节的设计都是围绕着需要解决的.问题展开,不是单纯地追求形式的变化。
3、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。本节课对初一学生而言,本是又一个艰难的起步。但这一堂课,学生学得比较轻松,课后作业效果也很好,基本达到“轻负荷,高质量”的教学要求。
一堂课下来,遗憾也有不少。比如一个提问的不到位,上台展示的学生误解了我的意思,竟去书写推证过程(这超出了他们此时的能力范围)。在这堂课上,部分同学没有展示自己的勇气,一方面与教学内容的难度有关,另一方面也与我没能让他们完全放松下来有关。
判定教学反思3
在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。在对课案的反复打磨期间,本人收获颇丰。
但有些环节中的处理做得不是很好,定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的`时间较少。探索判定定理时,安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给学生思考。
改进措施:
1、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
2、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
3、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
4、对学生的学习与做题多些方法性的指导。
在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
判定教学反思4
平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。《平行四边形的判定》一节按照课本分为两个课时,前两个判定为第一课时,第三个判定作为第二课时,本节是《平行四边形的判定》的第一课时,主要探讨平行四边形的判定的两种方法,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我本来打算要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养,但是最后由于时间没有把握好而最终没能落实下来,成为课堂的一点遗憾。
在这节课的教学过程中,学生的思维始终保持着高度的活跃性,出现了很多的闪光点,对我的启发也很大,真可谓教学相长。所以在教学过程中教师应积极转变传统的“传道、授业、解惑”的角色,在教学中应把握教材的精神,在设计、安排和组织教学过程的每一个环节都应当有意识地体现探索的内容和方法,避免教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。
由于自身数学知识系统与教学经验的缺乏,在本节中也出现了较多的问题:
1.学生的想法有时老师是无法预测的,尽管看似一个较简单的问题,由于学生自身个体因素的差异,给出的解决方案可能是错的',也有可能不是最方便的,但是我们要放手让学生去思考,这样才能培养他们的探究能力,也有利于知识的掌握。但是实际落实过程中也遇到了问题,由于学生探究会需要较多的时间,这样对于后面内容的教学提出了较大的困难,很多较好的教学环节由于时间不够而不得不临时删除,使得整个教学设计大大降级,失去原本的完整性,这也体现出自身的教学机智不够成熟,处理课堂实际能力比较薄弱。以后还要好好向优秀教师学习。
2.学生在练习过程中出现的问题,不应该操之过急地指出学生所犯的错误,而应该将这个改过的机会留给学生自己,让他们自己发现问题,解决问题。
3.对于猜想得到的定理的过渡太快,不符合数学逻辑。猜想是猜想,定理是经过科学长期证明过的正确命题,两者之间的跨度是非常大的。
4.对于课堂设计,真正让学生自己动手去做,去思考,去讨论,去获得结论的时间与空间都不够。从而整堂课让学生的思想受到了束缚而没能让学生的思维得到进一步的拓展,是一大败笔。
5.数学逻辑性,数学术语的使用还不够严密,有待于日后进一步提高。
判定教学反思5
本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解,数学课文-直角三角形全等判定教学反思与自评。在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力。新课程标准强调“从具体的情景或前提出发进行合情推理,从单纯的几何推理价值转向更全面的几何的教育价值”,为了体现这一理念,我设计了几个不同的情景,让学生在不同的情景中探求新知,用直接感受去理解和把握空间关系。这一设计,极大的`激发了他们的学习欲望,加深了师生互动的力度,课堂效益比较明显。不同的情景又以不同的层次逐步提升既有以知识为背景的情景,又有以探索、验证为主的情景,从不同的方面,让不同层次的学生都有所收获,体现了“大众数学”的主旋律,也是“不同的人学习不同的数学”的新课程理念的体现。《标准》明确提出“通过对基本图形的基本性质必要的证明,使学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化的思想”,为体现这一目标,在“情景二”探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程,教学反思《数学课文-直角三角形全等判定教学反思与自评》。
