第一篇:2014年合工大复试模电和器件试题(回忆版)
模拟电子技术基础
范围:第10,11章可不看,第9章可略看,场效应管的电路可略看,其他基本全部要看 选择10题(都是书上的基础概念,书上的课后习题的选择好像有原题,第一题是三极管三个电位,判断什么管子,几乎知识点都有的,所以都要看一遍)
画图2题,20分,晶体三极管的混合π型等效电路P226面的图,并说明gm和C的意义 第二题P469自测题第二题
计算2题好像,都是课后习题
第二章2.11
第八章8.22
注:今年考了很多第八章的东西,第五章,都是容易略看的,反馈什么的竟然没考,不按常理出牌啊,和去年的真题相比差距也很大,所以建议复习的时候把所有的课后习题都做了,我这里有勾的课后习题,范围应该不会跑出去,今年卷子也许是刘士兴老师出的,大家反映考的都不是很好,第五章和第八章都是本科上课的时候不怎么强调的内容。
半导体器件物理
特征频率,MOS管饱和区漏极电流不饱和原因,扩散电容与势垒电容的区别
(以后还可能考到的:PN结击穿机制,截止频率)
两种MOSFET的小尺寸效应及对各种器件的影响
推导Sah方程,验证饱和区gm和线性区gd的关系
在NPN型双极型晶体管正向有源区工作时Ic=qAE等等,不好打exp(qVbe/kT)求βF和提高βF的措施
给出理想N型半导体MOS电容的C-V特性曲线,并分区进行分析。
注:器件物理把以前的真题全部做了,背会保证ok
想了解复试的情况,问问学长学姐就可以了,面试也一般的,分组面试,部分专业较严,有的专业较松。大概都是英文自我介绍,中文自我介绍,英文提问,微固会有专业论文的翻译,老师会提问一些问题,根据自我介绍,好好准备自己的毕业设计,这个很重要,多了解有关的内容。
第二篇:第一章 半导体器件 模电教师教案
模拟电子技术
教案
授课人:王旭东
第一章 半导体器件
课时分配: 6学时
目的要求:了解半导体二极管;稳压管;晶体管和MOS场效应管的工作原理和主要参数。
重 点:PN结的单向导电特性;二极管的伏安特性曲线;三极管的电流分配方式和电流放大作用。
难 点:二极管的基本电路及分析方法;二极管的伏安特性曲线;三极管的电流分配方式和电流放大作用。
教 学
方法手段: 结合多媒体电子课件, 启发式、互动式讲解;屏幕投影、黑板、模型实物及实物投影四体合一课堂教学手段;理论讲解和电路仿真同步。
教 具: 电子课件、计算机、投影、电子展台。
新 授: 0 引言
模拟电子电路的核心是半导体器件,而半导体器件是由半导体材料制成的。因此,我们必须首先了解半导体的有关知识,尤其应当了解半导体的导电特性。1.1 半导体的特性
物质按其导电能力的强弱,可分为导体、绝缘体和半导体。
一、导体
导电能力很强的物质,叫导体。如低价元素铜、铁、铝等。
二、绝缘体
导电能力很弱,基本上不导电的物质,叫绝缘体.如高价惰性气体和橡胶、陶瓷、塑料等高分子材料等.三、半导体
导电能力介于导体和绝缘体之间的物质,叫半导体。如硅、锗等四价元素,其简化原子结构模型如图1.1.1所示。
为什么物质的导电能力有如此大的差别呢?这与它们的原子结构有关,即与它们的原子最外层的电子受其原子核束缚力的强弱有关。1.1.1 本征半导体
纯净且呈现晶体结构的半导体,叫本征半导体。
一、本征半导体结构
通过特殊工艺加工,可以使硅或锗元素的原子之间靠共有电子对—共价键,形成非常规则的晶体点阵结构。结果每个原子外层相对排满8个电子,形成相对稳定的状态。这种结构整齐且单一的纯净半导体,叫本征半导体。如图1.1.3所示
二.本征激发
在常温下,由于热能的激发,使本征半导体共价键中的价电子获得足够的能量而脱离共价键的束缚,成为自由电子。同时,在共价键中留下一个空位,叫空穴。这种产生自由电子和空穴对的现象,叫本征激发。温度一定,自由电子和空穴对的浓度也一定。
由于本征激发而在本征半导体中存在一定浓度的自由电子(带负电荷)和空穴(带正电荷)对,故其具有导电能力,但其导电能力有限。1.1.3 杂质半导体
在本征半导体中掺入适量且适当的其他元素(叫杂质元素),就形成杂质半导体,其导电能力将大大增强。
一、N型半导体
在硅或锗本征半导体中掺入适量的五价元素(如磷),则磷原子与其周围相邻的四个硅或锗原子之间形成共价键后,还多出一个电子,这个多出的电子极易成为自由电子参与导电。同时,因本征激发还产生自由电子和空穴对。结果,自由电子成为多数载流子(称多子),空穴成为少数载流子(称少子)。这种主要依靠多数载流子自由电子导电的杂质半导体,叫N型半导体,如图1.1.4所示。
二、P型半导体
在硅或锗本征半导体中,摻入适量的三价元素(如硼),则硼原子与周围的四个硅或锗原子形成共价键后,还留有一个空穴。同时,因本征激发 还产生自由电子和空穴对。结果,空穴成为多子,自由电子成为少子。这种主要依靠多子空穴导电的杂质半导体,叫P型半导体。如图1.1.5所示。
无外电场作用时,本征半导体和杂质半导体对外均呈现电中性,其内部无电流。
本征半导体、P型和N型半导体都不能单独构成半导体器件,PN结才是构成半导体器件的基本单元。1.2 半导体二极管
半导体二极管是利用杂质半导体做成的。1.2.1 PN结的形成
一、多数载流子的扩散
在P型和N型半导体交界面两侧,电子和空穴的浓度差很大。在浓度差的作用下,P区中的多子空穴向N区扩散,在P区一侧留下杂质负离子,在N区一侧集中正电荷;同时,N区中的多子自由电子向P区扩散,在N区一侧留下杂质正离子,在P区一侧集中负电荷。结果,在P型和N型半导体交界面处形成空间电荷区,自建内电场ε内(从N区指向P区),如图1-6所示。
二、少数载流子的漂移
在内电场的作用下,P区中的少子自由电子向N区漂移,而N区中的少子空穴向P区飘移,使内电场削弱。
三、扩散与漂移的动态平衡 当内电场达到一定值时,多子的扩散运动与少子的漂移运动达到动态平衡时,空间电荷区不再变化,这个空间电荷区,就称为PN结。
空间电荷区无载流子停留,故曰耗尽层,又叫阻挡层或势垒层。无外电场作用时,PN结内部虽有载流子运动,但无定向电流形成。1.2.2 PN结的单向导电特性
一、PN结加正向电压
PN结加正向电压(正偏)时,外电场与内电场反方向,使空间电荷区变窄,多子的扩散运动远大于少子的漂移运动,由浓度大的多子扩散形成较大的正向电流,PN结处于导通状态。此时,其正向通态电阻很小,正向通态管压降也很小。
二、PN结加反向电压
PN结加反向电压(反偏)时,外电场与内电场同方向,使空间电荷区变宽,多子扩散运动大大减弱,而少子的漂移运动相对加强,由浓度很小的少子漂移形成很小的反向饱和电流IS,PN结处于截止状态。此时,反向电阻很大。
