正比例和反比例的教学反思
正比例和反比例的教学反思1
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高,而且在课时的安排上,在学习正比例的安排了2个课时,这里只是安排了1个课时,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。
反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时通过反比例的教学,可以进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分内容是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学内容的一个教学重点也是一个教学难点。
在教学反比例的意义时,我首先通过复习,巩固学生对正比例意义的理解。然后安排准备题正比例的判断,从中发现第3小题不成正比例,从而引入学习内容和学习目标。这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力。在学完例3后,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例3的方法学习试一试,接着对例3和试一试进行比较,得出它们的相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再通过“想一想”中两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。并通过练习,使学生加深对概念的理解。
通过这节课的教学我深深的体会到要上一堂数学课难,上好一堂数学课更难,课前虽做了充分的准备,但还是存在不少问题。比如练习题安排难易不到位。由于学生刚接触反比例的意义,应多练习学生接触较多的题目,使学生的基础得到巩固,不能让难题把学生刚建立起的知识结构冲跨。参与学生的探究不够。亲其师信其道,那么亲其生知其道不为过,真正融入学生才能体会学生的思想才能真正落实教学新理念。
当然,教学过程中还或多或少存在其它的问题,但有问题就有收获,在以后的教学中,认真反思,仔细分析,查找根源寻求对策,在教学的道路上不断攀登。
----------------------
上完课后,虽然看了听课老师给我的评价,但我一直在思考,学生是怎么评价的呢?在学生眼里,到底哪个地方出问题了呢?突然,灵机一动,干脆和学生一起交流一下吧,也许效果还更好呢?通过与学生交谈,让大家一起再次回顾本节课,找一找优点和不足,学生的回答很是让我惊奇,现摘录如下:
优点:
1、课堂导入新颖、有趣、有效,结尾有所创新,改变了以前“通过本节课的`学习,大家有什么收获呢?”等传统方式,从而使得大家大家想学、乐学;
2、老师讲的详细,特别是讲授两种相关联的量,用通俗、简单的语言让大家一听就明白了,并且很快就可以判断出是否是两种相关联的量;
3、题目与现实生活联系紧密,让大家感觉学习数学很有用;
4、课堂上学生讨论的时间充足,参与度较高,且时效性较强;
5、课堂调控能力较强,有自己的教学风格;
6、板书明确、清晰,一目了然;
7、设计合理,处理偶发事件的能力较强。
缺点:
1、课堂气氛没有以前活跃;
2、知识量太大,难度较大,很少有不经过思考或稍作思考就能回答出来的问题;
3、小组合作时,没有分好工,导致在计算相对应的每组数的和、差、积、商时,每个同学都在计算,因而用的时间较多,如果四人小组分好工,没人计算一种运算,时间就会节约一半。
4、对学生的鼓励性语言欠缺;
5、板书中的字体不太规范,要加强基本功的训练;
针对听课老师和学生的评价,在以后的教学中,我会发扬优点、克服不足,不断提高自己的教学水平。
正比例和反比例的教学反思2
由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高,而且在课时的安排上,在学习正比例的安排了2个课时,这里只是安排1个课时,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。
反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时通过反比例的教学,可以进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分内容是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学内容的一个教学重点也是一个教学难点。
在教学反比例的意义时,我首先通过复习,巩固学生对正比例意义的理解。然后安排准备题正比例的判断,从中发现第3小题不成正比例,从而引入学习内容和学习目标。这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度。因为反比例的意义这一部分的内容的'编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力。在学完例3后,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例3的方法学习试一试,接着对例3和试一试进行比较,得出它们的相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再通过“想一想”中两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。并通过练习,使学生加深对概念的理解。
在正比例和反比例的教学中,我练习题安排难易不到位。由于学生刚接触反比例的意义,应多练习学生接触较多的题目,使学生的基础得到巩固,不能让难题把学生刚建立起的知识结构冲跨,参与学生的探究不够。
正比例和反比例的教学反思3
学习正比例和反比例,这部分知识比较抽象,学生一般不容易掌握,所以我在教学成正比例的量时放慢速度,把握重点,主要让学生明白以下几个问题:
1、找准两个量是什么,弄明白这两个量存在什么样的数量关系;
2、让学生明白怎样才算是两个量相关联——即一个量变化,另一个量也随之变化,多举例子让学生弄懂。
3、点明如果相关联的两个量的商或比值不变(即一定),那么这两个量就是成正比例的量,它们的关系就是正比例关系。如果相关联的两个量的乘积不变(即一定),那么这两个量就是成反比例的量,它们的关系就是反比例关系。
4、讲解正反比例的图像。刚开始每一题都卡着以上步骤走,让学生渐渐地学会分析每一题的.数量关系,这样学下来,孩子掌握的还比较好。
正比例和反比例的教学反思4
数学来源于生活, 又服务于生活, 联系生活实际创设问题情境, 是新课标精神的体现。教学中, 我从创设生活数学问题入手, 进入新课学习, 在学生掌握新知的基础上, 又回到问题情境的他讪, 同时还提供一个理具有综合性、开放性的题目: “你能举出一个正比例或反比例的例子吗? 为什么? ”在学生能准确由A X B = C 表示三量之间的比例关系后, 我又设计了这样一个环节: 请同学自己举一些生活中较熟悉的三量关系, 说说它们之间存怎样的关系, 再次回归生活, 让学生体验教学的价值, 这也是新课程教学理念――人人学有价值的数学。
教学中, 我尊重学生的的'个性差异, 尊重学生的学习成果。如: 在学生知道了正、反比例的意义、关系式后, 我提出: “用你喜欢的方式喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透, 又尊重了学生的个性发展和学习成果。
练习与提高部分, 我打破了老师出示题目――自己完成――集体订正的模式, 而是通过练习型课件, 让学生自己判断正确性, 既充分挖掘各省市毕业会考试题这一课题资源, 又通过“你真棒”、“你太聪明了”、“有点马虎哟”、“要加把劲呀”、“要仔细呀”等鼓励性的“语言”, 更大限度的激发学生的参与热情, 让不同的学生有不同层次的收获与提高。
正比例和反比例的教学反思5
我们的数学之旅开到了第三单元《比例》,从上周五开始学习了正比例和反比例的意义,今天的数学课是将这两种关系进行对比,发现相同点和不同点。
预备铃后,我利用上课前的几分钟,让孩子们说说这两天学习正比例和反比例的意义的感受和困惑。这是几个孩子的发言:
蔺力林说:“老师,我觉得学习正比例和反比例一定要把话说完整,说清楚数量之间的联系。”
“对,用清楚的数学语言表示完整的数量之间的关系确实是吴老师一直强调的,也是你们应当具备的能力。”我及时给予肯定。
高雨蕊站起来说:“老师,我有时候分不清楚是比值一定还是乘积一定,所以分不清楚是正比例和反比例。”
“你很会发现自己学习的问题,数量之间有很多关系,可以是加、减、乘、除等不同的运算得到的,我们找到其中的比值一定时,或者乘积一定时的关系,才符合正比例关系或者反比例关系。”我对孩子能发现自己的.不足感到高兴。
赵恩昱说:“老师,一般的好判断,有些特殊情况我判断不准确。”
李雨蒙说:“老师,我那天说:‘直径一定,圆周长和圆周率成正比例。’大家说不对,为什么,我还是有点疑惑。”
这两个孩子的困惑是大多数孩子的困惑,很直观的数量关系时,比如:路程时间速度,单价总价数量,这些好理解好判断,可是遇到特殊情况时,学生就有困惑了。
针对孩子们的困惑,我们这节课做了专门的对比,首先正比例关系和反比例关系的成立必须是有两种相关联的量,一种量变化,另一种量也要随着变化。直径一定,圆周长也一定,圆周率也是一个固定的数,这里就没有两种变化的量,所以就不存在比例关系。再说特殊情况的判断,比如正方形的面积和边长,面积:边长=边长,边长也是变化的量,所以不成比例。
解决了孩子们的困惑后,我给孩子们说:“数学里有很多数量之间关系,这些数量不是简单1+1=2的固定不变,而是会发生变化,这是你将来学习数学重要的函数思想,都是从最简单的生活中的数量变化发现的规律。所以我们要会观察数量,用一双变化的眼睛看待数量之间的关系,你会思维越来越敏捷!”
正比例和反比例的教学反思6
这几天学习了正比例反比例,从学生掌握情况来看,对于“正比例和反比例的意义”这部分内容 学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。
生活是数学知识的源泉,正反比例是来源于生活的,我认为教学中既要重视这一点,又要注重知识体系的形成中逻辑性,严密性与连贯性的统一。因此,在处理教材时,没用教材的例子,而是举的学生熟悉的生活例子找规律,再由规律回归生活。这样一节课的40分钟质量很高。 教学中,我从创设生活数学问题入手,进入新课学习,在学生掌握新知的基础上,提供一个具有综合性、开放性的题目:“你能举出一个正比例或反比例的例子吗?为什么?”在学生能准确由
A X B = C(一定)表示三量之间的比例关系后,我又设计了这样一个环节:请同学自己举一些生活中较熟悉的三量关系,说说它们之间存怎样的关系,再次回归生活,让学生体验教学的价值,这也是新课程教学理念――人人学有价值的数学。
教学中,我尊重学生的的个性差异,尊重学生的学习成果。如:在学生知道了正、反比例的意义、关系式后,我提出:“用你喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透,又尊重了学生的个性发展和学习成果。
在教学了正比例了知识后,大部分学生都明白了如何判断两个量是不是正比例,在做相关的题目时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这在某种意义上来说是由于学生对于“正”和“反”的理解不够到位。
所谓的“正”,我们可以理解为:一个量变大,另一个量也随着变大;一个量变小,另一个量也随着变小。总而言之,两个量发生了相同的变化。那么反比例的“反”怎么理解呢?有的同学已经可以自己概括了:两个量发生了不同的变化,即一个变大另一个就随着变小;一个变小另一个就随着变大。这样的讲解可以使学生掌握可靠的、初步判断两个量可能成什么比例的方法,有助于有序思维的展开!