数学教学应努力体现“从问题情景出发,建立模型、寻求结论、解决问题”,在“情景三”中,我通过三角板的拼图,让学生从这一过程抽象出几何图形,建立模型,研究具体问题,起到了较好的作用,学生也体会到数学与现实的联系,以及学习处理此类问题的方法。作为九年级的学生,他们的抽象思维已有一定程度的发展,具有初步的推理能力,因此,教学中,我除了注重情景的运用外,更多的运用符号语言,在比较抽象的水平上,提出数学问题,加深和扩展了学生对数学的理解。纵观整个教学,不足主要体现在提出的一些问题,启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会。
总之,我们在教学中一定要考虑我们的对象,要为他们服务,为他们设想,这样才能够获得最佳教学效果。
判定教学反思6
平行线的画法入手,引入平行线的判定方法1。
在此基础上提出:两条直线线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又分别有怎样的关系时两直线平行呢?由此激发学生求知的欲望,也给学生提供了探索所学内容的平台,鼓励学生大胆猜想、积极思考,培养学生主动参与的热情。
在整个教学过程中,充分发挥学生的主体作用,使学生在探索和合作交流的过程中发现知识、巩固知识、形成能力,教师在此过程中扮演了参与者、合作者、引导启迪者的角色。
教学时要多鼓励学生之间的`交流,鼓励他们表达各自的发现,及对发现的合理解释,并在交流中选择合适的解决问题的策略,丰富学生的活动经验,提高思维水平。
判定教学反思7
《数学课程标准》中指出:“学生的数学学习内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”新课程与旧课程的本质区别是理念的不同。旧课程认为课程是知识,教师是知识的传授者,学生是知识的接受者。而新课程认为课程不仅是知识,同时也是经验,是活动,课程是教师和学生共同探求新知识的过程,学生获取知识的过程是自我建构的过程。因此,在这节课的设计上,力争创设一种符合学生认知规律的、轻松和谐的学习氛围,鼓励学生自主探究和合作交流,最终能灵活解决数学问题。以下是我对这节反思
这节课我比较满意的是:
1、对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定与性质进行了灵活的运用。注重学生的自己分析,启发学生用不同方法解决问题。
2、课堂上在与学生的对话和让学生回答问题时,有意识地锻炼学生使用规范性的几何语言。
3、注重由学生从临摹书写到自主书写,锻炼学生的动手能力。
这节课还需改进的是:
1、课堂的应变能力还需提高。对例三的研究时间过长,使后一阶段学生的思考时间较紧,由于时间关系,学生没有充分思考,虽然学生踊跃举手,但毕竟其他学生没有参与的机会。在今后备课中,继续要充分考虑到这一点。让学生在课堂上有更多的自主学习时间,让学生在实践活动中锻炼成长。
2、板书还要精心设计。
3、没有兼顾到学生的差异,如果在分析的`环节不同层次的学生能够同伴互助,那么课堂的实效性将更充分体现。
反思是为了促进发展,反思是一种有思考的学习,是一种有理性的总结,可以提高教师教学教研的水平。今后每一节普通的课,都是我不断反省、审视自己,不断完善自己基本技能、提高教学水平的载体。
判定教学反思8
《角的平分线的性质和判定复习》是学生学习了角平分线性质和判定后,对这些知识的综合应用。本节课进一步研究角平分线性质定理——角平分线性质定理的逆定理——角的内部到角的两边距离相等的点在角的平分线上。这是全等三角形知识的运用和延续,是今后学习圆的内心的基础。这节课我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索角平分线的判定及它与角的平分线的性质在表述和作用上的不同,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
一、理解学生,让教学设计更贴近学生
1、清楚学生已有的数学知识
在教学过程中,我们首先要做到的就是理解学生,清楚学生学习数学的基础、潜能、需求与差异,清楚学生已有的数学知识、新的知识生长点与潜在的困难,使教学更合理,帮助学生顺利的进行知识建构。如果离开对学生现状的准确把握,教学设计就很难达到理想的效果。
2、理解学生的认知规律
本节课的复习:会用尺规作图的方法,画任意角的平分线。如何让学生理解、记住作法,从而掌握画角平分线的方法呢?