PN结正偏时导通,反偏时截止,故具有单向导电特性。其特性曲线如 图1-8所示,电压U与电流I的关系式为
ID=IS(e1)
三、反向击穿
当PN结所加反向电压达到UB时,其反向电流急剧增加,叫反向击穿,UB叫击穿电压。
PN结有雪崩击穿和齐纳击穿两种击穿状态。无论处于何种击穿时,反向电流只要不超过允许值,去掉反向电源后,仍能恢复单向导电性。
四、PN结的电容效应 1.势垒电容CT 当PN结的反偏电压变化时,空间电荷区随之变宽(相当于充入电荷)或变窄(相当于放出电荷),故具有电容效应,叫势垒电容,用CT表示。2.扩散电容CD 当PN结的正偏电压变化时,P区和N 区中多子的浓度和浓度梯度均随之变化,也具有一定的电容效应,叫扩散电容,用CD表示 3.PN结的结电容CJ CJ=CT+CD
正偏时,CD起主要作用;反偏时,CT起主要作用。1.2.3 半导体二极管 一、二极管的结构
给PN结加上两个引线(管脚)和管壳即成二极管,接P区的管脚称阳极,接N区的管脚称阴极。二、二极管的类型 1.按结构区分
点接触型:PN结面积小,工作电流小,PN结电容小,工作频率高。面接触型:PN结面积大,工作电流大,PN结电容大,工作频率低。2.按工作频率区分 有高频管和低频管。3.按功率区分
有大功率管和小功率管。4.按用途区分
有普通管、整流管、稳压管、开关管等等。三、二极管的特性
1.正向特性,与PN结相同 UPUT2.反向特性,与PN结相同 3.击穿特性,与PN结相同
4.温度特性,温度升高时,二极管的正反向特性曲线均向纵轴靠近。
四、主要参数
1.最大整流电流IF,又叫额定电流。2.最大反向工作电压UR,又叫额定电压。3.反向饱和电流IS。
4.反向电流IR,二极管未击穿时的电流值。5.最高工作频率fM。
6.直流电阻RD:RD=UD/IF,如图1-14所示。
7.交流电阻rd:RD=ΔUD/ΔID=dud/did,如图1-15所示。
rd系指某一工作点的动态电阻。常温下,rd=UT/ID=26(mv)/IDQ IDQ为直流工作点的电流,单位为mA 1.2.4 稳压二极管
一、结构
结构与普通二极管相似,只是掺杂浓度比普通二极管大得多,通常为硅材料稳压二极管。
二、特性
正向特性曲线与普通二极管的正向特性曲线相似;反响未击穿的特性曲线与普通二极管的反向击穿时的特性曲线相似。但稳压二极管的反向击穿特性曲线很陡。如图1-16所示。
三、参数
1.稳定电压UZ 2.稳定电流IZ 3.额定功率PZ
4.动态电阻rZ,rZ=ΔUZ/ΔIZ,rZ很小。
5.电压温度系数α。α=ΔUZ/Ut × 100%。UZ>7V时,α为正温度系数;UZ<5V时,α为负温度系数;5V 一、发光二极管 将电能转换为光能的半导体器件。正偏时,有正向电流通过而发光,其正向通态管压降为1.8—2.2V.二、光电二极管 将光能转换为电能的半导体器件。反向偏置下,当光线强弱改变时,光电二极管的反向电流随之改变。 三、光电耦合器 光电耦合器由光电二极管和发光二极管组合封装而成。发光二极管为输入端,光电二极管输出端。 四、变容二极管 变容二极管的势垒电容随外加反向电压变化而变化。1.3 双极型三极管 半导体三极管又称为晶体管或双极性三极管,是组成各种电子电路的核心器件。 1.3.1 三级管的结构和类型 一、结构 三极管有两个结,三个电极,三个区组成。 两个结:发射结和集电结 三个极:发射极E,基极B,和集电极C 三个区:发射区;参杂浓度大。 基区;很薄,参杂浓度很小。 集电区:参杂浓度小,但面积大。 这种特殊结构是三极管具有电流放大作用的内部依据。 二、类型 1.按结构区分:有NPN型和PNP型。2.按材料区分:有硅三极管和锗三极管。 3.按工作频率区分:有高频三极管和低频三极管。4.按功率大小区分:有大功率三极管和小功率三极管。 三、工作条件 三极管有电流放大作用大外部条件。 1.NPN型三极管:VC>VB>VE 2.PNP型三极管:VC 1.共发射极接法:发射极为交流输入和输出信号的公共端。2.共集电极接法:集电极为交流输入和输出信号的公共端。3.共基极接法: 基极为交流输入和输出信号的公共端。1.3.3 三极管的电流放大原理 一、载流子传输过程 以NPN型三极管为例进行分析。 1.发射。发射结正偏,发射区中的多子电子大量地向基区扩散,形成发射极电流。 2.复合。从发射区扩散到基区的电子,很少一部分与基区中的空穴相复合,形成基极电流的主要部分ICN。 3.收集。从发射区扩散到基区的电子,除很少部分被复合掉外,绝大部分电子向集电结扩散,且在集电结反偏电压的作用下,迅速漂移过集电结被集电区所收集,形成集电极电流的主要部分。同时,集电区少子空穴在集电结反偏电压的作用下向基区漂移,形成集电结反向饱和电流ICBO,它是集电极电流的极小部分,也是基极电流的一部分。如图1-32所示。 二、各极电流的关系 IC=ICN+ICBO ICN=IC-ICBO IB=IBN-ICBO IBN=IB+ICBO IE≈ICN+IBN=IC-ICBO+IB+ICBO IE=IC+IB 三、电流放大系数 1.直流电流放大系数β β=ICN/IBN=(IC-ICBO)/(IB+ICBO)≈IC/IB(IC>>IB>>ICBO)2.交流电流放大系数β β≈ΔIC/ΔIB 3.穿透电流ICEO ICEO=(1+β)ICBO 1.3.4 三极管的特性曲线 一、输入特性 iB=f(ube)∣UCE=常数 1.UCE =0V时 三极管的输入特性曲线,相当于二级管的正向特性曲线,如图1-34所示。2.UCE =1V时 三极管的输入特性曲线将向右移。3.UCE >1V时 三极管的特性曲线几乎与UCE =1V时的输入特性曲线重合。 二、输出特性 iC=f(uCE)∣IB=常数 输出特性曲线有三个主要区域。如图1-35所示。1.截止区 UBE≤0V,IB≤0,IC=ICEO,三极管几乎不导通,叫截止状态。2.放大区 UBE>0.5—0.7(硅管),UBE>0.1—0.3V(锗管),UCE>>UBE,当UCE不变时,IC=βIB 3.饱和区 UBE>0.5—0.7(硅管),UBE>0.1—0.3V(锗管),UCE 一、电流放大系数 β=ΔIC/ΔIB∣UCE=常数 二、极间反向电流 ICBO ICEO=(1+β)ICBO 三、极限参数 1.集电极最大允许电流ICM 2.集电极最大允许功率损耗PCM PCM=UCEIC 3.