《函数》教学反思

2024-05-30下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《《函数》教学反思》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《函数》教学反思》。

《函数》教学反思1

这节课主要让学生理解并掌握不等式的定义,不等式的解,不等式的解集,解不等式的意义,会把解集在数轴上表示出来。以学生课外预习为前提开展教学的。

课本中的实际问题情境创设,都是由学生课外自学来完成,从而给予学生更多的学习思考时间,研究这些问题,可以使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型。教学中要突出知识之间的内在联系。不等式与方程一样,都是反映客观事物变化规律及其关系的模型。在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、甄别,从而得出一元一次不等式、不等式的解与解集的意义。引导学生类比等式及方程的有关知识,于知识的迁移过程中较好地体悟所学的内容。学生数学语言概括能力,互助学习,合作学习的能力得到提高,数形结合思想渗透较好

教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想象力和思维力,再加上多媒体的运用,使学生真正成为学习的主体。

但是,课后及作业中出现以下错误

1、不大于,不小于,弄不清楚;

2、用不等式表示某些语句,个别学生读不懂题意;

3、用不等式解决简单的.实际问题,出现错误较多;

4、不能较好的运用所学知识解决相关问题。

5、一些解题中的细节要注意,例如用数轴来表示解集时,折线向左向右学生没有真正是什么意思,什么时候用实心圆点还是空心圆圈没有区别等等。

6、课堂教学时间,多听学生讲出他们自己的的理解和解题思路,有利于培养学生的数学语言表达能力。

今后教学中,要注重基础知识的学习,满足学生多样化的学习需求的同时,注意学生各方面能力的培养和学习习惯的培养。

《函数》教学反思2

本节课采用导学案引导自学法。首先,复习函数单调性的定义,单调性又名增减性,判断函数的单调性有两种方法:图像法和定义法。然后,要求学生自行阅读课本P57—P58,完成表格,表格将课本实例分析中的8个函数全部罗列出来,完成后观察表格的第3列和第6列,说明导数的正负与函数的单调性有何关系?学生易得出结论。从而说明判断函数的'单调性还可以用导数法。接下来,讲解例1,实际操作,说明如何利用导数判断函数单调性,根据讲解过程,让学生总结求解的一般步骤,并做了2个练习。很不巧,此时下课铃声响了,本节教学任务没有完成。本节课,我设计了三个题型,仅完成了一个。课堂时间之所以把控的不好,原因很多,我反思之后,主要原因有以下两点:

(1)学生基础差,对单调性的知识点掌握不扎实,且自主学习习惯尚未养成,导致阅读课本填表格的时间过长。我在想,是否可以让学生提前复习单调性的概念,并预习课本完成表格,以提高课堂效率。其实,本来也是这样打算的,但由于对学生的学习态度不自信,所以放弃了,想着课堂上也能完成,结果估计不足。应该对学生多一点信心和耐心,行为习惯的养成不是一朝一夕能做到的。

(2)例1中,求导后的计算涉及到不等式的求解,学生对此知识点的把握也不是很到位,教师只能先带领学生回忆不等式的解法,再进行例1的求解。如此,时间又被耽误了。对于这一点,我也预估不足,说明我在备课时,对学情的分析不足。

《函数》教学反思3

一、教学设计反思

课题从学生熟悉的小引例入手,难度不大,思路不唯一。问题1与问题2进一步澄清概念,为下边的立体做好基础准备。例1是基础题目,运算简单;例2是数形结合,借助图象研究函数的交点,利用函数方程思想解方程;对于例3的设计,转化为熟悉的问题来解决,为此设置了一系列的问题串,层层深入,步步引导,使学生不知不觉中提升解决问题的能力。

教学过程中有学生的板书,有提问,有交流,有小组讨论,有个人成果展示,充分调动了学生的`主动性,主动思考;课堂气氛很活跃,课堂效果很好。

二、存在问题反思

在例2的处理过程中,学生板演,应该找更普通的同学,而不是一下把问题解决了或者不具有一般性的解题思路。例题3的变式中,实际可以把问题的难度增加,提升学生思维的深度,但限于时间与学情的问题,没有做进一步的难度提升。