画一个角的平分线关键是找到满足条件的三个点,学生能理解到这儿,就能自己找到方法并画出角平分线。也就让学生的学习处在一种自然生成的状态。新知识的发生、形成、应用,不是教师强加于学生的,是符合他们的认知规律的。
二、理解教材,让教学设计由教材“生长”
本节内容教材在编排时构建了一个完整的探究活动,教学中应让学生充分经历这个探究过程,在明确探究目标、形成探究思路的前提下,动手操作,得出猜想,并进一步进行推理论证,感受结论的合理性,体现数学研究的严谨性。
我在设计性质探究这个环节时,充分的挖掘了教材,一步一步的引导学生深入思考,环环相扣、循序渐进,以问题为载体,逐步要求学生独立分析、形成完整的证明过程,从而训练了学生推理论证的能力。
三、理解教学,让教学设计更有效
1、重视教学活动的设计
本课教学时有一个突出的特点,设计了问题串,教师的提问一定要有针对性、启发性,这些问题环环相扣,循序渐进,让数学定理的归纳过程、命题的发现过程充分“暴露”给学生。
学生在经历观察、猜想、验证、证明的数学活动中,发展合情推理能力,并能有条理、清晰地阐述自己的观点。这正是培养学生数学素养,发展学生能力的有效方式。只有这样,才能让学生在掌握知识的同时,经历一个主动发现问题、提出问题、分析问题、解决问题的完整过程,才能克服教学中只重数学结果的倾向,实现从“被动的接受”到“主动地建构”的转变,让课堂涌动着生命的灵性。
2、重视数学方法的渗透
数学教学不仅要让学生学会知识,更要让学生掌握解决问题的基本方法,这就是大家常说的“授人以鱼,不如授人以渔”。
如本节课的例题,可以用两步全等的方法,也可以结合本节课的新内容,这样就只需证一步全等。让学生体会证明线段等、角等,可以用全等的方法,当然也可以用角平分线的性质,将来还会有别的思路,这样的总结,能帮助学生整理做题思路,不会在解决问题时一脸茫然、无从下手。
上完这节课后,自我感觉良好,学生在课堂上也积极参与思考、大胆尝试、主动探讨、勇于创新。我回想这节课,有以下几点成功之处与不足:
一、成功之处
1。创设情境,点燃激情。创设富有吸引力的学习情境,让每位学习者身临其中,触景生情,都有一种探究新知的渴望、奋力向前的冲动,使他们处于一种“愤悱”的状态。用鲜活的问题导入,精彩的实验,掀起学生求知的激情,引发学生的思考。
2。主体探究,体验过程。在教学的实际过程中,重视学生的亲身体验、自主探究、过程感悟。在教学中,给学生一段时间去体悟,给他们一个空间去创造,给他们一个舞台去表演;让他们动脑去思考,用眼睛去观察,用耳朵去聆听,用自己的'嘴去描述,用自己的手去操作。这种探究超越知识范畴而扩展到情感、价值观领域,使课堂成为学生生命成长的乐园。
3。互动倾听,灵动升华。在课堂上允许学生充分表述自己的见解与困惑。相信“没有尝试过错误的学习是不完整的学习”,用欣赏的眼光去观察,用宽容的心态去理解,鼓励学生创新;允许学生出错,学会延迟判断,让学生学会自己在错误中改正,在跌倒处爬起。
二、不足之处
如果说一节课的课堂设计是上好一节课的根本,那么课堂上老师的传授方式更是关键。这其中包括老师对课堂气氛和学生的把握,老师的教态是否大方得体,尤其有很多老师听课的时候,还包括语言是否精炼,知识的逻辑感是否连贯,层次是否清楚等。首先说本节课的课堂气氛,也许是摄像的缘故,学生有点紧张,平时爱回答问题的学生不太敢发言了,所以感觉课堂的气氛还是有些沉闷。当然,老师在调动学生的积极性时,要设法消除学生的紧张感,让学生在课上轻松而愉快的学习知识。这是对任何一位老师的考验。其次平时自己没有在意的细节,包括自己在讲台上的站位和站姿,自己不经意的手势和说话的口头语都暴露出来。感觉自己在语言精心锤炼上更待提升。再次发挥学生的主体性不应停留在口头上,还要在实际操作时充分体现教师是学生学习的引导者,学生是学习的真正的主人。更要在实际教学中始终贯彻先学后教的模式,更好地培养学生的合作精神与个人能力。
判定教学反思9