反向击穿电压 BUCBO>BUCEO>BUEBO 为了安全起见,应使三极管的UCE 四、温度对三极管参数的影响 1.对VBE有影响 2.对ICBO和ICEO有影响 3.对β有影响 如温度升高时,VBE↓,ICBO↑,ICEO↑,β↑;反之,亦反之。1.4 场效应三极管 场效应管(简称FET)是一种电压控制(电场效应控制)器件(uGS~ iD),工作时,只有一种(多数)载流子参与导电,因此它是单极型器件。 场效应管分为两大类:绝缘栅场效应管和结型场效应管。1.4.1 结型场效应管 一、结构 在一块N型半导体的两边利用杂质扩散出高浓度的P型区域,用P+表示,形成两个P+N结。 N型半导体的两端引出两个电极,分别称为漏极D和源极S。把两边的P区引出电极并连在一起称为栅极G。 二、工作原理 首先,假如在G—S间加上反向电压VGS,则PN结反向偏置。显然,改变VGS将改变耗尽层的宽度。 其次,由于PN结两边,P区掺杂浓度很高,N区掺杂浓度相对较低;PN结中N区一侧的正离子数与P区一侧的负离子数相等,因而交界面两侧的宽度并不相等。掺杂程度低的N沟道层宽比P区层宽大很多。 故此,可以认为,当耗尽层展宽时主要向着导电沟道的一侧。 UGS、UDS影响ID电流的大小。VGS越负,沟道越窄,VGD越负,沟道越窄。 三、特性曲线 JFET的特性曲线有两条:转移特性曲线和输出特性曲线。 转移特性描述栅源电压UGS对漏极电流ID的控制作用。转移特性有两个重要参数:夹断电压UP和饱和漏极电流IDSS。 输出特性描述当栅源电压UGS不变时,漏极电流ID与漏源电压UDS的关系。 1.4.2 绝缘栅型场效应管(IGFET)分为: 增强型 N沟道、P沟道 耗尽型 N沟道、P沟道 一、N沟道增强型MOS管 1.结构 四个电极:漏极D,源极S, 栅极G和 衬底B。 2.工作原理 ①栅源电压UGS的控制作用 ②漏源电压UDS对漏极电流ID的控制作用 3.特性曲线 ①输出特性曲线: ID=f(UDS)UGS=const ②转移特性曲线: ID=f(UGS)UDS=const 4.重要参数--跨导gm gm=iD/uGSuDS=const(单位mS)gm的大小反映了栅源电压对漏极电流的控制作用.在转移特性曲线上,gm为的曲线的斜率。 二、N沟道耗尽型MOSFET 在栅极下方的SiO2层中掺入了大量的金属正离子。所以当UGS=0时,这些正离子已经感应出反型层,形成了沟道。特点:当UGS=0时,就有沟道,加入UDS,就有ID。 三、P沟道MOSFET P沟道MOSFET的工作原理与N沟道MOSFET完全相同,只不过导电的载流子不同,供电电压极性不同而已。 四、例题 例1.4.1 绝缘栅场效应管工作状态分析 1.4.3 场效应管的主要参数 一、直流参数 二、交流参数 三、极限参数 课堂讨论: 1.何谓本征半导体?其导电能力由什么因素决定。2.P型和N型半导体的特点? 3.半导体的导电能力与哪些因素有关? 4.三极管如何实现放大功能? 5.场效应管与三极管如何区分? 小 结: 1.半导体材料中有两种载流子:电子和空穴。电子带负电,空穴带正电。在纯净半导体中掺入不同的杂质,可以得到N型半导体和P型半导体。 2.采用一定的工艺措施,使P型和N型半导体结合在一起,就形成了PN结。PN结的基本特点是单向导电性。 3.二极管是由一个PN结构成的。其特性可以用伏安特性和一系列参数来描述。在研究二极管电路时,可根据不同情况,使用不同的二极管模型。 4.BJT是由两个PN结构成的。工作时,有两种载流子参与导电,称为双极性晶体管。BJT是一种电流控制电流型的器件,改变基极电流就可以控制集电极电流。BJT的特性可用输入特性曲线和输出特性曲线来描述。其性能可以用一系列参数来表征。BJT有三个工作区:饱和区、放大器和截止区。 5.FET分为JFET和MOSFET两种。工作时只有一种载流子参与导电,因此称为单极性晶体管。FET是一种电压控制电流型器件。改变其栅源电压就可以改变其漏极电流。FET的特性可用转移特性曲线和输出特性曲线来描述。其性能可以用一系列参数来表征。 布置作业:P45-1.3 P46-1.4;1.5;1.8 P47-1.12;1.13 P48-1.15 P49-1.19 为了完善硕士研究生选拔机制,增强复试的有效性,满足不同专业对生源的具体要求,加大选拔优质生源的力度,特制定本办法,对考生综合面试、外语口语测试的复试形式和内容做整体要求,请各学院参照执行: 一、主要目的综合面试主要考察考生的专业素质和综合素质。其中专业素质考核以考察考生对本学科(专业)理论知识和应用技能掌握程度,利用所学理论发现、分析和解决问题的能力为主,特别是考察考生对本专业基本知识和基本概念的掌握和理解、以及对本学科发展动态的了解和在本专业领域发展的潜力。综合素质考核是考察考生思想政治素质和道德品质、本专业以外的学习、科研和社会实践或实际工作等方面的经历、个性心理特征、诚信状况、意志品质等。 外语口试测试主要考察考生运用外语知识与技能进行口头交际的能力,从发音的正确性、使用语言的准确性、流利程度以及得体性几个方面全面测试考生的口头表达能力。 二、实施办法 (一)综合面试 综合面试总分值为100分,主要包括以下三个环节(报考外语专业考生综合面试过程需用英语作答): 1、考生对在大学学习阶段参加的学习研究、实践经历、获奖状况等进行简短介绍。约2分钟。 2、考生对自己抽到的面试题目进行回答。约3分钟。 3、复试教师围绕考生所抽到的题目针对考生回答情况进行简短的提问。约4分钟。 (二)外语口语测试(报考外语专业考生口语测试考第二外国语) 外语口语测试总分值为40分,外语口语测试主要包括以下三个环节: 1、考生用外语对个人情况进行简短的自我介绍。约2分钟。 2、考生用外语朗读一篇各专业自备的短文,并翻译成中文。约3分钟。 3、考生就抽签所得的一个题目用外语作个人发言。约2分钟。 