另外我们还可以结合图像,我们也可以很清楚的将两者区分开来!正比例的图像是一条直线(直线过原点,并且方向向上),反比例的图像则是一条弯弯的曲线(在教师的辅助下,学生用描点的方法画出图像)。
课上学生基本能够正确判断,说理也较清楚。但是在课后作业中,发现了不少问题,对一些不是很熟悉的关系如:车轮的直径一定,所行使的`路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?学生在判断时较为困难,说理也不是很清楚。可能这是学生先前概念理解不够深的缘故吧!以后在教学这些概念时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后在进行相关形式的练习,我想对学生的后继学习必然有所帮助。
教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的,我以后会大胆尝试,努力创造民主和谐、轻松愉悦、积极上进,共同发展的新课堂吧!
正比例和反比例的教学反思7
我们发现教材把比的认识放到了六年级的上学期,学完了百分数之后就认识了比,而删除了比例的意义和性质、解比例以及应用正反比应用题。而只研究正反比例(图片),加入了变化的量(图片),、画一画(图片)、探究与发现(图片),等内容。
为什么加变化的量、画一画、探究与发现等内容?
由困惑引发了我们的思考。通过学习和实践我们有了下面的答案。
其一在《课标》中,更强调了通过绘图、估计值、找实例交流等不同于以往的教学活动,帮助学生体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,为以后念打下基础。学生绘图的过程可以说是他亲身体验的过程,是他“经历运用数学符号和图形描述现实世界的过程”,只有亲身的经历和体验,才能给学生留下深刻的印象,真正体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,加深了对函数的认识。多种研究也表明,为了有助于学生对函数思想的理解,应使他们对函数的多种表示———数值表示(表格)、图像表示、解析表示(关系式),有丰富的经历。在正比例、反比例的学习中,应十分重视三种方式的结合。函数图像更有利于学生直观的理解变量的变化关系,并且利用规律解决问题,更好的进行函数思想的渗透。这一点可以从课堂和课后的作业中找到答案。
其二为今后对函数进一步的学习做准备我们再来看一看函数课程的发展链。
小学:数的认识,图形数量找规律,数的计算,图形周长和面积,字母表示数—变量,统计—变量,商不变的性质—常函数,正反比例—函数。
初中:一次函数,二次函数,正反比例函数,函数概念的初步认识。
高中:函数概念的映射定义。一些具体函数模型—简单幂函数及其拓展,实际函数的模型——分段函数,指数函数,对数函数,三角函数,数列,函数思想的广泛应用。
到了大学还在继续着对函数的学习,可以看出小学阶段的只是对函数的最初级的`最浅显的认识,但却影响着孩子今后对函数的学习。从多方面理解变化的量,打破了思维的局限,利于今后函数概念正确的建立。
这节课我谈谈个人的观点:
本单元是在学生已学习了比和比例的知识以及积累了一些常用数量关系基础上进行教学的,正反比例这个知识对于学生来说是一个全新的知识,也正好是规律探究的知识,因此高老师尝试用整体进入的方式来进行教学。主要让学生结合实际情境认识成正比例和反比例的量。通过学习这部分知识,使学生从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。教材的安排是用例1、例2教学正比例的意义和正比例的图像,例3教学反比例的意义,而高老师第一课时并没有进行图像教学。而是对教材大胆地进行重组,第一课时进行正、反比例意义的教学,第二课时进行正反比例图像的教学。从意义和图像两方面进行对比,用结构的方式,加深学生对正反比例意义的理解。这节课高老师主要引导学生通过观察分类自主探索、合作交流,呈现出学生“分类方法”的多样化,在两次“分类”中不断激发学生探究两种相关联量变化规律。学生学的比较愉快。
探讨的地方有:
1.在出现表格的时候最好加上一个不是相关联的量的表格让学生进行分类。如人的身高与体重等。这样对比更明显,让学生知道不相关联的两个量要归类在不能成比例一类,
2.可以让学生把一组组对应的数据写出来进行对比,教师也可以板书这样学生更能直观的发现他们的比值一样的.或乘积是一样的,以便发现规律.
3.重心下移的力度不够,规律可以让多个学生尝试归纳,然后教师可以指导学生看书得出规范性的数学语言.