1﹑在空间中,平面与平面之间的位置关系有两种,一种是平行,一种是相交,而垂直是相交中一种非常重要的位置关系,它的应用很多,充分的把线线垂直﹑线面垂直﹑面面垂直之间的互相转换表现的淋漓尽致。
2 ﹑平面与平面垂直的定义是通过二面角给出的,二面角这个难点的内容已经在上一节课中完成,给这节课留下了比较充裕的时间来探讨平面与平面垂直的判定定理。
3﹑本节课在上一节课二面角的基础上,让学生观察地理、建筑学以及生活中具体的实例,使学生很快的观察出两个平面是直二面角的.特点。让学生类比平面与平面平行的证明方法即线线平行得到线面平行再到面面平行,将平面与平面的垂直转化成直线与平面的垂直的问题,从而得到了平面与平面的垂直的判定定理。提高了学生的想象力,类比能力,让学生学会多角度分析和思考问题,感受从旧知识转化到新知识得快乐,培养学生的创新精神。
4﹑注重学生的逻辑推理的严密性,给时间学生书写过程,规范书写。
判定教学反思10
《平行四边形的判定》是学生学习习近平行四边形的重要知识。一共分为4个课时。在学习习近平行四边形的判定,同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。在设计教学的亮点是充分利用小组合作学习、一题多变、一题多解、多题一法。
充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的`过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。
判定教学反思11
本节课是探索三角形全等的重要判定方法之一,也是本章的重点。
反思整个过程,我觉得做得较为成功的有以下几个方面:
1、教学设计整体化,内容逻辑化。在课题的引入方面,通过复习回顾,问题展示导入新课。既提问复习了全等三角形的判定方法,又很好的过渡新问题上来。把知识不知不觉地体现出来,学得自然新鲜。新知学习于学生已掌握的知识基础上,学生学得轻松有趣。
2、把课堂充分地让给了学生。我和学生做了些课前交流,临上课前我先对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言。其实,这是一个调动学生积极性的过程。在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论来解决问题。
3、本课的难点在于利用隐含的边角关系证明三角形全等,以及利用全等三角形证明线段和角的.相等关系。通过适当的例题,较好的突破了这一难点。
但也有几处是值得思考和在以后教学中应该改进的地方:
1、在课堂上优等生急着演示、发言,后进生却成了观众和听众。如何做到面向全体,人人学有所得,也值得我们数学教师来探讨。
2、教学细节需进一步改进,教学时应多关注学生,在学习新知后,虽然大部分的学生都掌握了,但有少数后进生仍然是不理解。
判定教学反思12
这节课是在学习完“相似三角形判定定理一”后的一节习题课,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理一”又是相似三角形这章内容的重点与难点所在,“难”的不是定理的`本身,而是要跟以前学过的“角的等量关系”证明联系紧密,综合性比较强,因此对定理的运用也带来的障碍。
通过建立数学模型,引导学生使用化归思想。要让学生善于学习,促进他们通法的掌握是重要途径之一。化归思想与转化思想不同,主要是化归思想必须有一归结的目标,也就是老经验。因此,在教学实践中,我采用了下列两个做法:一是建立“一线三等角”的数学模型,让学生在实验操作中探寻出折纸问题中的数学问题本质特征。并把它上升为一种理论,指导其他问题的解决。二是采用探究条件的转化,使问题表象发生变化,引导学生去伪存真,还原出数学问题的本质。
在教学后,我觉得有很多需要改进的地方。
1.教学的方式过于单一,学生的参与面较低。主要是我没有调动好他们的情绪,说明我对课堂的驾驭能力还需要提高。