模拟电子技术 实验报告 学院:电子信息工程学院 专业: 姓名: 学号: 指导教师: 2017年】实验题目:放大电路的失真研究 【 目录 一、实验目的与知识背景..................................................................3 1.1实验目的.......................................................................................3 1.2知识背景.......................................................................................3 二、实验内容及要求..........................................................................3 2.1基本要求.......................................................................................3 2.2发挥部分.......................................................................................4 三、实验方案比较及论证..................................................................5 3.1理论分析电路的失真产生及消除................................................5 3.2具体电路设计及仿真....................................................................8 四、电路制作及测试........................................................................12 4.1正常放大、截止失真、饱和失真及双向失真...........................12 4.2交越失真.....................................................................................13 4.3非对称失真.................................................................................13 五、失真研究思考题........................................................................13 六、感想与体会...............................................................................16 6.1小组分工.....................................................................................16 6.2收获与体会.................................................................................16 6.3对课程的建议.............................................................................17 七、参考文献...................................................................................17 一、实验目的与知识背景 1.1实验目的 1.掌握失真放大电路的设计和解决电路的失真问题——针对工程问题,收集信息、查阅文献、分析现有技术的特点与局限性。提高系统地构思问题和解决问题的能力。 2.掌握消除放大电路各种失真技术——依据解决方案,实现系统或模块,在设计实现环节上体现创造性。系统地归纳模拟电子技术中失真现象。 3.具备通过现象分析电路结构特点——对设计系统进行功能和性能测试,进行必要的方案改进,提高改善电路的能力。 1.2知识背景 1.输出波形失真可发生在基本放大、功率放大和负反馈放大等放大电路中,输出波形失真有截止失真、饱和失真、双向失真、交越失真,以及输出产生的谐波失真和不对称失真等。 2.基本放大电路的研究、乙类功率放大器、负反馈消除不对称失真以及集成运放的研究与应用。 3.射极偏置电路、乙类、甲乙类功率放大电路和负反馈电路。 二、实验内容及要求 2.1基本要求 1.输入一标准正弦波,频率2kHz,幅度50mV,输出正弦波频率2kHz,幅度1V。 2.a.输出以下各种类型的波形:(1)标准正弦波 (2)顶部、底部、双向失真(3)交越失真 b.设计电路并改进。 c.讨论产生失真的机理,阐述解决问题的办法。2.2发挥部分 a.输出不对称失真的波形。b.设计电路并改进。 c.讨论产生失真的机理,阐述解决问题的办法。 三、实验方案比较及论证 3.1理论分析电路的失真产生及消除 a.正常放大、截止失真、饱和失真及双向失真 (1)饱和失真 产生原因:静态工作点过高 如图3-1-1,当静态工作点太高时,放大器能对输入的负半周信号实施正常的放大,而当输入信号为正半周时,因太大了,使三极管进入饱和区,ic=βib的关系将不成立,输出电流将不随输入电流而变化,输出电压也不随输入信号而变化,产生输出波形的失真。这种失真是因工作点取的太高,输入正半周信号时,三极管进入饱和区而产生的失真,所以称为饱和失真。 (2)截止失真 产生原因:静态工作点过低 如图3-1-1所示为工作点太低的情况,由图可见,当工作点太低时,放大器能对输入的正半周信号实施正常的放大,而当输入信号为负半周时,因将小于三极管的开启电压,三极管将进入截止区,ib=0,ic=0,输出电压u0=uCE=Vcc将不随输入信号而变化,产生输出波形的失真。 (3)双向失真 产生原因:输入信号过大、电路放大倍数太大、直流偏置太小。 工作点偏高,输出波形易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。此时静态工作点合适,但输入波形的幅度超过了直流的最大幅度,当输出信号过大时可能会出现饱和失真与截止失真一块儿出现的失真现象,称之为双向失真。 消除方法: 顶部或底部失真:调节电位器,变化静态工作点; 双向失真:适当减小输入电压 b.交越失真 产生原因: 交越失真是乙类推挽放大器所特 有的失真。在推挽放大器中,由两只晶体管分别在输入信号的正、负半周导通,对正、负半周信号进行放大。而乙类放大器的特点是不给晶体管建立静态偏置,使其导通的时间恰好为信号的半个周期。但是,由于晶体管的输入特性曲线在Ube较小时是弯曲的,晶体管基本上不导通,即存在死区电压V r。