4.教学中增加对比练习
5.增加拓展练习,抽象实际事例中的数量变化规律,加深正比例的概念的理解。
正比例和反比例的教学反思8
上周二开始上成正比例和反比例的量,有很多练习是判断两个量是否成比例,成什么比例。
例如:
(1)被除数一定,商和除数
(2)圆柱的体积一定,圆柱的底面积和高
(3)总价一定,单价和数量
(4)三角形面积一定,底边和高
(5)小麦每公顷产量一定,种小麦的公顷数和总产量
(6)比的前项一定,后项和比值。
根据正、反比例关系的判定方法,我们首先判断两个量是不是相关联的'量。具体的说,就是两个量是否具有相乘、相除的关系,它们的结果能否通过条件知道是定值,从而判断它们成不成比例或成什么比例。
从学生的作业来看,(2)和(3)小题基本不会出错,对于圆柱的体积刚刚讲完,底面积*高=圆柱的体积(一定),可以很好的判断出来是成反比例的。
(1)和(6)很多孩子是写的成正比例,其实也是成反比例,被除数/除数=商,比的前项/比的后项=比值,可能没有注意这里谁是定值,或者说对于这三个量之间的变式掌握的不好。
(4)他们说不成比例,原因是多了个2,三角形的面积=底*高/2,这个的变式主要是学生没有利用三角形的面积的推导,底*高=2*三角形的面积(一定),所以成反比例。
判断两个量是否成比例,成什么比例。对学生说有点难,主要难在变形,代数式的变形在中学还要学习,现在是个初步的接触。
正比例和反比例的教学反思9
课题:正比例和反比例
复习内容:第12册第94页“整理与反思”和95页的“练习与实践”5-9题
复习目标:
1、使学生进一步认识成正比例和反比例的量,掌握两种量是否成比例、成什么比例的思考方法。
2、使学生通过掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。
3、使学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容之间的密切联系。认识成正比例和反比例的量,使学生感受正、反比例是描述数量关系及其变化规律的又一种有效的数学模型。
教学准备:课件洋葱微课视频
课时安排:第一课时
课前设计:
(一)正比例和反比例的意义。
1、提问:根据正比例和反比例的意义,我们怎样判断两种量是否成正比例或反比例关系?(小组讨论后,交流)
2、小结:
第一,这两种量是不是相关联?其中一种量是否随着另一种量的变化而变化?
第二,这两种量中每一组对应的数的比值(或乘积)是否一定。比值一定说明这两种量成正比例关系,乘积一定说明这两种量成反比例关系。
3、举出一些生活中成正比例或反比例量的例子,在小组里交流。
例如:苹果的单价一定,数量和总价成正比例。因为,第一,数量和总价这两种量是相关联的,其中一种量总价随着另一种量数量的变化而变化。
第二,这两种量中每一组对应的数的比值都是单价。单价一定,所以这两种量是成正比例的量。
(二)观看洋葱视频,并练一练
1.如果y=8x (x、y≠0)那么y与x成什么比例关系?
看视频思考成什么比例关系
判断依据
2、如果4x=3y(x, y≠0),那么y与x成什么比例关系?
联系比例的基本性质
学生说一说在每张表格中,存在怎样的关系?
第一,这两种量是不是相关联?其中一种量是否随着另一种量的变化而变化?
第二,这两种量中每一组对应的数的比值(或乘积)是否一定,再作出相应的判断。
3、观看洋葱视频后,做相关练习题
4.完成教科书95页“练习与实践”
第7题:让学生先独立做,再讲评。讲评时注意帮助学生解决困难。
第8题:引导学生列举几组对应的数值再具体分析每组中两个数的关系后再判断。
第9题:其中第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)第2小题让学生在教材提供的方格图上描点、连线,再引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。体会数形结合在解决问题方面的价值。
(三)板书设计
(四)评价小结:
学了本课你对所学知识有什么新认识?还有什么问题?
推荐阅读更多精彩内容
天镇022李文艳课题:正比例和反比例复习内容:第12。
正比例两种相关联的`量,一种量变化,另一种量也随着变化,而且这两种量中相对应的两个数的比值一定,那么这两种量就叫故。
本内容通过整理复习,要求学生能比较正反比例的相同点及不同点,会分析、判断两种相关联的量是否能成正比例或反比例。本节。
大海lh阅读3,192评论0赞0
《比和比例》执教者:九寨沟034旺千哈姆一、学情分析《比与比例》本节知识概念较多,在复习的时候,要注意帮助学。
拥有学习正比例意义的基础,有整体结构的把握,再结合课前预习,学生对反比例意义的认识呼之欲出,如何提高这节“反比。
表情是什么,我认为表情就是表现出来的情绪。表情可以传达很多信息。高兴了当然就笑了,难过就哭了。两者是相互影响密不可。
正比例和反比例的教学反思10
第一节的内容是正比例的意义,出示例的表格后,学生从中发现了多个规律,学生说出若干规律后,我追问学生:这些规律中,我们最常用的最容易想到的是什么?(生:是用路程去除以时间得到的速度是相同的)路程除以时间还可以怎样说?(引生说:还可以说成是路与时间的比的比值,也就是速度是相同的——师:也就说比值是一定的。)由此,引到正比例的意义中去……
成正比例的关系的两个量必须具备两个特征——一是相关联,二是它们的比值是一定的。教材中例子除了正方形的面积与边长相关联,但是不成正比例外,告知的两个量都是成正比例的'量,反例很少,结果,让人感受不到“关联”的联系程度,感觉就是比值一定,两个量就成正比例,许多学生拿到数据就直接看比值了,忽略了之间的“关联”。因此,在教学时,可以补充一些例子,让学生进行判断,特别夹杂一些不成正比例的例子,比如:
红花的朵数和鸡蛋的个数成正比例吗?为什么?