2.教学内容还有待于进一步改进。
3.备课时没有考虑学生的实际情况,犯了备课只备教材不备学生的大忌,因此,在今后的教学中要引以为戒。
判定教学反思13
平行四边形在实际生活和工作中具有广泛的应用,因此它的判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。平行四边形的判定一节按照课本分为两个课时,前三个判定和定义判定为第一课时,第一课时主要探讨平行四边形的判定的四种方法,在探讨时由一个实际问题——玻璃片的问题引出四个判定方法的猜想,然后引导学生进行推理证明验证,从边、角、平分线三点来分别探讨,在课堂上我要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。在教学过程中,引导学生通过动手实践、猜想、论证的过程得出结论和方法,同时安排同学上台进行讲解、板书等方法,有利于锻炼学生的综合能力。
收获:通过玻璃片的实例引导同学探索、研究得出平行四边形的判定方法,学生对四个判定的掌握比较好,通过练习巩固,学生对判定方法的运用也比较熟练,而且由于要求学生对每一个判定都进行了口头表达过程和符号语言的书写练习,因此提高了学生的推理论证的能力和书写能力,在训练过程中大部分的'学生都能说出或写出比较完整的证明过程。
不足:首先,由于学生不熟悉,课件不充分等原因,造成在教学过程中时间过于紧张,使得在教学中的部分环节没能得以体现,比如:学生的板演等,这对课堂教学的效果造成了一定的影响。另外几何证明题一直是学生的一个弱点,这在今后的学习中是一个需要改变和提高部分。在今后的教学中一定会努力学习,积极探索,完善自己的教学模式和方法,争取更好的成绩。
判定教学反思14
一、课前的准备与预设
课题:三角形全等的判定(一)(复习课)
教学目标:
1、知识目标:使学生进一步熟悉三角形全等的判定定理1的内容,加深对等腰三角形性质的理解,达到学生系统获取知识的目的。
2、能力目标:通过一题多变,培养学生的发散思维能力,让学生善于观察图形,积极进行直觉猜想,提高学生分析问题、解决问题的能力。
3、情感目标:培养学生敢于发现的探索精神,实事求是的科学精神和勇往直前的进取精神。
教学重、难点:从复杂多变的图形中探究满足定理的条件。
教学方法:以“引导──探究”为主,“启发──讨论”
教学思路:首先,课前,教师给出复习提纲,让学生带着问题自学教材P--P(三课时);其次,围绕本节课的复习内容,要求每位同学撰写一篇小论文;第三,上课时,先由学生结合论文总结知识要点,然后从P例2展开,通过“连接BC、EF”两次辅助线,让学生寻找全等三角形(为说明方便,把BF、CE交点记为O)。再用“SAS”证明△BEO≌△CFO受挫后,用剪纸的方法发现它们的确重合,为教学“ASA”埋下伏笔。
例2、已知,如图,AB=AC,E、F分别是AB、AC上的点,且AE=AF。
求证:△ABF≌△ACE
二、课中的生成与处理
在上这节课时,并没有按笔者的设计方向发展。自然,设计中的“连接BC”,经讨论,分别有两学生论证了△ABF≌△ACE和△BCE≌△CBF。接着,我对条件中的“AE=AF”加上着重号,让学生仿照上面做法,对图形稍作变化(意在提醒“连接EF”)编一道几何题。话音刚落,一生举手发言:“我把△AEC绕点A旋转一定角度,此题就变成了P的例4”。另一生紧接着说:“作射线AO交BC边于D点,则AD是∠BAC的角平分线,图中有更多的全等三角形。”这时我心中不禁为之一震,我为课前的粗浅设计和公开课上出这样的意外情况而震惊!更为学生的发散思维而折服!
怎么就没有学生站起来说连接EF呢?该如何是好?是用“这两种编法留到课后大家讨论”搪塞过去,按原计划讲完这节课?还是按学生思路探索结论?如果这样探索下去,这节课内容是完成不了的;如果阻止学生探索,岂不扼杀了学生的求知欲望和创新意识?