当输入信号电压小于死区电压时,两只晶体管基本上都不导通。这样,当输入信号为正弦波时,输出信号将不再是正弦波,即产生了失真。这种失真是由于两只晶体管在交替工 克服交越失真: 作时“交接”不好而产生的,称为交越失真。 为了克服交越失真的影响,可以通过改进电路的方法来实现。采用甲乙类双电源互补对称电路法和甲乙类单电源互补对称电路。甲乙类互补对称法电路原理如下图1所示。由图1可见,T3组成前置放大级,T1和T2组成互补输出级。静态时,在D1,D2上产生的压降为T1,T2提供了一个适当的偏压,使之处于微导通状态。由于电路的对称,静态时 icl=ic2,iL=0,vo=0。有信号时,由于电路工作在甲乙类,即使Vi很小,基本上也可以进行线性放大。但是图1的缺点就是其偏置电压不易调整,改进电路如图2所示,在图2中流人T4的基极电流远小于流过R1、R2的电流,则由图可以求出Vce=VBE∙(R1+R2)/R2,因此,利用T4管的VBE基本为一固定值,只要调整R1、R2的比值,就可以改变T1、T2的偏压值。 图1图2 c.非对称失真 输出 产生原因: 不对称失真也是推挽放大器所特有的失真。它是由于推挽管特性不对称,而使输入信号的正、负半周不对称。 消除办法: 加入负反馈,利用失真减小失真。 3.2具体电路设计及仿真 a.正常放大、截止失真、饱和失真及双向失真 (1)仿真电路 VCCR3500kΩKey=A12VR215kΩC2+50 %XSC1_+AC1XFG110µFR115kΩQ110µFR5100kΩR41kΩ+Ext Trig2N2222A__B(2)仿真波形 静态工作点居中时,输出正常波形;适当调节滑动变阻器使得阻值变大,出现顶部失真;适当调节滑动变阻器使得阻值变小,出现底部失真。输入: 输出: 正常正弦波形 双向失真 顶部失真 底部失真 b.交越失真 (1)仿真电路 VCC12VR110kΩ+Ext Trig+_A_+B_XSC1XFG1Q1S1键 = A D11N40012N2222D21N4001Q4R215kΩR310kΩ2N4403VEE-12V(2)仿真波形 输入: 输出: 交越失真 改善后波形 c.非对称失真 (1)仿真电路 (2)仿真波形 输入: 输出: 不对称失真波形 改善后波形 四、电路制作及测试 4.1正常放大、截止失真、饱和失真及双向失真 顶部失真(截止失真)双向失真 底部失真(饱和失真)正常放大 4.2交越失真 交越失真 消除交越失真 4.3非对称失真 非对称失真 减小非对称失真 实验得,非对称失真时,失真率为:(2.26-1.87)/4.13=9.44% 引入负反馈之后,失真率为:(240-238)/478=0.42% 故可见,引入反馈后,失真得到明显改善。 五、失真研究思考题 1、NPN型组成的共射放大电路和PNP型组成的共射放大电路在截止和饱和失真方面的不同。 答:NPN型:顶部失真属于截止失真,底部失真属于饱和失真。 PNP型:顶部失真属于饱和失真,底部失真属于截止失真。 2、共基放大电路、共集放大电路与共射放大电路在截止和饱和失真方面的不同。答:共射电路及共集电路都既有饱和失真又有截止失真:截止失真是因为三极管直流工作点过低产生的失真,而饱和失真为直流工作点过高产生的失真。 共基电路有饱和失真,无截止失真,因为共基电路的解法不用考虑三极管的截止电压,故不存在截止失真。 3、改变下图射极偏置电路电路哪些参数可解决上述失真。 答:解决饱和失真:通过调大Rb1或调小Rb2,使得Rb2分压减小,Ube减小,则发射极电流减小,直流工作点降低,饱和失真得到解决。 解决截止失真:通过调小Rb1或调大Rb2,使得Rb2分压增大,Ube增大,则发射极电流增大,直流工作点升高,截止失真得到解决。 解决双向失真:调整直流工作点使其位于中间位置或减小输入信号。 4、双电源供电的功率放大器改成单电源供电会出现哪种失真? 如何使单电源供电的功率放大器不失真? 答:单电源供电影响了输入输出电压范围,进而限制了电路的动态范围,导致信号失真。解决单电源供电失真的办法为给回路中串联一个储能电容。 5、造成单级放大电路失真的器件有哪些?Re的作用是什么? 答:造成单级放大电路失真的器件有基极电阻、直流偏置电压电源等;Re是电路的负反馈电阻,能够稳定放大电路的直流工作点。 6、负反馈可解决波形失真,解决的是哪类失真? 答:负反馈能在一定程度上抑制管子的非线性失真,但不对反馈环外的失真起作用。非线性失真包括交越失真、不对称失真等。 7、消除交越失真为什么要用二极管? 答:二极管静态时需要导通,所以产生两个0.7V的压降(硅管),而这两个压降刚好为T1与T2提供两个适当的偏置电压,使T1和T2处于微导通状态,这样就克服了因门限电压产生的交越失真。 8、放大电路加入负载后会出现失真吗?为什么? 答:会。因为负载电阻越大,放大倍数就越高,输出的信号幅度也就越大,越容易进入饱和或截止区,越容易失真。 9、如何测量放大电路的输入电阻、输出电阻和通频带。 答:测量输入电阻:分别测量出电路的输入端电压Ui和输入端的电流Ii,则输入电阻Ri=ui/Ii,这个输入电阻可能是动态的,不同的电压下可能不相同。 测量输出电阻:分别接入不同的输出负载R1和R2,分别测量出电路的输出端电压Uo1、Uo2,则由于输出电流I1和I2分别等于I1=Uo1/R1、I2=Uo2/R2,输出电动势E=I1×Ro+Uo1=I2×Ro+Uo2,所以得到方程:Uo1/R1×Ro+Uo1=Uo2/R2×Ro+Uo2。则解出输出电阻:Ro=(Uo2+Uo1)×(R1+R2)/(Uo1×R2-Uo2×R1) 测量通频带: 幅频特性及通频带的测试能使用仪器的条件下通常用扫频法:利用扫频仪直接在屏幕上显示出放大器的输出信号幅度随频率变化的曲线,即Au-f曲线。在屏幕显示的幅频特性曲线上测出通频带BW。 10、用场效应管组成的放大电路或运算放大器同样会产生所研究的失真吗? 答:不一定。 11、当温度升高,晶体管组成的电路刚刚产生静态工作点漂移,使电路产生某种失真,此时由场效应管组成的电路也同样失真吗?为什么? 答:场效应管不会形成波形失真,但放大倍数同样会因为温度的变化发生变化。三极管的温度漂移是由于温度上升时,静态工作点向上漂移,形成饱和失真。而场效应管不同,随着温度的上升,静态工作点不会上移反而会下移,饱和失真不可能形成。另一方面,温度的上升会导致场效应管的门限电压进一步下降,因此原电路的一定能保持场效应管处于打开状态,因此也不会产生截止失真。