(3)和一定,一个加数和另一个加数成正比例吗?为什么?
像上面的两个例子,有时很难判断。
给(1)不成正比例的理由就是,一个人的体重和岁数不能一直保持正比例的关系,比如他老了可能都不增体重了。
给(2)不成正比例的理由就是,红花的朵数和鸡蛋的个数不太相关联。
但是上面的两例在特殊情况下又都像是成正比例的。
给(1)成正比例的理由——假如小磊在8岁前都是这样的一年增重4千克地成长着,但是8岁时夭折了。这8年(一生)的岁数与体重,你能说不成正比例吗?
给(2)成正比例的理由——假如这个表格记录的是两个商贩正在进行商品的交换的过程(用红玫瑰去交换鸡蛋),你又能说这儿的花的朵数与蛋的个数不成正比例吗?
此外,对于那些两量之间存在显而易见的关联,学生叙述成正比例的理由时,我都只要求说出是哪两个量的比值一定就行了。
第二节课的正比例的图像,例2的教学,我先给学生一个空的数轴图,让学生试着,在图中表示出表数的各组数据来,再让学生说说各点表示的意思,再让学生说说这些点看上去有什么规律(在同一条和直线上),在此基础上连点成线。最后让学生通过找对应量(在学生找到后,我还让学生通过计算进行了验证,计算还用了两种方法,一是归一法,一是解比例法),感受正比例图像直线特点。这一节课的设计是很有价值的,对日后中学数学的学习有很大的帮助。
下午第二节课的“实际测量”我大体是按照教材的思路组织学生在操场进行活动的,在第一个环节上,为了让学生能够感受到两点之间绝对直线式测量,在长距离的中间中正确添加标杆的方法,我特意让学生测量操场的斜对角,以免学生测量直跑道时,直接贴着跑道的路沿进行测量,感受不到教材提及的方法,又由于没有找到正宗的标杆,只得利用班里的四个拖把代替了标杆,进行测量时,大家都感到拖把比标杆更好用,因为操场都是水泥地的,用标杆是插不下去的,而拖把自己就可以站立在操场上,调好位置后,扶的人都可以走开去,更利于别的同学观察。下面的步测和目测效果都很好,只是目测学生不能有很好的感受,感觉作用不大,实际应用起来比较困难,只得提示学生今后有机会多练就会有感觉了!
正比例和反比例的教学反思11
本内容通过整理复习,要求学生能比较正反比例的相同点及不同点,会分析、判断两种相关联的量是否能成正比例或反比例。本节课我安排了五个环节:
一、知识梳理。让学生整理出正反比例的所有知识点,并归纳出正反比例的相同点和不同点,让知识系统化。
二、方法归纳。通过课本例题归纳出表示两个量之间的.关系常用的三种方法(列表、画图、列式子),让知识具体化。
三、巩固应用。通过基本练习,让学生会根据具体的数字或常用的数量关系来进行判断。四、拓展延伸。在没有具体数字和常用数量关系的情况下,
让学生会用列表的方法进行判断。五、回顾总结。说出自己的收获。作为一节复习课,我觉得在教学过程中做好了以下几方面:
1、为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。
2、重视知识间的对比,让学生在对比中发现正、反比例的相同点及不同点。
3、练习设计形式多样,让学生在完成不同类型的题目中巩固知识。
4、善于引导学生分析出现问题的根源所在,让学生真正掌握知识。
5、课堂教学的连贯性较强,知识之间的衔接严密,教学层次之间过渡自然,让不同层次的学生均能有所收获。
正比例和反比例的教学反思12
“正比例和反比例的意义”这部分内容 着重使学生理解正反比例的意义。正、反比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。
在教学了正比例知识后,大部分学生都明白了如何判断两个量是不是正比例,在做题时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这是由于学生对于“正”和 “反”的.理解不够到位。
所谓的“正”,我们可以理解为:一个量变大,另一个量也随着变大;一个量变小,另一个量也随着变小。总而言之,两个量发生了相同的变化。那么反比例的“反”怎么理解呢?有的同学已经可以自己概括了:两个量发生了不同的变化,即一个变大另一个就随着变小;一个变小另一个就随着变大。这样的讲解可以使学生掌握可靠的、初步判断两个量可能成什么比例的方法,有助于有序思维的展开!
