第一篇:天然气采气厂集气站火灾爆炸危险性分析
天然气采气厂集气站火灾爆炸危险性分析
一、概述
运用定性与定量分析的方法,从天然气及甲醇的性质、主要生产设备和生产过程三个方面对天然气采气厂集气站的火灾爆炸危险性进行评价。
天然气采气厂集气站是气田集输生产最基本的单元,它的主要任务是将气田中采出的油气混合物收集起来,经初步处理后输送到用户或储存。集气站内的主要生产设备有:脱水橇(器)、天然气加热炉、计量分离器、油气分离器、油气输送泵、储油罐、通球清管设施、输气管道及SLC503和SCAN3000生产自控系统一套等。
二、生产工艺简述天然气组分
油气田所在的地埋位置不同,开采和处理后的天然气组分也各不相同,大体上甲烷组分占天然气组分体积的90%以上,其他轻烃极少;H2S含量在20~1600mg/m3之间。(安全管
集气站生产工艺流程主要有天然气加热、节流、分离、脱水、计量等处理过程。集气站采用高压集气、集中注醇、多井加热、间隔计量、加醇脱水、天然气发电等艺,利用SCADA系统进行数据采集,通过一点多址通讯网向气田调度中心传输数据资料,实现生产自动化管理。
由集气站所管辖的气井井口采出的高压天然气,经采气管线输入到站内,采用多井式加热炉以提高节流前的天然气温度,防止节流后温度低而形成水化物堵塞。加热后的高压天然气经针形阀节流后,压力降到所要求的值后,经总机关(阀门)合理分配后进入生产分离器或计量分离器,将天然气中的凝析油、污水和机械杂物等进行初步分离,再通过脱水橇利用三甘醇的亲水性和天然气逆流接触脱水后,生产出合格的天然气。辅助生产工艺
3.1 注醇流程
采用高压集中注醇工艺,利用高压柱塞泵,将计量后的甲醇通过注醇管线注入到井口及采气管线,防止油管和采气管线中形成天然气水化物。对东北和西北等冬季寒冷地区,每年10月至来年4月期间需要在生产流程中加入甲醇。
3.2 放空流程
为防止系统超压及根据生产工艺的要求,站内部分设备设有安全泄压放空管,汇聚至放空总管后燃烧排空。
3.3 计量
气井产量采用周期性间歇计量,计量周期至少2天,每次计量时间不少于8h,单井产量和外输均采用孔板流量计计量。
3.4 排污流程
工艺设备产生的污水经排污总管汇聚后,输往地下污水罐收集储存,不定期拉至净化厂净化回注地下。主要生产设备及工艺条件
长庆油田某集气站的主要生产设备及工艺条件见表1。
表1 主要生产设备及工艺条件
三、火灾爆炸危险性分析天然气及甲醇火灾爆炸特性
天然气是以低分子量烷烃碳(甲烷)为主组成的气体混合物,硫化氢含量也较高。天然气无色、无臭、易燃,在常温常压下呈气态,属于甲类火灾危险性物质。天然气的火灾爆炸危险特性见表2。
表2 天然气及甲醇的火灾爆炸特性表
序号物质名称闪点/℃组别引燃温度/℃爆炸极限/V%火灾危险性类别
上限下限
4天然气
甲烷
硫化氢
甲醇-
11T
1T1
T
3T1482~63
2538
260
4555.0
5.3
4.0
5.514.0
15.0
46.0
36.0甲
甲
甲
甲
1.1 甲烷
甲烷是天然气中最主要的成分,呈气态,比空气轻,易燃易爆,属于甲类火灾危险性物质。与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险,燃烧分解产物为一氮化碳、二氧化碳。
1.2 硫化氢
硫化氢是无色有臭鸡蛋味的易燃性气体,比空气重。长庆油田的天然气组分中,硫化氢的含量大体在0.3%(V/V)左右。硫化氢属于甲类火灾危险性物质。与空气混合能形成爆炸性混合物,遇高热和明火能引起燃烧爆炸,燃烧分解产物为氧化硫。硫化氢是强烈的神经毒物,硫化氢及其燃烧生成的产物二氧化硫有毒性,危害人体。硫化氢对钢材可引起氢脆和硫化物应力腐蚀。
1.3 甲醇
甲醇是甲类火灾危险性有毒液体,与空气混合能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸,其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。甲醇的火灾爆炸特性见表2。生产设备火灾爆炸危险性
按照《石油化工企业设计防火规范》中对生产工艺装置火灾危险性分类,集气站生产装置为甲类火灾危险性工艺装置,其生产设施大多具有能够引发火灾爆炸的危险特征。
2.1 加热炉
加热炉属于明火炉,集气站加热募尤冉橹屎腿剂衔烊黄ぷ餮沽Τ跗诳纱?0MPa以上。加热炉燃料系统的压力控制、气水分离设施、燃料气进炉前管线阻火器的工作状态、加热炉的压力表、温度表、液位计、防爆门、防风口、火焰观察孔是巡回检查的重点部位。加热炉排气烟囱也是易被雷击的对象。
2.2 脱水橇(器)
脱水橇(器)是由多种设备组合而成的,处理的介质为天然气。吸收塔、闪蒸罐、燃料分配罐的压力在0.3~6.6MPa之间,属于承压设备;闪蒸罐、重沸器的温度较高;同时重沸器用天然气作加热燃料,属于明火设备;吸收塔为集气站最高的设备,是防雷的重点设备。
脱水橇(器)尾阀控制着整个系统的压力,是监控的重点;燃料分配罐排污阀、过滤器压差、控制器及减压阀、重沸器火焰,以及设备的压力、温度及液位是巡回检查的重点。