三、改进措施反思

1、应该更加充分的体现学生的主体地位,再多给学生思考的时间

2、板演的同学应该更具有一般性,不能直接做对,或者做错

3、在今后的教学中多加反思,能够对教学内容有深刻的把握和合理的设计

4、对不同程度的学生要具有良好的课堂驾驭能力和现代化的教育方式

《函数》教学反思4

“课内比教学”是教育本质的回归,是提高教师专业素质、促进教师专业成长的重要途径。在此次活动中,我主讲的课题是《二次函数的概念》。通过讲课、评课,我收获颇多。

二次函数是初中阶段研究的最后一个具体的、重要的函数,在历年来的中考中题中都占有较大的分值。二次函数不仅和学生以前学过的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想具有重要作用。而二次函数的概念是以后学习二次函数的基础,在整个教材体系中起着承上启下的作用。

本节课的具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己“推导”出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax+bx+c(a,b,c是常数,a≠0)。最后,通过“一题多练”巩固二次函数的概念并解决一些简单的'数学问题。

我个人以为,本节课的成功之处有以下几点。一是在教学设计上“步步为营”、学生的思维能力“层层提高”。在教学设计上,根据内容的发展,我合理设计了具有针对性的问题,借助学生已有的知识背景展开教学,同时,在解决“老”问题的过程中巧妙地“埋设”新问题,环环相扣、引人入胜,充分激发学生的求知欲、调动学生学习的主动性。

二是在总结中不仅注重对知识的梳理和巩固,而且注重提炼出让学生终生受用的思考方法,使学生的思维水平有所提高。这样不仅提高了学生独立发现问题、解决问题的能力,避免学习落入程式化的窠臼,而且也让学生体验到了成功的快乐。

三是学生的能力得到发展。常言道:尺有所短、寸有所长。不同的学生的个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到“吃不饱”,久而久之就会失去主动思考、主动探究的兴趣。在本节课的最后,我补充的练习题,对这部分学生开阔视野、提高探究能力,都很有好处。

本节课的不足是,一是细节上还有待完善,比如在二次函数的表示上,强调按自变量的降幂排列进行整理还不够突出;再如,课堂放得很开,但有时在该收回的时候收得不够,等等。在今后的教学中,我会特别注意这些方面的问题。

《函数》教学反思5

1.一定要留足时间让学生自己作出二次函数的图象

可能在教学过程中,有些教师会觉得作图象是上一节课的重点,这一节主要是学生观察、分析图象,从而不让学生画图象或者只是简单的画一两个。这种做法看上去好像更加突出了重点、难点,却没有给学生探索与发现的过程,造成学生对于二次函数性质的理解停留在表面,知识迁移相对薄弱,不利于培养学生自主研究二次函数的能力。

2. 相信学生并为学生提供充分展示自己的机会

在归纳二次函数性质的时候,也要充分的相信学生,鼓励学生大胆的用自己的语言进行归纳,因为学生自己的发现远远比老师直接讲解要深刻得多。在教学过程中,要注重为学生提供展示自己聪明才智的机会,这样也利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的.语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。

3.注意改进的方面

在让学生归纳二次函数性质的时候,学生可能会归纳得比较片面或者没有找出关键点,教师一定要注意引导学生从多个角度进行考虑,而且要组织学生展开充分的讨论,把大家的观点集中考虑,这样非常有利于训练学生的归纳能力。

《函数》教学反思6

经过本周的教学,九三学生初步能做到:

①能根据已知条件确定二次函数的解析式、开口方向、顶点和对称轴。

②理解并能运用二次函数的图象和性质解决有关问题。但是,学生对二次函数图象和性质的综合应用掌握不好。特作以下反思:

首先,让学生课下完成二次函数图象和性质的`基础训练,促使学生对二次函数图象和性质的知识点全面梳理和掌握。发现有问题,我及时评讲分析,帮助学生解决。

其次,让学生多做二次函数基础题目,注重数形结合思想的应用,图像的平移,从函数图像上观察出对称轴,顶点坐标,会用描点法画二次函数图像,会求函数最值问题,循序渐进推出,符合学生的认知规律,使学生对二次函数图象和性质有了进一步的理解和提高。

再次,本周完成后,我感到也有不足的地方:课堂容量稍有点偏大,学生没有时间独立完成作业。虽然我对每个问题及时小结、归纳,但没有留一定时间让学生整理消化。准确把握重点,突破难点方面注重自己的提高,同时在驾驭课堂能力方面注重自己的进步。今后我将在如何提高有效课堂效率方面多下功夫,使自己教育教学此文转自水平再上一个台阶。

《函数》教学反思7

本节课主要学习反比例函数,为了让学生更加容易接受新的知识,我首先简单复习了一次函数、正比例函数的表达式,目的是想让学生清楚每种函数都有其特有的表达与以前我们所学的y=kx+b和y=kx有什么联系时,居然有很多同学认为它们和正比例函数类似,当时在课堂上对于这个问题的处理过于仓促,现在想来应注意细节问题。利用题组(二)对反比例函数的三种表示方法进行巩固和熟悉。

例题非常简单,在例题的处理上我注重了学生解题步骤的培养,同时通过两次变式进一步巩固解法,并拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题,(在上学期曾有过类似问题的',由于时间的久远学生不是很熟悉)但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。

虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性。总之,我会在以后的教学中注意细节问题的。

《函数》教学反思8

二次函数是初中阶段研究的一个具体、重要的函数,在历年来中考题中都占有较大的分值。二次函数不仅和学生前面学习的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想有着重要的作用。而二次函数的概念是后面学习二次函数的基础,在整个教材体系中起着承上启下的作用。

本节课的内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决实际问题。为此,先让学生复习了函数及一次函数的相关内容,然后设计具体的问题情境让学生自己推导出一个二次函数,并观察、总结它与一次函数的'不同,在此基础上逐步归纳出二次函数的一般表达式,最后通过习题巩固二次函数的概念并解决一些简单的数学问题。

我个人认为,本节课的成功之处是:一是在教学设计上“步步为营”,学生的思维能力“层层提高”。在教学设计上,根据内容的需要,我合理设计具有针对性的问题,借助学生已有的知识展开教学,通过解决问题,充分激发学生的求知欲,调动学生学习的积极性和主动性。

二是在学习的过程中,不仅注重对学生知识的教授,更注重教给学生学习和思考的方法,提高学生独立发现问题、解决问题的能力,让学生时时体验到成功的快乐。

三是在整个教学过程中,注重不同层次学生的发展,不同的学生的个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到吃不饱现象,因此在后面的练习设计中,也有针对性的习题,对这部分学生提高也是很有帮助的。

不足之处表现在:

1、由于学生对一次函数的遗忘,因此复习占用的太多的时间,导致课后练习没完成。

2、学生自学环节,要求不够细致,学生学的不够深入只是看了教材,而未挖掘出教材以外的东西。

3、由于时间紧张小结的不够完整。

总之,本节课的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。

《函数》教学反思9

二次函数是数与代数中的重点,图形变换是空间与几何中的重要内容,当二者结合在一起时学生不易理解,所以设计了本节课的内容。

优点:

1、课件制作有演示图形的变换与呈现的结果,帮助学生更好地理解图形变换的规律和特点,认识问题的本质,突破难点。

2、练习题的选择以模考、练考、往届中考及中考说明为主,强调了所学知识如何在做题中应用,提高学生的解题能力。

3、在复习过程中强调了数学思想方法的应用,如整体代入的思想,数形结合的'思想,逆向思维的方式等,提升了学生的数学思维,教学反思《二次函数与图形变换教学反思》。

4、以表格的形式对本节课的知识进行总结和梳理,使学生对本节课的内容有一个整体的回顾,从认识到数学思考对学习的重要作用。

缺点:

1、上课气氛过于沉闷,由于选择的题型较有难度,使不少学生独立思考问题时缺少解题的方法和技巧,耽误了一些时间。

2、学生对于本节课的内容没有充足的时间进行反思和总结,很多规律由老师代替总结。

3、由于时间关系,所涉及的内容较多所以留给学生思考和进行展示的机会太少。

4、讲课的内容可能没有照顾到全体学生,有少部分学生对本节课的知识掌握的不好。

努力的方向:

1、进一步研究考试说明,使初三总复习能够更有效进行。

2、认真钻研各种题型,引导学生总结解题方法以及所运用的数学思想。

3、备好学生,使课堂气氛更活跃一些。

专家点评:

1、用图像研究函数应指明关键地方。

2、图形变换与a、b、c、h、k、x1、x2相关,每种变换与常数有什么关系应明确指出。

平移————a、b、c

旋转————h、k

对称————x1、x2

3、明确函数的解析式应能够画出图像草图进行分析。

4、教案中突现学生为主体。

5、应在平时的讲课过程中培养学生表述问题的能力,引入学生之间的交流、评价,易于提升课堂气氛。

6、课堂练习在巡视的过程中,所发现的问题应及时点评。

《函数》教学反思10

方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,但要让学生能够真正理解,教学还需要妥善处理其中的一些问题。

(一)教材设置函数的零点这一内容的目的,就是为了体现函数的应用,为用二分法求方程的近似解奠定基础。所以,教学一开始就应该从学生用已学方法不能求解的方程出发展开讨论,然后引导学生体会其中的思想方法。例如,可以像前面一样先提出:方程lnx+2x-6=

是否有实根?为什么?当学生陷入困境时,教师再逐步提出下面的问题进行引导:

1.当遇到一个复杂的问题,我们一般应该怎么办?

以此来引导学生将复杂的问题简单化,寻找类似的简单问题的解决方法。

2.以前我们如何判断一个方程是否有实根,这对研究这个方程是否有帮助?

以此来引导学生从已有认知结构出发,将解决简单方程的方法迁移到不能求解的方程中去,学会从特殊到一般的思维方法。

3.除了用判别式可以判断一元二次方程根的情况,还有其他的方法吗?

以此来引导学生建立方程与函数的联系,渗透函数与方程的思想方法,并培养其从不同角度思考问题的习惯。

(二)怎样突出数形结合的思想方法

数形结合的思想方法几乎贯穿于“基本初等函数I”一章的始终,学生通过前面的学习,已基本形成数形结合的思想方法,所以本节教学应该以培养学生主动运用数形结合的思想方法去分析问题为目的。但是,在教学过程中却没有多留给学生主动运用数形结合思想方法的.空间。

在建立方程的根与函数的零点的关系时,函数图象起到了关键的桥梁作用,充分体现了它与方程的根以及函数零点之间的数形结合的关系。但是,却没有留给学生足够的时间去主动搭建函数图象这一桥梁,而是由我作出函数图象,让学生回答方程的根与函数图象和x轴的交点有何关系,然后老师再给出方程的根、函数图象和x轴的交点、函数的零点之间的关系。这样的教学,虽然一定程度上也能体现数形结合的思想方法,但体现的思想层次却很低。在这种能够体现思想方法的关键地方,教师要舍得花时间,要让学生由方程自觉地联想到相应的函数,主动地建立方程的根与函数图象间的关系,提升数形结合思想方法的层次,增强函数应用的意识。

(三)如何从直观到抽象

教材是通过由直观到抽象的过程,才得到判断函数f(x)在(a,b)内有零点的一种条件。如何让学生从直观自然地到抽象,有下面几个教学难点需要处理

方程的根与函数的零点是高中课程标准新增的内容,第一次教学就要取得成功的确不易。看来,像这些中学新增内容的教学,需要一个不断实践以及实践后的反思的过程,在实践与反思的过程中,不仅要妥善解决上述问题,还要不断地发现和解决新的问题,这样,教学效果才会逐步得到改善。