综上所述,虽然温度漂移会对场效应管放大电路的静态工作点和放大倍数造成影响,但场效应管本身的特性决定了温度的升高并不会引起失真。 12、归纳失真现象,并阐述解决失真的技术。答:失真现象归纳见3.1 解决失真的核心技术:调节直流工作点使其合适、利用二极管抬高电平、引入负反馈。 六、感想与体会 6.1小组分工 本人在该实验中负责基本部分和发挥部分的板子焊接制作,以及参与板子的测试。 6.2收获与体会 这门基于模拟电子技术的实践课虽然时间很短,但是收获颇丰,我觉得相比于理论知识的钻研,更重要的是锻炼了实践动手能力,提升了自己分析解决问题的能力。 将近七周的时间里,我们小组完成了关于非线性失真的电路设计及焊接,对于放大电路饱和、截止、双向、不对称等非线性失真的电路结构、产生原因及失真现象的改善有了相当的认识,同时对于晶体管的型号、引脚等参数特性也有了一定的认识。 这之外的收获是,真正通过不断地实验、不断地检查纠错,拥有了不断查找板子无法调试出波形甚至三极管冒烟烧坏的错误原因。一方面是初次接触,不懂得三极管的放置也是有规律的;另一方面,焊接过程中容易犯低级错误,比如最后一个发挥部分,焊好了电路之后检查了三遍,调试了两边出现的都是乱波,冷静下来仔细分析结果,猜想应该还是焊接出错了。果不其然,再次检查发现输入引脚根本没有接入电路。所以通过这样的教训,我们也意识到平时不应该只关注理论知识的学习,还需要培养锻炼我们的实践能力、动手操作能力。 6.3对课程的建议 建议发挥部分可以多给出几个参考题目。另外感觉这门课很有价值,可以适当增加教学深度。 七、参考文献 [1]路勇,刘颖.模拟集成电路基础[M].北京:中国铁道出版社, 2016 [2]刘贵栋,电子电路的 Multisim 仿真实践,哈尔滨工业大学出版社,2008 模拟电路复习提纲 第一章 半导体二极管 一.半导体的基础知识 1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。2.特性---光敏、热敏和掺杂特性。 3.本征半导体----纯净的具有单晶体结构的半导体。 4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。 5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。*P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。6.杂质半导体的特性 *载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。 *体电阻---通常把杂质半导体自身的电阻称为体电阻。 *转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。7.PN结 * PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。* PN结的单向导电性---正偏导通,反偏截止。8.PN结的伏安特性 二.半导体二极管 *单向导电性------正向导通,反向截止。*二极管伏安特性----同PN结。 *正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。*死区电压------硅管0.5V,锗管0.1V。 3.分析方法------将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴(正偏),二极管导通(短路);若 V阳 该式与伏安特性曲线 的交点叫静态工作点Q。 08自动化一班 306雄霸天下 模拟电路复习提纲 2)等效电路法 直流等效电路法 *总的解题手段----将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴(正偏),二极管导通(短路);若 V阳 微变等效电路法 三.稳压二极管及其稳压电路 *稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。 第二章 三极管及其基本放大电路 一.三极管的结构、类型及特点 1.类型---分为NPN和PNP两种。 08自动化一班 306雄霸天下 模拟电路复习提纲 2.特点---基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触 面积较小;集电区掺杂浓度较高,与基区接触面积较大。二.三极管的工作原理 1.三极管的三种基本组态 2.三极管内各极电流的分配 * 共发射极电流放大系数(表明三极管是电流控制器件 式子3.共射电路的特性曲线 *输入特性曲线---同二极管。 称为穿透电流。 * 输出特性曲线 (饱和管压降,用UCES表示 放大区---发射结正偏,集电结反偏。截止区---发射结反偏,集电结反偏。4.温度影响 温度升高,输入特性曲线向左移动。温度升高ICBO、ICEO、IC以及β均增加。三.低频小信号等效模型(简化) hie---输出端交流短路时的输入电阻,常用rbe表示; hfe---输出端交流短路时的正向电流传输比,常用β表示; 四.基本放大电路组成及其原则 08自动化一班 306雄霸天下 模拟电路复习提纲 1.VT、VCC、Rb、Rc、C1、C2的作用。2.组成原则----能放大、不失真、能传输。五.放大电路的图解分析法 1.直流通路与静态分析 *概念---直流电流通的回路。*画法---电容视为开路。*作用---确定静态工作点 *直流负载线---由VCC=ICRC+UCE 确定的直线。 *电路参数对静态工作点的影响 1)改变Rb :Q点将沿直流负载线上下移动。 2)改变Rc :Q点在IBQ所在的那条输出特性曲线上移动。3)改变VCC:直流负载线平移,Q点发生移动。2.交流通路与动态分析 *概念---交流电流流通的回路 *画法---电容视为短路,理想直流电压源视为短路。*作用---分析信号被放大的过程。 *交流负载线---连接Q点和V CC’点 V CC’= UCEQ+ICQR L’的直线。 3.静态工作点与非线性失真 (1)截止失真 *产生原因---Q点设置过低 *失真现象---NPN管削顶,PNP管削底。*消除方法---减小Rb,提高Q。(2)饱和失真 *产生原因---Q点设置过高 *失真现象---NPN管削底,PNP管削顶。*消除方法---增大Rb、减小Rc、增大VCC。 4.