第一篇:大学物理I-1(力学与相对论练习)
大学物理I-1练习(期中)(打*题选做)
A力 学 练习
一.选择题
1.有一劲度系数为k的轻弹簧,原长为l0.下端固定在桌面,当它上端放一托盘平衡时,其长
度变为l1.然后在托盘中放一重物,弹簧长度变为l2,则由l1缩短至l2的过程中,弹性力所
作的功为
(A)kxdx.(B)kxdx. ll11l2l
2(C)
2.l0l2l0l1kxdx.(D)ll02l0l1kxdx.[]
质量为M的车以速度v0沿光滑水平地面直线前进,车上的人将一质量为m的物体相对于车以速度u竖直上抛,则此时车的速度v为:
(A)-v0.(B)v0.
(C)(M-m)v0/M.(D)(M-m)v0/m
[]
3.两质量分别为m1、m2的小球,用一劲度系数为k的轻弹簧相连,放在水平光滑桌面上,如图所示.今以等值反向的力分别作用于两小球,则两小球和弹簧这系统的(A)动量不守恒,机械能守恒.m m(B)动量不守恒,机械能不守恒.(C)动量守恒,机械能守恒.
(D)动量守恒,机械能不守恒.[]
4.质量为m的质点以速度v沿一直线运动,当它对该直线上某一点的距离为d时 , 则它
对此直线上该点的角动量为__________.
(A)md(B)0
(C)m
5.(D)md[]
如图所示,质量为m的子弹以水平速度v0射入静止的木 块并陷入木块内,设子弹入射过程中木块M不反弹,则墙壁 对木块的冲量为:
(A)-M0(B)0
(C)
-m0(D)m0[]
在相对地面静止的坐标系内,A、B二船都以2 m/s速率匀速行驶,A船沿x轴正向,B
船沿y轴正向.今在A船上设置与静止坐标系方向相同的坐标系(x、y方向单位矢用i、j表示),那么在A船上的坐标系中,B船的速度(以m/s为单位)为
(A)2i+2j.(B)2i+2j.
(C)-2i-2j.(D)2i-2j.[]
7.某物体的运动规律为dv/dtkvt,式中的k为大于零的常量.当t0时,初速为v0,则速度v与时间t的函数关系是
21ktv0,(B)vkt2v0,221kt211kt21
(C),(D)[]
v2v0v2v0
(A)v
8.竖直上抛一小球.若空气阻力的大小不变,则球上升到最高点所需用的时间,与从最高点下降到原位置所需用的时间相比
(A)前者长.(B)前者短.(C)两者相等.(D)无法判断其长短.[] 9.
一质点在如图所示的坐标平面内作圆周运动,有一力
FF0(xiyj)作用在质点上.在该质点从坐标原点运动到(0,2R)
位置过程中,力F对它所作的功为
(A)F0R.(B)2F0R.
(C)3F0R.(D)4F0R.[]
二.填空题 1.A、B二弹簧的劲度系数分别为kA和kB,其质量均忽略不计.今将二弹簧连接起来并竖直放置,如图所示.当系统静止时,二弹簧的弹性势能
EPA与EPB之比为.2.
如图,在光滑水平桌面上,有两个物体A和B紧靠在一起.它们 的质量分别为mA=3 kg,mB=5kg.今用一水平力F=8 N推物体A,则A推B的力等于______________.如用同样大小的水平的力从右边推B,则B推A的力等于___________________.*3.
绕定轴转动的飞轮均匀地减速,t=0时角速度为0=10 rad / s,t=5 s时角
速度为 = 0.60,则飞轮的角加速度=______________,t=0到 t=20 s
时间内飞轮所转过的角度=___________________.
假如地球半径缩短 0.5%,而它的质量保持不变,则地球表面的重力加速度g
增大的百分比是______________.
*5.
质量为m的小球,用轻绳AB、BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比 T : T′=____________________.A6.
粒子B的质量是粒子A的质量的4倍,开始时粒子A的速度vA03i4j,粒子B的
速度vB02i7j;在无外力作用的情况下两者发生碰撞,碰后粒子A的速度变为
vA3i8j,则此时粒子B的速度vB=______________.
7.有一质量为m=5 kg的物体,在0到10秒内,受到如图所示的变力F的作用.物体由静止开始沿x轴正向运动,力的方向始终为x轴的正方向.则10秒内变力F所做的功为____________.
三.计算题 1.
质量为m=1g,速率为v=10m/s的小球,以入射角
与墙壁相6
碰,又以原速率沿反射角方向从墙壁弹回.设碰撞时间为t=0.5s, 求墙
壁受到的平均冲力2.
质量m=3 kg的质点在力F12ti(SI)的作用下,从静止出发沿x轴正向作直线运动,求前2秒内该力所作的功. *3.某弹簧不遵守胡克定律.设施力F,相应伸长为x,力与伸长的关系为F=8x+12x2(SI)求:
(1)将弹簧从伸长x1=0.50 m拉伸到伸长x2=1.00 m时,外力所需做的功.