这个问题的实质就是当前教学改革中面对的以传授知识为中心,还是以培养能力为中心;以教师为中心,还是以学生为中心;重解题的发展、探索过程,还是重固有知识的运用;是提高学生的整体素质,还是增加学生知识的素质教育问题。换言之,执教者是采取按照事先预设好的思路,把学生一步一步地引向窄小的通道,这种注入式的传统教学模式进行教学,还是采取让学生自主发展、自我探究的这种“设疑---探究---解答”的开放式教学模式进行教学,这也是运用传统教学观,还是现代教学观指导课堂教学的问题。
于是我果断地改变了原来的教学设计,肯定和表扬这两个学生的编法,继续探究问题的解决思路。问:“AD为什么是∠BAC的角平分线呢?”问题一放开,学生的思路也开阔了。一学生马上回答:“因为△BCE≌△CBF,所以∠OCB=∠OBC,所以OB=OC”(原来,“等腰三角形的判定”他也自学了!)再利用“SAS”证明△ABO≌△ACO”,所以∠BAO=∠CAO。受其启发,另一学生说也可以用“SSS”证明△ABO≌△ACO。这样一来,学生的积极性更高涨了。又有一学生说用“SAS”证明△AEO≌△AFO也可以达到目的。此时,有一学生可能太激动,说:“老师,我要编一题:请问图中有哪些相等的线段、相等的角?”……这节课在热烈的气氛中结束。
三、课后的收获与体会
(一)学生的收获
学生在自学的基础上,把判定定理1内容与等腰三角形性质有机地结合起来,并能迁移到三角形全等的其他判定定理中,获取了较大容量的知识,培养了思维的广阔性、变通性、灵活性等思维品质,激发了学习数学的兴趣,孕育了获取知识的探索精神,提高了分析问题,解决问题的能力,其重要意义比做几题练习题要大得多。
(二)教师的体会
通过教学,我深刻地体会到:学生创新学习精神、创新学习意识、创新学习思维、创新学习方法的培养应当成为素质教育的`重点。而课堂教学则是落实素质教育的主阵地,因此,在课堂教学中,应让学生感受、理解知识产生和发
展的过程,激发学生独立思考和创新学习的意识,提高学生获取新知识并能运用知识去分析和解决问题的能力,变学生由“学会”转向“会学”再到“创造学”,变由教师“教”转向学生“学”与“创”,把培养学生创新学习精神放在首位。为此,在教学中应努力做到以下几点:
1、变教案为学案。教案既要有教师的教学过程的教学活动、教法,又要有学生的学习过程和学习活动、学法,充分突出学生的主体地位,让学生有质疑问难、实践操作的时间和空间。
2、创设学生氛围,变革教学模式。
(1)应有学生与老师一起平等地探讨教材的机会,不定向学生的思维,营造宽松民主的学习氛围;
(2)实行参与式教学,让学生大胆地动脑、动口、动手,允许学生发表自己的观点,提高学生课堂教学的参与度;
(3)教师要有驾驭课堂的能力,能及时调整教学策略,实行开放式教学。
3、引进激励机制,激发求知动力。
(1)要阶段性地进行效果反馈,不断强化学生的学习动机;
(2)要因材施教,分层次教学,让各层次学生都有一种成就感;
(3)开展各类学习竞赛活动,调动创新学习的兴趣。
四、后期的反思与提升
课堂之所以是充满生命活力的,就因为我们面对的是一个个鲜活的富有个性的生命体。课堂教学的价值就在于每一节课都是不可预设、不可复制的生命历程。追求生命的意义应成为数学教学的起点和归宿。作为教师要勇于直面学生的非预设生成,积极地对待,冷静地处理,把学生的这些非预设生成尽可能转化为自己的教学资源。
第一,教师要重视课前的备课。不能错误地认为,既然课堂是生成的,课程改革以后应该简化备课,甚至不要备课。孰不知,没有备课时的全面考虑与周密设计,哪有课堂上的有效引导;没有上课前的胸有成竹,哪有课堂中的游刃有余。所以,课程改革以后不是不要备课,而是给备课提出了更高的要求。在备课中既要关注教材,更要关注学生。要考虑不同的学生会有哪些不同的思考,可能会出现哪些解决的方法。使自己的教学设计更符合学生的认知能力。