《函数》教学反思11

结合自己的教学发现存在许多不足的地方,为了更好的加强教学,提高教学效率,对本节教学反思如下:

一: 应用传统的以旧带新方法,利用学生在初中学习过的锐角三角函数,对给出的一个锐角,借助三角板构造直角三角形,找出它的正弦、余弦的近似值是很容易的事,而恰恰在这一点上,学生耗费了大量的'时间,而教师又不想越俎代庖地告诉学生,这就严重影响了后续建立任意角三角函数的概念,并通过特殊角的求值体验、把握内涵的时间保证,造成体验不够,概括过早,应用更少的现象.

二:问题教学设计不够合理。没有准确把握学生的知识

基础与认识能力,教科书在节首提出的“思考”是:“我们已经学过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗”其实,学生只知道锐角三角函数是直角三角形中边长的比值,并不完全知道“它们都是以锐角为自变量,以比值为函数值的函数”,这就需要通过复习,来帮助学生补上这一点.

三:思想方法渗透不是很到位:这一节课把教学的基本要求定位在,弄清任意角三角函数与锐角三角函数的区别,接受用坐标(或坐标的比值)表示三角函数就够了.但需要注意的是,应该通过什么方式让学生建立起用坐标(或比值)表示任意角三角函数,以及领会建立这个概念过程中所蕴涵的数学思想方法.

通过以上反思:认识到课堂教学是一项实践性很强的工作,除了认真的课前准备外,对教学过程中出现的“突发事件”,随机应变十分重要.教师需要关注学生的学习行为,关注学生的认识过程,随时修改自己的教学设计,调整教学内容、教学要求,改变策略,选择恰当的方法实施教学,以达到最佳教学效果.

《函数》教学反思12

《正比例函数》是中学教学中非常重要的内容,是学生第一次学习数形结合,正比例函数是一次函数的特例,是学生第一次涉及到一个具体的函数的学习和研究,也是初中数学中的一种简单最基本的函数,是后面学习一次函数的'基础。

本节课中,我收集了生活中的一些实际应用的例子,引导学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。

在教师的情景诱导下使学生快速进入到本节课内容当中,通过问题式的探究,使学生自己研究和小组的探索、讨论来解决问题,再通过学生的展示、教师的点拨、总结进行知识归纳,然后老师再出变式练习,检测学生在本节课还有哪些方面的问题,以及使学生能力得到进一步提升。最后让学生总结本节课学到了什么,还有那些困惑。整堂课学生发现,探索,质疑,实践,归纳,练习,环环相扣,严谨有序,通过练习检测学生学习情况,效果良好。不足之处教师讲解引导多,没有真正把课堂给学生。

《函数》教学反思13

在本节授课过程中,教学环节展开是顺畅的,学生在教师引导下,能够说出一次函数的图象特征及性质,并通过类比一次函数的研究方法,按照列表、描点、连线三个步骤画出反比例函数图象,通过观察所画出的反比例函数图象,得出该图象的“特征”和函数的“性质”。

但因为学生刚接触反比例函数图象,图象外在形式(双曲线)与一次函数图象(直线)之间存在较大的差异,学生还缺乏对反比例函数图象“整体形象”的把握。一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图象“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的`两个函数值大小时,学生不能有意识地从“自变量的正负”来考虑问题,这导致学生课后“目标检测”时,对部分问题的解决出现偏差。

此外,展开本节课学习的一个重要的方法,就是“类比”。在教学过程中,教师极力引导学生“类比一次函数学习的方法”,最大限度地调动学生“合情推理”因素,以确保学习知识的“正迁移”效应,实际也会带来一些负面的影响,学生往往对属于一次函数和反比例函数“共性”的结论印象比较深刻,而对于反比例函数“个性”的结论,理解上反而会受到一些干扰。

《函数》教学反思14

这节课的教学内容是《正比例函数》,函数是中学教学中非常重要的内容,正比例函数是一次函数特例,是学生第一次涉及到一个具体的函数的学习,也是初中数学中的一种最简单最基本的函数,是后面学习一次函数的基础。