正比例和反比例的教学反思13
我执教的《正比例反比例》是北师大版六年级下册P63的内容,课前给学生下发“学案”让学生在充放预习的基础上以学案为载体,归纳、回顾和整理所学的知识,课堂以合作交流、展示为重点,本节复习课,目的是通过整理复习,使学生对正比例和反比例的知识有一个全面的认识,使所学知识结构化,系统化。由于学生已是高年级,应该能够自主对知识进行整理,形成系统,因此在整理与回顾时我尽量放手,给学生充足的时间,让学生将本单元所学内容进行回顾整理,再深入各学习小组巡回指导,适当进行点拨。在这个过程中,我为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。
在学生对正比例和反比例的知识进行整理后,在小组内展开合作学习,让学生以小组为单位进行交流。小组长要做好组织协调工作,在小组交流的过程中,哪个同学有什么疑问可以提出来,自己小组的同学进行解答。如果解决不了,就将疑问记录下来,等全班交流时,再进行提问,在这个过程中,每个同学将自己整理的内容进行添加、补充、完善,小组整理的知识达成共识。经过这个过程,复习的重要知识基本上就形成了。
在小组活动时,教师及时走下讲台巡视,参与到解决问题有困难的小组中去,积极地看,认真地听,及时了解信息,以便在全班展示时及时抓重点、难点给予点拨、引导。
在小组交流的基础上,小组代表进行发言。其他同学认真倾听,在汇报的基础上再进行补充。在学生汇报交流中,学生及时补充正、反比例的相同与不同。老师根据学生交流的情况,点拨判断正、反比例量的判断方法。
为了全面了解学生知识的掌握情况,在课堂结束阶段,设计适当的检测性练习题让学生独立练习,及时反馈矫正,引导学生自觉参与课堂评价,进而对本节课的表现、练习情况等进行自我总结与反思,体验快乐与成功,增强学生学习数学的信心,培养良好的反思习惯。
在教学中也存在着以下几个问题:
1、时间安排不够合理。在“合作交流”部分的`小组交流中时间留的较多,再加上学生在预展部分板书较慢,学生的板演技能还不是很高,以致课堂预设流程没有能够进行完。
2、学生的课堂语言有重复打结的现象,在学生的展示、补充、点评环节都有存在。对学生课堂发言、倾听习惯培养不到位,对学生课堂语言要进一步的引导养成良好的倾听习惯,以适应课改的需要。
正比例和反比例的教学反思14
通过复习,使学生对正比例和反比例的知识有一个全面的认识,使所学知识结构化,系统化。由于学生已是高年级,应该能够自主对知识进行整理,形成系统,因此在整理与回顾时我尽量放手,给学生充足的时间,让学生将本单元所学内容进行回顾整理,再深入各学习小组巡回指导,适当进行点在这个过程中,我为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。
从前几次学生的作业和考试情况来看,学生在用比例来解决问题的`时候,有部分学生之所以没有完全掌握还是没有理解正、反比例的判断,所以我在复习正、反比例的应用的时候应注重数量关系的分析,并且在分析的过程中注重培养学生]对生活经验加以深化和理解。通过本节课的复习,使学生再次掌握了正比例和反比例的概念,并使学生再一次的经历将一些实际问题抽象成代数问题的过程,进一步体会事物之间的联系和区别。在练习题的设计中我注重联系学生的生活实际,尽量选择离学生的生活接近的例子。
正比例和反比例的教学反思15
我在教学“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。正、反比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。
生活是数学知识的源泉,正反比例是来源于生活的。我在本课教学中,首先通过系列训练,将教材知识转换为学生喜闻乐见的形式,不仅使学生思路清晰地掌握知识体系,而且能在规律上点拨启发,所以学生主动性高,回答问题时能从不同角度、不同方位去思考,既开动了学生脑筋,又培养了学习兴趣。
其次,能充分尊重学生主体,灵活运用知识,联系生活实际,为学生提供丰富的感性材料,重过程练习,让学生亲自经历知识的发生、发展过程,注重培养探究、创新意识,以达到教师主导与学生主体的有机结合,使零散的知识得到有效整合和扩展延伸,形成学生自己固有的知识体系.
课上学生基本能够正确判断,说理也较清楚。但是在课后作业中,发现了不少问题,对一些不是很熟悉的关系如:车轮的`直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?学生在判断时较为困难,说理也不是很清楚。可能这是学生先前概念理解不够深的缘故吧!以后在教学这些概念时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后在进行相关形式的练习,我想对学生的后继学习必然有所帮助。
教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的,我以后会大胆尝试,努力创造民主和谐、轻松愉悦、积极上进,共同发展的新课堂吧!