放大器的动态范围 (1)Uopp---是指放大器最大不失真输出电压的峰峰值。(2)范围 08自动化一班 306雄霸天下 模拟电路复习提纲 *当(UCEQ-UCES)>(VCC’ - UCEQ)时,受截止失真限制,UOPP=2UOMAX=2ICQRL’。 *当(UCEQ-UCES)<(VCC’ - UCEQ)时,受饱和失真限制,UOPP=2UOMAX=2(UCEQ-UCES)。*当(UCEQ-UCES)=(VCC’ - UCEQ),放大器将有最大的不失真输出电压。六.放大电路的等效电路法 1.静态分析 (1)静态工作点的近似估算 (2)Q点在放大区的条件 欲使Q点不进入饱和区,应满足RB>βRc。 2.放大电路的动态分析 * 放大倍数 * 输入电阻 * 输出电阻 08自动化一班 306雄霸天下 模拟电路复习提纲 七.分压式稳定工作点共射 放大电路的等效电路法 1.静态分析 2.动态分析 *电压放大倍数 在Re两端并一电解电容Ce后 输入电阻 在Re两端并一电解电容Ce后 * 输出电阻 八.共集电极基本放大电路 1.静态分析 08自动化一班 306雄霸天下 模拟电路复习提纲 2.动态分析 * 电压放大倍数 * 输入电阻 * 输出电阻 3.电路特点 * 电压放大倍数为正,且略小于1,称为射极跟随器,简称射随器。* 输入电阻高,输出电阻低。 第三章 场效应管及其基本放大电路 一.结型场效应管(JFET)1.结构示意图和电路符号 2.输出特性曲线 (可变电阻区、放大区、截止区、击穿区) 08自动化一班 306雄霸天下 模拟电路复习提纲 转移特性曲线 UP-----截止电压 二.绝缘栅型场效应管(MOSFET) 分为增强型(EMOS)和耗尽型(DMOS)两种。结构示意图和电路符号 2.特性曲线 *N-EMOS的输出特性曲线 * N-EMOS的转移特性曲线式中,IDO是UGS=2UT时所对应的iD值。* N-DMOS的输出特性曲线 08自动化一班 306雄霸天下 模拟电路复习提纲 注意:uGS可正、可零、可负。转移特性曲线上iD=0处的值是夹断电压UP,此曲线表示式与结型场效应管一致。 三.场效应管的主要参数 1.漏极饱和电流IDSS 2.夹断电压Up 3.开启电压UT 4.直流输入电阻RGS 5.低频跨导gm(表明场效应管是电压控制器件) 四.场效应管的小信号等效模型 E-MOS 的跨 导 gm--- 五.共源极基本放大电路 1.自偏压式偏置放大电路 * 静态分析 动态分析 08自动化一班 306雄霸天下 模拟电路复习提纲 若带有Cs,则 2.分压式偏置放大电路 * 静态分析 * 动态分析 若源极带有Cs,则 六.共漏极基本放大电路 * 静态分析 或 08自动化一班 306雄霸天下 模拟电路复习提纲 * 动态分析 第四章 多级放大电路 一.级间耦合方式 1.阻容耦合----各级静态工作点彼此独立;能有效地传输交流信号;体积小,成本低。但不便于集成,低频特性差。 2.变压器耦合---各级静态工作点彼此独立,可以实现阻抗变换。体积大,成本高,无法采用集成工艺;不利于传输低频和高频信号。 3.直接耦合----低频特性好,便于集成。各级静态工作点不独立,互相有影响。存在“零点漂移”现象。 *零点漂移----当温度变化或电源电压改变时,静态工作点也随之变化,致使uo偏离初始值“零点”而作随机变动。二.单级放大电路的频率响应 1.中频段(fL≤f≤fH) 波特图---幅频曲线是20lgAusm=常数,相频曲线是φ=-180o。 08自动化一班 306雄霸天下 模拟电路复习提纲 2.低频段(f ≤fL) ‘ 3.高频段(f ≥fH) 4.完整的基本共射放大电路的频率特性 08自动化一班 306雄霸天下 模拟电路复习提纲 三.分压式稳定工作点电路的频率1.下限频率的估算 2.上限频率的估算 响应 四.多级放大电路的频率响应 1.频响表达式 2.波特图 08自动化一班 306雄霸天下 模拟电路复习提纲 第五章 功率放大电路 一.功率放大电路的三种工作状态 1.甲类工作状态 导通角为360,ICQ大,管耗大,效率低。 2.乙类工作状态 ICQ≈0,导通角为180,效率高,失真大。3.甲乙类工作状态 导通角为180~360,效率较高,失真较大。 二.乙类功放电路的指标估算 1.工作状态 任意状态:Uom≈Uim 尽限状态:Uom=VCC-UCES 理想状态:Uom≈VCC oo oo2.输出功率3.直流电源提供的平均功率 4.管耗 Pc1m=0.2Pom 08自动化一班 306雄霸天下 模拟电路复习提纲 5.效率 三.甲乙类互补对称功率放大电路 1.问题的提出 理想时为78.5% 在两管交替时出现波形失真——交越失真(本质上是截止失真)。2.解决办法 甲乙类双电源互补对称功率放大器OCL----利用二极管、三极管和电阻上的压降产生偏置电压。 动态指标按乙类状态估算。 甲乙类单电源互补对称功率放大器OTL----电容 C2 上静态电压为VCC/2,并且取代了OCL功放中的负电源-VCC。 动态指标按乙类状态估算,只是用VCC/2代替。四.复合管的组成及特点 1.前一个管子c-e极跨接在后一个管子的b-c极间。2.类型取决于第一只管子的类型。3.β=β1·β 2 第六章 集成运算放大电路 一.集成运放电路的基本组成 1.输入级----采用差放电路,以减小零漂。 2.中间级----多采用共射(或共源)放大电路,以提高放大倍数。 3.输出级----多采用互补对称电路以提高带负载能力。 4.偏置电路----多采用电流源电路,为各级提供合适的静态电流。 二.长尾差放电路的原理与特点 1.抑制零点漂移的过程---- 当T↑→ iC1、iC2↑→ iE1、iE2 ↑→ uE↑→ uBE1、uBE2↓→ iB1、iB2↓→ iC1、iC2↓。 Re对温度漂移及各种共模信号有强烈的抑制作用,被称为“共模反馈电阻”。 2静态分析 1)计算差放电路IC 设UB≈0,则UE=-0.7V,得 2)计算差放电路UCE • • • 双端输出时 单端输出时(设VT1集电极接RL) 08自动化一班 306雄霸天下 模拟电路复习提纲 对于VT1: 对于VT2: 3.动态分析 1)差模电压放大倍数 • • 双端输出 单端输出时 从VT1单端输出 : 从VT2单端输出 : 2)差模输入电阻3)差模输出电阻 • • 双端输出:单端输出: 三.集成运放的电压传输特性 当uI在+Uim与-Uim之间,运放工作在线性区域 : 四.理想集成运放的参数及分析方法 1.