(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为3 kg的物体,然后将弹簧拉伸到一定伸长x2=1.00 m,再将物体由静止释放,求当弹簧回到x1=0.50 m时,物体的速率.
(3)此弹簧的弹力是保守力吗? 4.
2一质量为1 kg的质点,在xy平面上运动,受到外力F4i24tj(SI)的作用,t = 0
时,它的初速度为v03i4j(SI),求t = 1 s时质点的速度.5.
设想有两个自由质点,其质量分别为m1和m2,它们之间的相互作用符合万有引力定
律.开始时,两质点间的距离为l,它们都处于静止状态,试求当它们的距离变为l时,两质点的速度各为多少?
3B相对论练习
一、选择题 1.一火箭的固有长度为L,相对于地面作匀速直线运动的速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹.在火箭上测得子弹从射出到击中靶的时间间隔是:(c表示真空中光速)(A)
LL
.(B).
2v1v2v1(v1/c)
(C)
LL
.(D).[]
v2v1v
22.宇宙飞船相对于地面以速度v作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过t(飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为(c表示真空中光速)(A)
ct(v/c)
(B)v·t
(C)c·t (D)ct(v/c)[]
3.两个惯性系S和S′,沿x(x′)轴方向作匀速相对运动.设在S′系中某点先后发生两个事件,用静止于该系的钟测出两事件的时间间隔为0,而用固定在S系的钟测出这两个事件的时间间隔为.又在S′系x′轴上放置一静止于是该系, 长度为l0的细杆,从S系测得此杆的长度为l, 则
(A) < 0;l < l0.(B) > 0;l < l0.
(C) > 0;l > l0.(D) < 0;l > l0.[]
*4.根据相对论力学,动能为0.511 MeV的电子,其运动速度约等于(A)0.1c(B)0.5 c
(C)0.76 c(D)0.87 c[](c表示真空中的光速,电子的静能m0c2 = 0.51 MeV)5.令电子的速率为v,则电子的动能EK对于比值v / c的图线可用下列图中哪一个图表示?(c表示真空中光速)
/c
/c /c
/c
[]
6.设某微观粒子的总能量是它的静止能量的K倍,则其运动速度的大小为(以c表示真空中的光速)
cc .(B)K2.K1Kcc
(C)K(K2).(D)K21.[]
K1K
(A)
二填空题 1.以速度v相对于地球作匀速直线运动的恒星所发射的光子,其相对于地球的速度的大小为______.2.已知惯性系S'相对于惯性系S系以 0.8 c的匀速度沿x轴的正方向运动,若从S'系的坐标原点O'沿x轴正方向发出一光波,则S系中测得此光波在真空中的波速为____________________________________.3.
-+介子是不稳定的粒子,在它自己的参照系中测得平均寿命是2.6×108 s,如果它相对于实验室以0.8 c(c为真空中光速)的速率运动,那么实验室坐标系中测得的+介子的寿命是______________________s.三、计算题
1、-地球的半径约为R0 = 6376 km,它绕太阳的速率约为v30 km·s1,在太阳参考系中测量地球的直径在哪个方向上缩短得最多?缩短了多少?(假设地球相对于太阳系来说近似于惯性系)2.要使电子的速度从v1 =1.0×108 m/s增加到v2 =2.0×108 m/s必须对它作多少功?(电子静止质量me =9.11×10-31 kg)
第二篇:大学物理 相对论总结
时间、空间与运动
———狭义相对论及其伟大科学意义
航空航天与力学学院 工程力学系 曹玉梦 1153410