《正比例和反比例》教学反思优秀
《正比例和反比例》教学反思优秀1
在教学《正比例和反比例的复习》这一课时,我就开门见山的向学生提问那谁来说说正比例和反比例之间的有什么区别和联系?完成这张表格。出示小黑板。
正比例和反比例的比较:
让学生通过观察表格,总结出两种比例关系下两种量不同的变化规律,即另一方面的.不同点。
在原来的教学设计中,我只是简单的安排了复习,让学生口述正反比例的意义,然后再让学生做几个判断正反比例的题目,在实际上的过程中,我让学生自己复习完成上面的表格。
目的有两个:
1、使一部分不能完整说出意义的后进生有个清楚的再认识,达到巩固旧知的教学目的。
2、为让学生准确说出两者的不同点和相同点铺设道路。学生常无法用准确的语言总结两者的联系表达出来,所以这一小小的临时改动收到了良好的效果。
因此,个人认为在以后的教学设计中,复习的设计也要多样化,要把复习当作新课一样来加以修改、创新,让复习课取得更好的教学效果。
《正比例和反比例》教学反思优秀2
正比例的教学,是在学生掌握了比例的好处和基本性质的基础上进行教学的,着重使学生理解正比例的好处。
我在教学时首先细致安排学生初步感知,透过让学生写出路程与时光的'比,求比值,找规律,写数量关系,让学生初步感知正比例的要点。
第二,仅有例题的首次感知学生还不能构成正比例的概念,所以,我变换情境,选取与例题不一样的数量:铅笔的数量和总价,耕地的时光和耕地总公顷数。让学生反复感知正比例概念的规律。这样既拓展了教材,又进一步增加了学生的感性认识。为学生高度概括正比例概念打下了基础。
第三有了前面充分的感性认识,我提出几个问题,引导学生有序的思考,以小组合作交流的形式,让学生进一步突破正比例概念中的一些关键词,如:相关联的量,相对应的数,比值等,学生在合作学习时互相交流,互相讨论,把各自对正比例概念的感知会聚,综合,从而抽象出正比例的好处是:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值必须,这两种量就叫做成正比例的量。
《正比例和反比例》教学反思优秀3
正、反比例知识,内容抽象,学生难以接受。学好正比例知识是学习反比例知识的基础。因此,使学生正确的理解正比例的意义是本节课的重点。在实际教学中,我注意了以下几点:
1、联系生活,从生活中引入。
数学来源于生活,又服务于生活。新的《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。关注学生已有的`生活经验和兴趣,通过现实生活中的素材引入新课,使抽象的数学知识具有丰富的现实背景,为学生的数学学习提供了生动活泼、主动的材料与环境。
2、在观察中思考。
小学生学习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程。例如:在教学例题时,出示了甲乙两辆汽车所行路程和时间的表格后,先观察这两个表格,然后思考下面的问题:
(1)表1、表2中有哪两种量?它们相关联吗?
(2)哪个表中的两种量的变化更有规律?有什么规律?
上面思考题中“更有”两个字对学生的思维有一定定向作用,让学生着重去寻找表1中的规律。在学生深入观察、独立思考、合作交流后,必会发现表1中的两个量变化的规律。另外,由于事例熟悉,且数据计算起来很简单,便于学生口算,学生学习时能将更多的时间和精力用于思考这两种量的变化规律上,进而便于提示正比例的意义。
《正比例和反比例》教学反思优秀4
我们发现教材把比的认识放到了六年级的上学期,学完了百分数之后就认识了比,而删除了比例的意义和性质、解比例以及应用正反比应用题。而只研究正反比例(图片),加入了变化的量(图片),、画一画(图片)、探究与发现(图片),等内容。
为什么加变化的量、画一画、探究与发现等内容?
由困惑引发了我们的思考。通过学习和实践我们有了下面的答案。
其一在《课标》中,更强调了通过绘图、估计值、找实例交流等不同于以往的教学活动,帮助学生体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,为以后念打下基础。学生绘图的过程可以说是他亲身体验的过程,是他“经历运用数学符号和图形描述现实世界的过程”,只有亲身的经历和体验,才能给学生留下深刻的印象,真正体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,加深了对函数的认识。多种研究也表明,为了有助于学生对函数思想的理解,应使他们对函数的多种表示———数值表示(表格)、图像表示、解析表示(关系式),有丰富的经历。在正比例、反比例的学习中,应十分重视三种方式的结合。函数图像更有利于学生直观的理解变量的变化关系,并且利用规律解决问题,更好的进行函数思想的渗透。这一点可以从课堂和课后的作业中找到答案。
其二为今后对函数进一步的.学习做准备我们再来看一看函数课程的发展链。
小学:数的认识,图形数量找规律,数的计算,图形周长和面积,字母表示数—变量,统计—变量,商不变的性质—常函数,正反比例—函数。
初中:一次函数,二次函数,正反比例函数,函数概念的初步认识。
高中:函数概念的映射定义。一些具体函数模型—简单幂函数及其拓展,实际函数的模型——分段函数,指数函数,对数函数,三角函数,数列,函数思想的广泛应用。