第二,教师要转变教学观念,树立正确的学生观。理念决定行为,教师要更新教学观念,树立以学生为主体的意识,要学会尊重和欣赏学生,舍得放弃自己的权威。教师要学会倾听,善于倾听学生的回答。学生会说了,也就得到发展了,这也是课堂教学的最终落脚点。教师还要沉得住气,舍得让学生说,要让学生把话说完,在学生尚未阐述清楚观点时,切莫随便发表自己的看法,这体现了对学生的尊重。更重要的是,要倾听学生发言的背后,他在想些什么,为什么会这么想。即使学生说错了,也要分析一下为什么错了,为错找出病因,然后对症下药。
第三,教师要追求精心的预设和课堂生成的合理利用。课堂是动态生成的,它的生成性来自于教师对教育的科学和艺术的把握,来自于课堂的开放性。课堂教学中讲究师生平等,学习问题需要师生平等地研究。知识是不能置顶的,它应该是无限生成,发展的。似天一样高,如海一般阔,学生不应该是笼中鸟,网中鱼,给予他们自由的空间和展示的平台,他们就可以充分地表达自己,肯定自己,而我们必须做到的只是信任,引导和参与。
总之,数学课堂教学要真正体现“以学生的发展为本”的教学理念,教师就必须转变教学观念,创造性地运用教材,创造性地设计学习活动,从而有效促进基于学生的生活实践或学习探究活动的预设生成中,让学习主体的认知结构、自主探究、创新能力与个性发展等方面持续地、动态地生成于开放合作,积极互动的课堂学习环境中,把课堂还给学生,让课堂充满生命活力。
判定教学反思15
4月14日上周五我和往常一样,草草看了一遍教材,夹着课本就往教室冲去。走进教室发现分管教学的周校长前来听课,突然灵机一动让学生们对前来听课的周校表示欢迎,一来表示礼节,二来可以为课堂增加一些氛围,因为最近的课堂实在是糟糕,自己在讲解的语气自己都讨厌,一副全世界都和自己过不去的样子。每遇学生不听讲或者答错就苛刻挖苦的语言,让我自己都觉得讨厌,先让学生就更不能接受了。
今天由于有领导听课,我怎么也没想到自己一改往日的阴霾,还与学生有说有笑。因为本节课内容在课本未给出例题,也未给定判定定理有哪些。我凭借自己的经验,在练习中找了四个判断题进行讲解和分析,原题是:满足下列条件的四边形是不是正方形?为什么?
(1)对角线互相垂直且相等的平行四边形:
(2)对角线互相垂直的矩形;
(3)对角线相等的菱形;
(4)对角线互相垂直平分且相等的四边形。
设想是在这四个小问题中选取两个做代表进行分析解答,简单复习过正方形的性质后,我根据题目的条件写出已知,画出相应图形。开始带领学生分析要证明一个图形是正方形可以用“有一个角是直角的菱形是正方形”、“有一组邻边相等的矩形是正方形”、“有一组邻边相等且有一个角是直角的平行四边形是正方形”三种方法判定,让学生做出选择,应该采用哪种方法比较简便,一步一步探索,最终证明第一个问题、第二个问题……
不知不觉时间就过去了,直到铃声响起,我才意识到下课了,之后草草小结,结束课堂,又重演了一贯的`时间不够用的老毛病。之后,周校跟我建议要选取有代表性的问题讲,不要面面俱到,我也意识到很多次都是要么因为探究时间过长而超时,要么,讲着讲着忘记了时间把控,把课程拉下一部分。这可能是我的一个老大难问题了,如何才能克服这一缺点呢?
我寻思了一下,认为要从以下几个方面着手:第一、要有意识的把每节课当成一节重要的公开课,要有精益求精的意识;第二、不能对自己松懈,教好学生不仅是自己的职责,也是自己的义务,更是对学生的一生负责;第三、要把课堂当成自己的人生追求,不能满足于现状,要对自己的人生负责,不能只看到教书是工作,更要从教书育人中体现自己的人生价值,更不能只为了工资而工作。第四、要想办法客服职业倦怠,积极寻找教育教学的乐趣。