前言:在这一学期的普通物理学课程中,我们开始学习现代物理学的相关知识,尤其是相对论和量子物理学部分,虽然有些难以理解但真的激起了我很大的探究兴趣.我在课下查阅了很多关于相对论的知识,在这学期即将结束的时候在这里做一下总结和梳理,并以此来表达我在着一个学期中对物理学学习的心得与体会.以下就是我对狭义相对论的学习梳理.爱因斯坦1905年创立的划时代的狭义相对论,发现了时间和空间与运动的相对性关系,建立了以实验事实为基础的适用于全部物理学和自然科学的新的相对时空理论及其新的运动学定律,从而彻底推翻了统治物理学已二百多年的牛顿的绝对时空理论,成为物理学、自然科学和哲学史上一次最伟大的科学革命.从狭义相对论的相对时空结构理论得出的最令人叹为观止,也最令人惊奇的结论,是最深刻地揭示了自然界最深层的一个极为神奇而又非常有趣的现象和基本规律:时空的相对性结构是一切自然界定律对相对运动保持其不变性和对称性的基础,也是自然界因果关系成立的基础.没有时空的相对性结构就没有自然界定律对运动的不变性和对称性,也没有自然界的因果关系,反之亦然.正是两者的辩证统一构成和展示了自然界的和谐性和统一性.有人认为狭义相对论证明了世界上的一切事物都是相对的,没有绝对的,只有相对真理,没有绝对真理,这完全是一种误解.狭义相对论只是相对时空结构理论,只是证明了时间和空间是相对性的,而不是绝对的,只是证明了正是时空的相对性结构保证了一切自然界定律对运动的不变性和对称性,并没有否定自然界定律的不变性和绝对性.为此,爱因斯坦在多年内一直把狭义相对论称之为相对性原理,用以强调时间和空间的相对性结构,1915年起才开始称之为狭义相对论,以区别于广义相对论.物理学的三大革命
19世纪末,由于实验和理论研究的深入发展,发现了一系列新的物理现象,诸如X射线、放射性、塞曼效应、电子等,利用已有的经典物理学理论无法作出解释,使物理学陷入了空前危机,也进入了一个新的革命性转折时期.因此,在20世纪初物理学相继发生了三次史无前例的伟大革命,这就是狭义相对论、广义相对论和量子论革命,革命性地改变了物理学的公理基础和概念结构.狭义相对论发现了时间和空间的相对性结构,建立了新的相对时空结构理论及其新的运动学定律,改变了人类对时间和空间的认识.广义相对论则揭示了四维弯曲时空几何结构与引力的关系,建立了新的引力场理论,由此建立了科学地研究宇宙起源、演化及其结构的现代宇宙学.量子论则深化了对物质微观结构的认识,建立了研究微观粒子运动规律的量子力学,有力地促进了分子和原子物理学、固体物理学、核物理学和基本粒子物理学以及化学等学科的飞跃发展.三大革命开辟了现代物理学的研究及其新纪元,为现代高科技发展奠定了牢固的理论基础.狭义相对论和广义相对论革命是爱因斯坦一人独力完成的,他对量子论革命也作出了至关重要的开创性贡献.因此,爱因斯坦的伟大科学成就被举世一致公认为物理学和科学史上非常罕见的奇迹,爱因斯坦也被公认为有史以来最伟大的物理学家和科学大师.划时代的狭义相对论是爱因斯坦在1905年创立的,也是他在科学征途上攀登的第一座科学高峰.当时他才26岁,跨出大学校门只短短5年,但已充分展示了他非凡的科学天才.由于发现和建立了适用于全部物理学和自然科学的新的相对时空结构理论及其新的运动学定律,不
但圆满解决了长久以来困扰物理学界的麦克斯韦电动力学不能应用于运动物体的问题,也解决了力学与电动力学在相对运动上的不对称性,为物理学理论的统一迈出了新的一步,由此发现了自然界一系列的新奇定律,脱颖而出,因此爱因斯坦也很快成为科学界刮目相看的一颗光芒灿然的科学新星.牛顿的绝对时空观
时间和空间是一切物质存在、运动和相互作用的基础,一切自然界现象和事件都是在时间和空间中发生的.因此时间和空间概念是物理学和一切自然科学描述自然界现象和事件的基础.物理学中的时间和空间概念起源于17世纪的伽利略和牛顿.牛顿在其伟大著作《自然哲学之数学原理》一书中指出“绝对的、真正的、数学的时间,就其本性而言是永远均匀地流逝,与一切外界事物无关的”.又指出“绝对空间就其本性而言,是永远处处相同和不动的,与一切外界事物无关的”.一般称之为牛顿的绝对时空.绝对时空最鲜明的特点是时间和空间结构都与运动和一切外界事物无关,是绝对的,永远不变的.绝对时空也是牛顿力学定律对一切匀速运动保持其不变性和对称性的基础.牛顿的绝对时空在物理学中的体现和应用,是伽利略相对性原理及其数学表示式伽利略变换,也称为伽利略运动学.相对性原理是关于时间和空间与运动关系的原理.在物理学中一般利用坐标系来定义和描述物体的静止和运动状态,坐标系是时间和空间坐标的组合.最常用的一种坐标系是适合牛顿惯性定律的惯性坐标系(一般简称为惯性系).伽利略变换就是描述时间和空间在一切惯性坐标系内与运动关系的数学形式,其中时间不受运动和外界事物的影响,是绝对的,不变的;物体的空间位置虽随运动而变化,但牛顿认为这种相对空间只是绝对空间的可动部份或者量度,而绝对空间本身则是永远处处相同和不动的.