理想集成运放的参数特征 * 开环电压放大倍数 Aod→∞; * 差模输入电阻 Rid→∞; * 输出电阻 Ro→0; * 共模抑制比KCMR→∞; 2.理想集成运放的分析方法 1)运放工作在线性区: * 电路特征——引入负反馈 * 电路特点——“虚短”和“虚断”: 08自动化一班 306雄霸天下 模拟电路复习提纲 “虚短”--- “虚断”---2)运放工作在非线性区 * 电路特征——开环或引入正反馈 * 电路特点—— 输出电压的两种饱和状态: 当u+>u-时,uo=+Uom 当u+ i+=i-=0 第七章 放大电路中的反馈 一.反馈概念的建立 *开环放大倍数---A *闭环放大倍数---Af *反馈深度---1+AF *环路增益---AF: 1.当AF>0时,Af下降,这种反馈称为负反馈。 2.当AF=0时,表明反馈效果为零。 3.当AF<0时,Af升高,这种反馈称为正反馈。 4.当AF=-1时,Af→∞。放大器处于 “ 自激振荡”状态。二.反馈的形式和判断 1.反馈的范围----本级或级间。 2.反馈的性质----交流、直流或交直流。 直流通路中存在反馈则为直流反馈,交流通路中存 在反馈则为交流反馈,交、直流通路中都存在反馈 则为交、直流反馈。 3.反馈的取样----电压反馈:反馈量取样于输出电压;具有稳定输出电压的作用。 (输出短路时反馈消失) 电流反馈:反馈量取样于输出电流。具有稳定输出电流的作用。(输出短路时反馈不消失) 4.反馈的方式-----并联反馈:反馈量与原输入量在输入电路中以电 流形式相叠加。Rs越大反馈效果越好。 反馈信号反馈到输入端) 08自动化一班 306雄霸天下 模拟电路复习提纲 串联反馈:反馈量与原输入量在输入电路中以电压 的形式相叠加。Rs越小反馈效果越好。 反馈信号反馈到非输入端)5.反馈极性-----瞬时极性法: (1)假定某输入信号在某瞬时的极性为正(用+表示),并设信号 的频率在中频段。 (2)根据该极性,逐级推断出放大电路中各相关点的瞬时极性(升 高用 + 表示,降低用 - 表示)。(3)确定反馈信号的极性。 (4)根据Xi 与X f 的极性,确定净输入信号的大小。Xid 减小为负反 馈;Xid 增大为正反馈。 三.反馈形式的描述方法 某反馈元件引入级间(本级)直流负反馈和交流电压(电流)串 联(并联)负反馈。四.负反馈对放大电路性能的影响 1.提高放大倍数的稳定性 2.3.扩展频带 4.减小非线性失真及抑制干扰和噪声 5.改变放大电路的输入、输出电阻 *串联负反馈使输入电阻增加1+AF倍 *并联负反馈使输入电阻减小1+AF倍 *电压负反馈使输出电阻减小1+AF倍 *电流负反馈使输出电阻增加1+AF倍 五.自激振荡产生的原因和条件 1.产生自激振荡的原因 附加相移将负反馈转化为正反馈。 2.产生自激振荡的条件 若表示为幅值和相位的条件则为: 第八章 信号的运算与处理 分析依据------“虚断”和“虚短” 一.基本运算电路 1.反相比例运算电路 R2 =R1//Rf 08自动化一班 306雄霸天下 模拟电路复习提纲 2.同相比例运算电路 R2=R1//Rf 3.反相求和运算电路 R4=R1//R2//R3//Rf 4.同相求和运算电路 R1//R2//R3//R4=Rf//R5 5.加减运算电路 R1//R2//Rf=R3//R4//R5 二.积分和微分运算电路 1.积分运算 2.微分运算 第九章 信号发生电路 一.正弦波振荡电路的基本概念 1.产生正弦波振荡的条件(人为的直接引入正反馈) 自激振荡的平衡条件 : 即幅值平衡条件: 相位平衡条件: 2.起振条件: 幅值条件 :相位条件:3.正弦波振荡器的组成、分类 正弦波振荡器的组成 08自动化一班 306雄霸天下 模拟电路复习提纲 (1)放大电路-------建立和维持振荡。 (2)正反馈网络----与放大电路共同满足振荡条件。(3)选频网络-------以选择某一频率进行振荡。 (4)稳幅环节-------使波形幅值稳定,且波形的形状良好。* 正弦波振荡器的分类 (1)RC振荡器-----振荡频率较低,1M以下;(2)LC振荡器-----振荡频率较高,1M以上;(3)石英晶体振荡器----振荡频率高且稳定。二.RC正弦波振荡电路 1.RC串并联正弦波振荡电路 2.RC移相式正弦波振荡电路 三.LC正弦波振荡电路 1.变压器耦合式LC振荡电路 判断相位的方法: 断回路、引输入、看相位 2.三点式LC振荡器 *相位条件的判 断 ------“ 射 同 基 反 ” 或 “ 三 步曲法” 08自动化一班 306雄霸天下 模拟电路复习提纲 (1)电感反馈三点式振荡器(哈特莱电路) (2)电容反馈三点式振荡器(考毕兹电路) (3)串联改进型电容反馈三点式振荡器(克拉泼电路) (4)并联改进型电容反馈三点式振荡器(西勒电路) (5)四.石英晶体振荡电路 1.并联型石英晶体振荡器 08自动化一班 306雄霸天下 模拟电路复习提纲 2.串联型石英晶体振荡器 第十章 直流电源 一.直流电源的组成框图 08自动化一班 306雄霸天下 模拟电路复习提纲 • • • • • 电源变压器:将电网交流电压变换为符合整流电路所需要的交流电压。整流电路:将正负交替的交流电压整流成为单方向的脉动电压。滤波电路:将交流成分滤掉,使输出电压成为比较平滑的直流电压。稳压电路:自动保持负载电压的稳定。二.单相半波整流电路 1.输出电压的平均值UO(AV) 2.输出电压的脉动系数S 3.正向平均电流ID(AV) 4.最大反向电压URM 三.单相全波整流电路 1.输出电压的平均值UO(AV) 2.输出电压的脉动系数S 3.正向平均电流ID(AV) 4.最大反向电压URM 四.单相桥式整流电路 UO(AV)、S、ID(AV) 与全波整流电路相同,08自动化一班 306雄霸天下 模拟电路复习提纲 URM与半波整流电路相同。 五.电容滤波电路 1. 放电时间常数的取值 2.输出电压的平均值UO(AV) 3.输出电压的脉动系数S.整流二极管的平均电流I D(AV) 六.三种单相整流电容滤波电路的比较 七.并联型稳压电路 1.稳压电路及其工作原理 *当负载不变,电网电压 变化时的稳压过程: *当电网电压不变,负载变化时的稳压过程 : 2.电路参数的计算 * 稳压管的选择 常取UZ=UO;IZM=(1.5~3)IOmax * 输入电压的确定 一般取UI(AV)=(2~3)UO * 限流电阻R的计算 R的选用原则是:IZmin 08自动化一班 306雄霸天下第三篇:合工大复试各项分数
第四篇:模电实验报告(范文模版)
第五篇:模电复习资料