今天的教学重点是正比例函数的一般形式,以及利用正比例函数的一般形式求函数解析式,课前安排学生预习课本,完成思考中的`问题。课上又安排了五分钟让学生自学做检测题,本节课第一个任务是学习正比例函数的一般形式,第二个主要任务是学用待定系数法求函数的解析式,我给出的例1是让学生找出哪些是正比例函数,例2是让学生求函数解析式,进而讲用待定系数法求函数解析式。待定系数法求函数解析式是初中数学中求解析式的一个重要方法,学生初次学习掌握的情况一般,程度好的学生基本能掌握了,一般的学生就有点吃力了,特别是我给的最后一个练习,好多程度一般的同学做起来有点吃力,之后还要加强练习这类题型。

总之,这节课大部分同学能掌握正比例函数的一般形式,,,但要是全部同学学会还有待努力提高.

《函数》教学反思15

9月23日,我在九年级三班讲授了二次函数y=ax2+k、y=a(x-h)2的图象和性质。

先从复习二次函数y=ax2入手,通过检测学生对于二次函数y=ax2的性质掌握较好。然后结合图象让学生理解二次函数y=ax2+k的图象与二次函数y=ax2的图象的关系,通过观察图象学生很容易地理解了二者之间的关系,在做对应练习时效果也较好。

在学习二次函数y=a(x-h)2的图象和二次函数y=ax2的图象的关系时,由于涉及向左或向右平移引出了加减问题,学生在此容易混淆,尽管让学生结合图象明确地看到在x后面如果是加就是向左平移的,反之就是向右平移,再就是在看如何平移时关键是看顶点的'平移,顶点如何平移那么图象就如何平移。先由解析式求出顶点从标,再看平移的问题。但是还是有一部分同学混淆了。这一部分内容学习得不够理想。反思这一节课整个过程中的成功和不足之处,我觉得需要改进的有如下几点:

1、灵活处理教材。教材上是一节课学习两种类型的函数,但是根据学生作图的速度和理解能力,一节课完成两种类型的函数有一定的困难。虽然也想过适当处理,但是想到教材是一节课完成两种函数,所以还是决定两种函数在一节课完成,事实证明一节课完成两种函数效果不是很好。由此可见有时教材上的安排不一定是科学的,所以要根据学生的实际情况进行灵活处理。

2、认真考虑每一个细节。考虑到一节课上学习两种类型的函数时间有些紧张,所以我让学生提前画好了图象,这样在课堂上可以节省时间,由于默认学生已经画好了图象,所以我也没有在黑板上再画出图象,这样让学生在看图象时,有的学生没有画出,有的同学画错了,这样就给学习新知识带来了困难,这是我没有想到的。所以以后要充分考虑到每一个细节,要想到学生可能会出现什么情况。

3、小组评价要掌握好度。在课堂上我运用了小组评价,学生回答问题非常积极,可是我感到小组评价还有需要改进的地方。学生回答问题后加分比较耽误时间,在以后的教学中我觉得应该更灵活把握好度,使评价为教学服务而不能因评价而耽误教学。

我觉得要想提高自己的教学水平,就要及时反思自己教学中存在的不足,在每一节课前充分预想到课堂的每一个细节,想好对应的措施,不断提高自己的教学水平。

函数教学反思

篇一:函数>教学反思

数学知识来源于生活,同时也服务与生活,在教学这一课时我从实际引入,采用了大量的生活情境,为同学创造了探索知识的条件,将学生参与到获取新知识的过程中去,将抽象的知识形象化,让学生在不知不觉中接受了新知识;在与旧知识的对比中掌握了新知识;在阶梯式的练习中,巩固了新知识。

在教学设计上,分为四步:

第一、复习正比例函数的有关知识,目的是让学生回顾函数知识,为学习反比例函数作好铺垫。

第二、给出了三个实际情景要求列出函数关系式,通过归纳总结这些函数的特征,得出反比例函数的定义。通过学习讨论得出反比例函数的几种形式,自变量的取值范围。

第三,在学生理解反比例意义的基础上,让学生尝试判断给出的例子是否成反比例。

第四、通过做一做的三个练习进一步巩固新知。

教学之路是每天每节课点点滴滴的积累,这条路的成功秘诀只有一个:踏实!对于我,任重而道远,我将默默前行,提高自己,让我教的每一个孩子更优秀。

篇二:函数教学反思

函数是研究现实世界变化规律的一个重要模型,对函数的学习一直以来都是中学阶段的一个重要的内容。函数的概念是学习后续“函数知识”的最重要的基础内容,而函数的概念又是一个比较抽象的,对它的理解一直是一个教学难点,学生对这些问题的探索以及研究思路都是比较陌生的,因此,在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解。

函数是初中阶段数学学习的一个重要内容,学生又是第一次接触函数,充分考虑学生的接受能力,从生动有趣的问题情景出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念。又通过具有丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,为下一步学习《一次函数图像》奠定基础,并形成用函数观点认识现实世界的能力与意识。

学生第一次利用数形结合的思想去研究一次函数的图像,感到陌生是正常的。在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图像是一条直线应让学生自己得出。在得出结论之后,让学生能运用“两点确定一条直线”,很快做出一次函数的图像。在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。

根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容易让学生关注与代数表达式的寻求,甚至队部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是y=kx+b,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征—本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中教师应通过问题情境的创设,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。在师生互动、生生互动的探索实践活动中,促成学生对一次函数知识结构的构建和完善;在巩固议练活动中,提高学生解决问题的能—本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。

探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到一次函数就在我们身边,应用非常广泛。教学中注意到利用问题串的形式,层层递进,逐步让学生掌握求一次函数表达式的一般方法。教学中还注意到尊重学生的个体差异,使每个学生都学有所获。根据本班学生及教学情况可在教学过程中选择下述内容进行补充或拓展,也可留作课后作业。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。

篇三:函数教学反思

“对数函数”的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。“对数函数”第一部分是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

在讲解对数函数的定义前,复习有关指数函数知识及简单运算,然后由实例引入对数函数的概念,然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。

大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。

下载《函数》教学反思word格式文档
下载《函数》教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《函数》教学反思

    《函数》教学反思 《函数》教学反思1 一次函数是学生在学习了正比例函数、反比例函数等知识基础上进行学习的,因此学生对一次函数比较熟悉了,所以,本教学设计注意以旧引新,通过......

    《函数》教学反思

    《函数》教学反思 《函数》教学反思1 这节课的教学内容是《正比例函数》,函数是中学教学中非常重要的内容,正比例函数是一次函数特例,是学生第一次涉及到一个具体的函数的学习,......

    《函数》教学反思

    《函数》教学反思 《函数》教学反思1 《6.3二次函数与一元二次函数》的第一课时,主要是用方程的方法研究二次函数图像与x轴交点的个数及交点的求法问题。简而言之,就是借助数......

    二次函数教学反思

    二次函数教学反思 二次函数是初中阶段研究重要的函数,在历年来的中考中题中都占有较大的分值。二次函数不仅和学生以前学过的一元二次方程有着密切的联系,而且对培养学生“数......

    二次函数教学反思

    二次函数单元教学反思 第二十六章《二次函数》是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。二次函数是描述变......

    二次函数教学反思

    二次函数教学反思15篇 二次函数教学反思1 新人教版九年级数学第二十二章《二次函数》是学生学习了正比例函数、一次函数进一步学习函数知识,是函数知识螺旋发展的一个重要环......

    二次函数教学反思

    二次函数最值的应用教学反思 本节课是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以......

    《正比例函数》教学反思

    《正比例函数》教学反思 《正比例函数》教学反思1 在当前的初中数学教学中,教师除了重视数学知识的传授,越来越多的老师开始关注数学知识和学生的实际生活的联系。使学生对生......