牛顿力学定律完全适合伽利略相对性原理,对伽利略变换保持其不变性和对称性,都不受坐标系或者观察者运动状态的影响,因此两者共同构成了一个逻辑一致的理论体系.牛顿的绝对时空观由于没有任何实验事实作为依据,因此从其问世之后曾经不断遭到其同时代学者及以后历代学者的批判.19世纪末叶,奥地利著名物理学家和实证主义哲学家马赫,更从实证主义出发,对牛顿的绝对时空概念进行了系统而深刻的批判,认为一切物理学定律和物理理论都只能包含可观测量,而不应包含不可观测量,牛顿的绝对时空由于没有任何观测事实依据,应从力学和所有物理学中彻底清除出去.由于马赫及其他学者的批判,至19世纪末开始形成了两个明确认识:一是牛顿力学定律并不是了解一切物理现象的先决条件或前提;二是把一切物理现象纳入牛顿力学框架,也不是人类理性的要求.马赫的批判对爱因斯坦青年时代思想的发展有深远影响,对他后来创立狭义相对论的相对时空理论无疑有重要启发意义.因此爱因斯坦一直对马赫给予了很高评价,称赞马赫的批判给他留下了持久而深刻的印象.他认为马赫的伟大之处是他不折不挠的怀疑主义和独立精神.但在爱因斯坦之前,从未有人提出过以实验事实为依据的科学的时空理论,来取代牛顿形而上学的绝对时空理论.实际上,牛顿的绝对时空理论并非是毫无经验事实依据的无稽之论.绝对时空观不但完全符合人们在日常生活中从未觉察到时间和空间本身有任何变化的直接感觉经验,而且在低速情况下也有其牢固的实验基础.因为在低速情况下,由于时间和空间的相对性结构而产生的相对论效应一般极其微小,不但测量不出来,也不产生任何影响,只有在接近光速的高速物理现象中相对论效应才起着重要作用.正是由于这些原因,至19世纪末的二百多年内,牛顿的绝对时空和牛顿力学定律从未受到过任何实验事实的冲击和挑战,可以圆满地成功地应用于行星运动以及一切宏观物体的运动,今天也仍然如此.因此,在过去二百年中,牛顿力学在物理学的各个领域都取得了令人瞩目和惊异的伟大成就,一直被公认为是全部物理学甚至是整个自然科学的统一基础.物理学家一直试图把全部物理学都统一到力学框架内,从力学定律推导出一切物理学定律,由此建立对自然界的统一力学世界观.但是,麦克斯韦电动力学和光学实验的发展,从根本上动摇了力学作为全部物理学和自然科学牢固基础的教条式信念.3 狭义相对论的伟大科学意义
狭义相对论的伟大科学意义爱因斯坦创立划时代的狭义相对论的论文有一个朴实无华的简单题目《论运动物体电动力学》这也是当时物理学界共同关心和研究的热门课题.但只有爱因斯坦建立了全新的相对时空结构理论及其新的运动学定律,才使这一问题圆满解决.这篇论文也是科学史上最具有特色的论文,不但其科学内容的革命性和创造性以及所展示的非凡物理洞察力和新思维是科学史上十分罕见的,而且其理论结构也构成了一个从最少基本原理出发的既完美又自洽一致的逻辑演绎体系.为此,爱因斯坦强调指出,狭义相对论体现了理论科学在现代发展的基本特征,也更接近于一切科学的伟大目标,即从最少的假设或者公理出发,通过逻辑演绎方法,概括最多的经验事实.又指出,过去适用于科学发展早期的占主导地位的归纳法,正在让位于探索性的演绎法.狭义相对论正是爱因斯坦倡导的逻缉演绎法的一个典范.现在演绎法已成现代理论物理学发展的主要模式.再者,其文体风格也十分特殊,没有引用任何参考文献和实验事实作为依据,论文本身独立成篇,结构严密,逻辑清晰,无任何冗词赘句,所用数学也不高深,至今仍是学习和了解狭义相对论的最佳入门文献.全文除开头3段提要性的简明引言外,主要分为运动学部分和电动力学部分,每一部分又各分为5小节,在形式上也是很对称的.从论文的结构明显看出,爱因斯坦创立狭义相对论经历了主要两个步骤:首先是使时间和空间结构(即时空度规)适合光学和电磁现象以及麦克斯韦电动力学方程对运动的不变性和对称性,由此发现了同时性、时间和空间对运动的相对性结构,运动对钟和尺的影响,建立了全新的相对时空结构理论及其新的运动学定律.其次是使全部物理学适合新的相对时空结构理论及新的运动学定律,由此圆满地解决了麦克斯韦电动力学及一切光学定律应用于运动物体的问题,建立了简明而又逻辑一致的运动物体电动力学,推导出和发现了一系列新的运动物体的光学和电磁学定律以及电子在电磁场内的运动定律.