到了大学还在继续着对函数的学习,可以看出小学阶段的只是对函数的最初级的最浅显的认识,但却影响着孩子今后对函数的学习。从多方面理解变化的量,打破了思维的局限,利于今后函数概念正确的建立。
《正比例和反比例》教学反思优秀5
“正比例的意义”是一个对于小学生来说十分抽象的数学概念性知识。昨日,我试教了这一课,在教学中调动了学生的生活经验,用日常概念来帮忙学生理解数学概念,帮忙学生初步感知,完成对新知的建构。然后,经过例题指导学生主动概括出正比例的本质特征,学生的理解深刻,准确。
由于学生在上学期已经学过比的意义、比的化简与比的应用。在上一节课也体会了生活中存在的变量之间的关系,这些都为学生学习正比例奠定了基础,正比例关系是数学中比较重要的一种数量关系,它也为学习反比例进行铺垫,同时,学生理解正比例的意义往往比较困难。为此,我密切联系学生已有的生活经验和学习经验,设计了系列情境,让学生体会生活中存在很多相关联的量,它们之间的关系有着共同之处,从而引发学生的讨论和思考,引导学生认识成正比例的量以及正比例在生活中的广泛存在。
我首先给学生提共了正方形的周长与边长和面积与边长的变化关系。让学生独立填表、观察,然后与同伴交流,经过表格、图象、表达式的比较,体会到虽然正方形的周长和面积都随边长的增加而增加,但正方形的周长与边长、面积与边长的变化规律并不相同。同时,学生将初步感知“在变化过程中,正方形的周长与边长的。比值必须”,为认识正比例奠定基础。同时,借助图形直观、动态地体现了正方形的.周长与边长“成正比”的过程,为学生后面学习正比例的图象积累经验。之后,我给学生供给第二个情境:当速度必须时,汽车行驶的路程与时间的变化关系。教学时,我先让学生把汽车行驶的时间和路程表填完整,引导学生观察并思考:当时间发生变化时,路程怎样变化第三个情境则是,购买同一种苹果时,应付的钱数与购买的苹果质量之间的关系。
经过以上这两个实例,引导学生认识到:路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。在此基础上,让学生经过比较,概括出以上实例的共同点,引出“正比例”。
最终,经过小结、练习让学生总结出确定两种量是否成正比例的依据:
1、两种相关联的变量;
2、当一种量变化时,另一种量也随着变化;
3、这两种量中相对应的两个数的比值必须。
《正比例和反比例》教学反思优秀6
在教学过程中,精心安排数学教学活动,使学生在联想、观察、讨论、类推、验证中总结了正比例的好处,体现了学生是学习的主人地位,渗透着学生主动探索的过程。无论是学生对正比例过程的描述,还是学生对正比例好处的系统比较与认识,都留下了学生成功的足印。让学生体验数学,享受成功,找到学数学自信是老师努力探索的境界,改变长期构成的、习惯了的传统教学模式。
在教学过程中,为了让学生更容易的理解,直观展示(课件),让学生理解“杯子是相同的”真正含义,从而探究变化规律。探究过程学生是比较用心的,但由于学生刚接触成正比例,因此对其好处表达不完整,为了化难为易,我采取的'填充式,建立一个表达的模式,帮忙学生理解和表述。
在学习过程中,由于学生用心参与,效果是理想的,但在练习中,个性是一些意思不明显的题目,学生不假思索做出决定的比较多,如:“圆的面积和半径成不成正比例?”很多学生每透过分析,半径是可变量(不必须)。针对这种状况,打算安排一节练习课,练习前对学生进行思想教育,端正学习态度,要求他们要把两个量的等量关系写出来,再作分析比值是否必须,我相信透过下节课的练习,学生对正比例掌握是比较理想的。
《正比例和反比例》教学反思优秀7
意义建构需要在认知系统中找到与之相关联的旧知识作为“固定点”,能作为“固定点”的旧知识,能够是统一的,也能够是对立的。在这一课中,我设计了三组相关联的量:学生经过观查比较,抽象概括出正比例的意义。在上述的几种关系中,都是比值不变的关系。经过比较,学生很容易抓住概念中最本质的东西,使正比例关系中的比值必须,在学生头脑中留下更深刻的印像。在理解正比例意义的同时出示了其他的如和、差、积的关系,经过比较,拓宽了学生的知识面。心理学研究证明,比较能使人受到更强烈刺激。黑白两色放在一齐,白的更白,黑的更黑,就是这个道理。几种关系放在一齐比较,也能够到达这样的效果。
学生感知的数学材料,离学生越近,学生越感兴趣,也就越容易理解,对探索自我提出的问题具有更高的热情。本节课开始所举的三个例子,遵循了尊重学生已有知识水平的原则,选取的都是学生十分熟悉的例子。这是学生一开始就以饱满的热情投入到学习中来的重要原因。这些例题不仅仅有必须的.趣味性,并且其中包含的道理很容易理解(学生已学的数量关系)。在此基础上,要学生将其中变量与不变量的规律找出来,就显得容易多了。找出规律后,再建立数学模型,也就水到渠成了。当学生初步感知成正比例关系的特点,心中构成一种朦胧的概念后,让学生举例,例子来自学生,不仅仅创设了开放的问题情境,并且营造了宽松的学习氛围。在这样的一系列例子的基础上,抽象概括出完整、明确的正比例意义,更贴合学生的认知规律。
在整个教学过程中,教师只向学生供给部分的素材,还有部分素材来自学生。整个探究过程中给学生较充分的思考和交流的空间,引导学生开展自主性的数学活动。如找量的变化规律、变中不变的因素、比较找出本质特征、猜想、给出定义、字母公式表示、解决问题、画图等,主要由学生进行,学生经历“观察、分析、比较、归纳、应用”过程。