尔后又发现了质量与能量的统一性及其相互转化定律,以及在高速运动情况下对牛顿力学和热力学等的相对论修正.从狭义相对论的相对时空结构理论推导出的最令人叹为观止,也最令人惊异的结论,就是最深刻地揭示了自然界最深层的一个极其神奇而又非常有趣的现象和规律:时空的相对性结构是一切自然界定律对相对运动保持其不变性和对称性的基础,也是自然界因果关系成立的基础.没有时空的相对性结构,就没看一切自然界定律对运动的不变性和对称性,也没有自然界的因果关系,反之亦然.正是两者的辩证统一构成和展示了自然界的和谐性和统一性.狭义相对论的伟大科学意义,已不言而喻.爱因斯坦一生潜心致力于研究自然界的基本规律.他对自然界定律的不变性和对称性具有最坚定的物理信念,最敏锐的物理直觉和最深刻的物理洞察力,一生对其锲而不舍,孜孜不倦地探索和研究.他所取得的一系列突破性的伟大科学成就几乎都与此有关.正是由于他的倡导和研究,导致发现了对称性和不变性在自然界起着一种至关重要的作用,守恒定律也与对称性有关,大大深化了我们对自然界对称性结构的认识,并且已发展成为对称性决定相互作用的原理,即从某种对称性出发,推导出满足这种对称性的数学方程来发现自然界的规律.爱因斯坦的广义相对论就是运用对称性原理要求更普遍的坐标对称性,并结合等效原理而取得了伟大成功的典范.现在对称性原理已成为探索自然界规律的指导性原理之一,在各种场论、基本粒子物理学、原子和分子物理学、核物理学、晶体学和化学中都起着重要作用,已成为一种行之有效的方法,不断取得了引人注目的成功.有些人认为狭义相对论证明了世界上的一切事物都是相对的,没有绝对的,只有相对真理,没有绝对真理,这完全是一种误解.实际上,狭义相对论只是相对时空结构理论,只是证明了时间和空间是相对的,而不是绝对的,只是证明了正是时空的相对性结构保证了一切自然界定律对运动的不变性和对称性,并没有否定自然界定律的不变性和绝对性.因此爱因斯坦在最初几年内曾把狭义相对论称之为不变性理论,又称它为相对性原理,用以强调时间和空间的相对性结构.德国著名数学家克莱因也曾建议称之为不变性理论,著名数学家韦耳也称狭义相对论为
不变性和对称性理论.爱因斯坦从1915年起才开始称之为狭义相对论,以区别于广义相对论.由此可以明显看出狭义相对论的实质是什么.但有些人望文生义得出了种种错误结论,完全是一种误解.也有一些别有用心的人故意对狭义相对论加以歪曲和利用,以达到其不可告人的目的.狭义相对论起源于光学和电磁实验以及麦克斯韦电动力学理论,也是麦克斯韦电动力学的继续发展.由于麦克斯方程本身蕴涵了时空的相对性,由此导致发现了时间和空间的相对性结构,建立了适用于全部物理学和自然科学的新的相对时空结构理论及其新的运动学定律.因此它的伟大科学意义已远远超出了光学和电动力学的范围,涉及了全部物理学和自然科学.正如爱因斯坦强调指出的,狭义相对论是一种原理性理论,推导出了一切自然界定律都必须满足的限制性原理和数学条件,任何自然界定律都必须对相对论运动学定律保持其不变性和对称性,为此爱因斯坦曾经称它类似于热力学中的永动机不可能原理.因此狭义相对论可以称之为原理中的原理.爱因斯坦在其电动力学论文及其后发表的另一篇短文中,应用新的相对时空结构理论及其新的运动学定律,研究了两个相对运动坐标系内的物理现象特别是光学和电磁现象,由于时间和空间的相对性结构,推导出和发现了自然界的一系列新奇定律,不但与经典物理学截然不同,也超出人们感觉经验的范围,但却是自然界的普遍规律,适用于全部物理学和自然科学.从狭义相对论得出的自然界的普遍结论和规律有:
1)发现了时间和空间与运动的相对性结构,证明了同时性、时间和空间都是相对的,而不是绝对的,由此建立了新的相对时空结构理论及其新的运动学定律.由于时空的相对性结构,运动的钟会变慢,运动的尺会缩短,并且推导出了它们与运动和光速关系的定量定律.因此,每个运动坐标系都有自己的时间和空间,而不存在绝对的时间和空间,从而彻底推翻了统治物理学已二百多年的牛顿的绝对时空理论.所有这些结论在接近光速的高速运动中与实验事实全不矛盾.但在低速情况下,时空相对性结构效应极其微小,不会产生任何可测量影响.2)著名数学家闵可夫斯基从狭义相对论的相对时空理论进一步发现了四维连续时空及其几何结构,证明了时间和空间的统一性和不可分割性.正如他强调指出的,狭义相对论的时间和空间概念是从实验物理学土壤中生长出来的,这就是其威力所在.这些观点是根本性的.从今以后,孤立的时间和孤立的空间都已消失为阴影,只有两者的统一才能保持其独立的物理实在性.3)爱因斯坦在广义相对论中把相对性原理从匀速运动推广到匀加速运动,发现了四维弯曲时空几何结构与引力的关系.引力是弯曲时空几何结构的性质,宇宙中物质引起时空弯曲构成了引力,进一步揭示了时间和空间与物质(惯性)的关系,建立了新的引力场理论,使我们对引力本质有了全新的认识.由此预言了光线经过太阳边沿的引力弯曲以及光谱线的引力红移,解开了长期困扰科学界的水星近日点异常进动之谜,且均已获得观测和实验证实.在广义相对论中,时间和空间己变成动力学量,不但受到宇宙中物质和能量分布及其运动的影响,反过来也影响物质和能量分布及其运动,从而共同构成了一个不可分割的统一体,没有物质也没有时间和空间,反之亦然.正如爱因斯坦指出的,过去人们认为世界上的所有物质消失了,时间和空间依然存在,但广义相对论则证明了物质消失了,时间和空间也一起消失.但广义相对论最伟大的科学成就则是建立了现代宇宙学,开辟了科学地研究宇宙起源、演化及其结构的广阔途径,由此发现了各种前所未知的新天体和新的天文现象,大大深化了我们对宇宙结构的认识.过去认为宇宙本质上是一成不变的,但现在理论和观测结果都证明了宇宙起源于大爆炸,在不断膨胀和收缩,并不是静止不变的.各种天体既有其开端,亦有其终结.因此,广义相对论已成为指导研究引力性质和宇宙大尺度结构的唯一正确理论.4)从狭义相对论得出的最具有深远意义和重大影响的结论,则是揭示了物体的惯性(质量)与能量的同一性,由此发现了质量与能量相互转化定律,即著名的质能公式E=mc2(c为光速),它已成为代表爱因斯坦的特殊性标志.证明了质量与能量是等价的,质量是其所含能量的量度,两者能够相互转化.在经典物理学中质量与能量是各自独立的,各有其单独的守恒定律,而现在则统一成为不可分开的质能守恒定律.质能转化定律已成为人类利用核能的理论基础,也是了解太阳日日夜夜,源源不断地辐射庞大光能和热能的唯一法门.当前核能利用有两种形式,一种是铀核裂变能,是当前核能利用的主要形式;另一种是氢核聚变能,虽然早已制成了氢弹,但实现可控的核聚变反应尚未成功.当前各国科学家正在为实现可控核聚变反应而共同努力,一旦成功,人类即可获得充足的廉价的清洁能源,从而永远摆脱能源危机.5)推导出了新的速度合成定律,不但证明了光速的不变性,也证明了光速是宇宙间的极限速度,任何物体速度都不能超过光速.两个光速相加仍然等于光速.但当速度远小于光速时,相对论的速度合成定律则简化为牛顿力学中的速度合成定律,证明了后者只是前者在低速情况下的一种近似,并不是自然界的精确定律.6)推导出了质量随速度增加定律.但在低速情况下,质量增加极其微小,不可能测量出来,也不会产生任何影响,因此在牛顿力学中有单独的质量守恒定律.只有在接近光速的高速情况下,质量随速度增加才起着重要作用,不但理论预言与实验结果完全符合一致,而且已成为高能物理学实验必须考虑的重要因素.7)深化了我们对光和电磁现象本质的认识,使光和电磁场彻底摆脱了以太幽灵的困扰而成为独立的物理实在和独立的物质形态,由此不但消除了麦克斯韦电动力学与牛顿力学对相对运动的不对称性矛盾,使两者统一起来,而且也解决了麦克斯韦电动力学和一切光学定律应用于运动物体的问题,并且推导出了一系列新的光学和电磁学定律以及电子在电磁场内运动的定律,解决了力学、热力学、分子和原子物理学、量子力学以及基本粒子物理学等应用于高速运动的问题,使物理学各个领域在相对时空结构上有了统一的基础.以上只是爱因斯坦从狭义相对论得出的部分主要结论,但足已充分证明狭义相对论内容的博大精深,令人叹为观止,堪称为科学史上非常罕见的丰碑.狭义相对论由于只在接近光速的高速物理现象中起着至关重要的作用,与我们日常生活和感觉经验不发生任何联系,广大公众往往对它存在某种神秘莫测之感,是完全可以理解的.又由于从它得出的结论往往超出了经典物理学和人类感觉经验的范围,使人们难以理解,也一直不断地引起各种争论.但狭义相对论所依据的两条基本原理,都是从大量的实验事实中发现的自然界的普遍原理,不但具有最牢固的实验基础,而且两条原理简单明了,人人能懂,并不玄妙.最为重要者,狭义相对论问世至今已一百多年,经历了各种严峻实验的检验,与实验事实全都不矛盾,而且在高能物理学、基本粒子物理学以及在高科技领域都有了广泛的实际应用.因此,狭义相对论已成为放诸四海而皆准的颠扑不破的科学真理.
第三篇:大学物理I(教学大纲)
《大学物理I》课程教学大纲
1.课程的目的和任务
物理学是研究物质的基本结构、相互作用和物质最基本最普遍的运动形式及其相互转化规律的学科。物理学的基本理论渗透在自然科学的一切领域,应用于生产技术的各个部门,它是自然科学和工程技术领域的基础。
以物理学基础知识为内容的大学物理课,它所包括的经典物理、近代物理和物理学在科学技术上应用的初步知识等都是一个高级工程技术人员所必备的。因此,大学物理课是高等工业学校各专业学生的一门重要的必修基础课。
高等学校中开设大学物理课的作用,一方面在于为学生系统地打好必要的物理基础;另一方面使学生初步学习科学的思想方法和研究问题的方法。这些都起着开阔思路、激发探索和创新精神、增强适应能力、提高人才素质的重要作用。学好大学物理,不仅对学生在校学习十分重要,而且对学生毕业后的工作和进一步学习新理论、新知识、新技术、不断更新知识,都将发生深远的影响。
2.课程教学基本要求
通过大学物理教学,使学生在以下能力、素质方面得到培养:
(1)独立获取知识的能力:逐步掌握科学的学习方法,能够阅读并理解相当于大学物理水平的物理累教材、参考书、文献资料等,能写出条理清晰的笔记、小结或小论文,得增强独立思考能力。
(2)科学观察和思维能力:应用物理学基本理论,通过观察、分析、综合、科学抽象、类比联想、实验等方法,培养学生发现问题、分析问题的能力并对所涉猎问题有一定深度的理解。
(3)分析问题和解决问题的能力:根据物理问题的特征、性质及实际情况,进行合理简化,建立物理模型,并用物理语言和基本数学方法进行描述,运用所学的物理理论和研究方法进行分析、研究。
(4)培养学生严谨求实的科学态度和刻苦钻研的作风,引导学生树立科学的世界观,激发学生的求知热情和创新欲望。树立实事求是的科学态度和辩证唯物主义的世界观。
3.课程教学内容、主要知识点和基本要求
3.1力学
(1)掌握位矢、位移、速度、加速度、角速度和角加速度等描述质点运动和运动变化的物理量。能借助于直角坐标系计算质点在平面内运动时的速度、加速度。能计算质点做圆周运动时的角速度、角加速度、切向加速度和法向加速度。
(2)掌握牛顿运动三定律及其适用条件。能求解一维变力作用下简单的质点动力学问题。
(3)掌握功的概念,能计算直线运动情况下变力的功。理解保守力作功的特点及势能的概念,会计算重力、弹性力和万有引力势能。
(4)掌握质点的动能定理和动量定理,掌握机械能守恒定律、动量守恒定律,掌握运用守恒定律分析问题的思想和方法,能分析简单系统在平面内运动的力学问题。通过质点在平面内的运动情况理解角动量和角动量守恒定律,并能用它们分析、解决质点在平面内运动时的简单力学问题。
(5)了解转动惯量概念。掌握刚体转动的描述,理解刚体绕定轴转动的转动定律和刚体在绕定轴
转动情况下的角动量定理、角动量守恒定律。了解刚体转动中的功和能。
(6)理解伽利略相对性原理,理解伽利略坐标、速度变换。3.2振动和波动
(1)掌握描述简谐振动和简谐波的各物理量(特别是相位)及各量间的关系。掌握旋转矢量法。(2)掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义。
(3)掌握简谐振动的能量特征,能根据特定条件计算简谐振动的能量。(4)理解同向简谐振动的合成规律。了解振动方向相互垂直的谐振动合成。(5)了解阻尼振动、受迫振动和共振。
(6)理解机械波产生的条件。掌握由已知质点的简谐振动方程得出平面简谐波的波函数的方法及波函数的物理意义。理解波形图线。理解波的能量传播特征及能流、能流密度概念。
(7)理解惠更斯原理和波的叠加原理。理解波的相干条件,能应用相位差和波程差分析、确定相干波叠加后振幅加强和减弱的条件。
(8)理解驻波及其形成条件,理解相位突变(半波损失)产生条件。了解驻波和行波的区别。
(9)理解机械波的多普勒效应及其产生原因。在波源或观察者单独相对介质运动,且运动方向沿二者连线的情况下,能用多普勒频移公式进行计算。
3.3气体动理论及热力学
(1)理解平衡态、态参量及热力学第零定律;理解理想气体物态方程。
(2)掌握功、热量和内能的概念。理解准静态过程。掌握热力学过程中的功、热量、内能改变量;掌握等压摩尔热容、等容摩尔热容计算,并理解其物理意义。了解绝热过程中的功、热量、内能改变量;了解绝热方程。
(3)了解循环过程的概念,了解循环过程中的循环效率、制冷系数及其物理意义。掌握卡诺循环等简单循环的效率。
(4)了解可逆过程和不可逆过程。理解热力学第二定律及其统计意义。3.4电磁学
(1)掌握库仑定律、静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。掌握电势与电场强度的积分关系。能计算一些简单问题中的电场强度和电势。
(2)理解静电场的规律:高斯定理和环路定理。理解用高斯定理计算电场强度的条件和方法。(3)掌握磁感应强度的概念。理解毕奥—萨伐尔定律。能计算一些简单问题中的磁感应强度。(4)理解稳恒磁场的规律:磁场高斯定理和安培环路定理。理解用安培环路定理计算磁感应强度的条件和方法。
(5)理解安培定律和洛仑兹力公式。了解电偶极矩和磁矩的概念。能计算电偶极子在均匀电场中,简单几何形状载流导体和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。能分析运动点电荷在均匀磁场中的受力和运动。
(6)理解导体的静电平衡条件及处于静电平衡导体的性质。了解介质的极化、磁化现象及其微观解释。了解顺磁质、抗磁质及铁磁质的特性。了解各向同性介质中D和E、H和B之间的关系和区别。理解介质中的高斯定理和安培环路定理。
(7)理解电动势的概念,掌握法拉第电磁感应定律。理解动生电动势及感生电动势。(8)理解解电容、自感系数和互感系数。(9)理解电能密度、磁能密度的概念。
(10)理解涡旋电场、位移电流的概念;理解麦克斯韦方程组(积分形式)及其物理意义。了解电磁场的物质性。
3.5波动光学
(1)理解获得相干光的方法。掌握光程的概念以及光程差和相位差的关系。能分析、确定杨氏双
缝干涉条纹及薄膜等厚干涉条纹的位置,了解麦克尔孙干涉仪的工作原理。
(2)理解惠更斯—非涅耳原理。理解分析单缝夫琅禾费衍射暗纹分布规律的方法。会分析缝宽及波长对衍射条纹分布的影响。
(3)理解光栅衍射公式。会确定光栅衍射谱线的位置。会分析光栅常量及波长对光栅衍射谱线分布的影响。
(4)了解圆孔的夫琅禾费衍射规律,理解光学仪器的分辨本领。了解晶体的X射线衍射。
(5)理解自然光和线偏振光。理解布儒斯特定律及马吕斯定律。了解双折射现象。了解线偏振光的获得方法和检验方法。
3.6近代物理(狭义相对论简介及量子物理基础)3.6.1狭义相对论简介
(1)了解迈克尔迅-莫雷实验,理解爱因斯坦狭义相对论的两个基本假设。(2)理解洛仑兹坐标及速度变换。
(3)理解狭义相对论中同时性的相对性以及时间膨胀和长度收缩概念。了解牛顿力学中的时空观和狭义相对论中的时空观以及二者的差异。
(4)理解狭义相对论中质量和速度的关系,理解狭义相对论动力学方程(5)了解质量和能量的关系。3.6.2量子物理基础
(1)了解黑体辐射,了解普朗克量子化假设。理解光电效应和康普顿效应的实验规律以及爱因斯坦的光子理论对这两个效应的解释,理解光的波粒二象性。
(2)了解氢原子光谱的实验规律及玻尔的氢原子理论。
(3)了解弗兰克—赫兹实验,了解原子里德伯态和对应原理。
(4)了解戴维孙-革末实验思想,理解德布罗意的物质波假设。理解实物粒子的波粒二象性。掌握动量-能量不确定关系。
(5)理解描述物质波动性的物理量(波长、频率)和粒子性的物理量(动量、能量)间的关系。(6)理解波函数及及其统计解释。了解一维定态薛定谔方程。理解一维无限深势阱问题求解。(7)了解如何用驻波观点说明能量量子化。了解角动量量子化及空间量子化。
(8)了解描述原子中电子运动状态的四个量子数。了解施特恩—格拉赫实验及微观粒子的自旋。了解泡利不相容原理和原子的电子壳层结构。4.时间分配表
附:对于了解内容,任课教师可根据实际情况并结合专业特点选讲。5.参考教材
(1)黄新民主编.《大学物理学》(上、下册)西安:陕西科学技术出版社,2010.8(2)马文蔚改编.《大学物理》(第四版,上、中、下册),北京:高等教育出版社,2001.7
执 笔 人:
修订时间:2010年10月
第四篇:大学物理I复习纲要
大学物理I复习纲要
本期考试比例:
力学:31分;热学:22分;振波:22分;光学:25分。
大学物理I 包括:力学(运动学、牛顿力学、刚体的定轴转动);热学(气体动理论、热力学第一定律);振动波动(机械振动、机械波);光学(光的干涉、衍射和偏振)。根据大纲对各知识点的要求以及总结历年考试的经验,现列出期末复习的纲要如下:
1. 计算题可能覆盖范围
a.刚体碰撞; b.热力学第一定律; c.机械波波动方程(含驻波);d.劈尖干涉;e光栅衍射
2. 大学物理I重要规律与知识点
(一)力学质点运动学(速度、加速度、位移、路程概念分析、圆周运动);质点的相对
运动,伽利略变换;质点运动的机械能与角动量;牛顿第二定律;质点动量定理;变力做功;刚体定轴转动定理;刚体定轴转动角动量定理及角动量守恒定律;
(二)热学理想气体的状态方程;内能;等概率假设,能均分定理;麦克斯韦速率分布
函数的统计意义和三种统计速率;热力学第一定律在理想气体等值过程中的应用;循环过程及效率、绝热过程。
(三)振动、波动旋转矢量法的应用;同方向同频率简谐振动的合成;波速、周期(频
率)与波长的关系(uT);波程差与相位差的关系;相干波;振动曲线和波动曲线,振动方程的求解;波的能量。
(四)光学光程差与相位差;杨氏双缝干涉;干涉与光程;半波损失;薄膜干涉(增透,增反);单缝衍射,圆孔衍射及最小分辨率,光栅衍射;布儒斯特定律
第五篇:《大学物理I》期中复习题
西北工业大学期中复习题
3.质点作直线运动,已知加速度a=bt(b是常数),当t =0时,v=v0 , x=x0 ,则t时刻质点位置为:
11v0t2bt3; 26
1B.xx0v0tbt3 6
1C
.xx0v0t2bt3 6
1D.xx0v0tbt3。6A.xx0
4.A、B两船都以2m/s的速率匀速行驶,且A船沿x轴正向运动,B船沿y
轴正向运动。则B船相对于A船的速度(以m/s为单位)为:
A.2i2j;B.2i2j;
C.2i2j;D.2i2j。
5.如图所示,质点m在竖直平面内作匀速圆周运
动,从A点运动到B点过程中,则关于质点
受作用状况的正确表述是:
A.合外力的功为零; 第5题图