2.3 总机关及单井入口管组
由于从上游来的天然气在压力、温度及流量等方面缺乏严格控制,进站阀门的操作(流量分配、开启压力、阀门密封状况)很重要,集气总机关闸门盘根泄漏将是重大危险源。
2.4 甲醇罐
集气站多采用高压集中注醇工艺,利用高压柱塞泵,将计量后的甲醇通过注醇管线注入到井口采气管线,防止油管和采气管线中形成天然气水化物。站内设的甲醇罐为露天地上卧式布置,容量大多在10m3以上,已构成重大危险源。
2.5 污水罐
污水罐为地下布置。污水罐内存有残留的天然气、硫化氢、机油及其他烃类有机混合物,这些物质或是易燃易爆的,或是有毒的。在通气口中会不断排出含有烃类和硫化氢的混合气体;在排污车装运污水时,污水罐区附近空气中含有烃类和硫化氢的混合气体浓度会更大些。重点是预防不正常状态下硫化氢气体在污水罐地面长期、大量地积聚,它将是急性中毒的主要危险源。
2.6 燃气发电机
天然气的存在和电力的产生,使燃气发电机成为重大火灾爆炸危险源之一。同时,由于燃气发电机位于封闭的厂房内,一旦出现天然气泄漏,不利于及时通风换气。机油油位、冷却液液位、燃气供给压力及电瓶接线是保障发电机在外电源发生事故时及时投入安全运行的重点。
2.7 压力容器
依据GB150-1998《钢制压力容器》按设计压力分类,加热炉、闪蒸塔、燃料分配罐、分离器、清管收球装置的操作压力都大于0.1MPa,属于中、低压类压力容器。上述生产设备承受各种静、动载荷,还有附加的温度载荷,同时大多数容器容纳压缩气体或易燃易爆气(液)体,若容器破裂,导致介质突然泄压膨胀,瞬间释放出来的破坏能量极大,加上压力容器多数系焊接制造,容易产生各种焊接缺陷,一旦检验、操作失误,易发生爆炸破裂,容器内的易燃、易爆有毒的介质将向外泄漏,势必造成极具灾难性的后果生产过程火灾爆炸危险性
油气集输生产不同于油田物深、钻井、测井、修井作业及采油生产等作业。它既具有油田点多、线长、面广的生产特性,又具有石油化工炼制企业高温高压、易燃易爆、工艺复杂、压力容器集中、生产连续性强、火灾危险性大的生产特点。生产中,任一环节出现问题或操作失误,都会造成恶性的火灾爆炸事故及人身伤亡事故,其危险性主要体现在以下几个方面:
(1)由于天然气无色无味,扩散在大气中不易察觉,容易引起火灾;
(2)天然气是非常容易燃烧的,在常温下接触高温、明火就会燃烧或爆炸,并产生大量的热;
(3)由于天燃气在输送过程中能够产生静电,放电时产生火花,极易引起火灾或爆炸;
(4)天然气比重比空气小,一旦泄漏,能在空气中广泛传播,这样就形成较大范围的火灾隐患;
(5)在天然气集输生产过程中,需要采用加热炉、重沸器等明火设备,需要用电气设备,这就更增加了火灾爆炸的危险性。
四、火灾爆炸危险性定量分析评价方法选择
针对天然气集输站处理的油气具有火灾、爆炸和有毒的特点,选用国际上通用的DOW/ICI蒙德危险指数评价法,以长庆油田某集气站为例对天然气集气站的火灾爆炸危险性做进一步分析。评价单元划分
根据集气站的生产情况和DOW/ICI蒙德法确定评价单元的原则,可确定以下评价单元:
(1)脱水橇(器)
(2)生产分离器
(3)多井式加热炉
(4)甲醇罐评价单元各系数的确定及危险性计算
3.1 初期危险性评价
按照DOW/ICI蒙德法,将脱水橇(器)、生产分离器、加热炉和甲醇罐的初期火灾、爆炸及毒性危险性系数汇总列入表3,以脱水橇(器)单元为例计算出其火灾、爆炸及毒性危险性,计算过程和结果本文略,其他单元在本文中省略。各项指标包括有以下内容:火灾负荷F;内部爆炸指标Eˊ;气体爆炸指标Aˊ;总体危险性评价分Rˊ(计算公式及计算过程本文省略)。
表3 各评价单元初期火灾、爆炸及毒性危险性结果汇总表
评价单元DFUCEAR
危险性范畴
脱水橇418.94高度灾难性的5577.93低14.04非常高77.22中等5.40高510.36非常高6519.13非常高
分离器298.07高度灾难性的1678.95轻12.35非常高12.35轻4.75高21.26低430.20中等
加热炉277.12潜在灾难性的20513.31高11.83中等118.30低4.55中等191.32非常高430.67非常高
甲醇罐119.46非常极端的131200强的4.88中等175.68中等3.05中等4.12轻458.73中等
从计算的结果来看,在没有采取任何预防措施的情况下,DOW/ICI总指标D值、单元毒性指标U值、内部单元爆炸指标E值及总危险性系数R值大多处于危险性较大的范畴内。
而脱水橇(器)、加热炉因其操作温度高、工作压力大、天然气处理量大、工艺条件相对复杂和明火作业的特点,在整体上火灾爆炸和毒性危害程度较其他2个单元严重。
3.2 安全性补偿评价
由于在设计上和日常生产过程中对集气站采取了防火防爆措施,并建立了较为完善的安全生产规章制度和岗位操作规程,为实现安全生产提供了较好的安全保障条件。为了取得正确的安全特性,考虑到接受上述的总危险性R及其他指标的可能性,需进一步进行安全性补偿评价。采取减少事故频率补偿的一些有效措施包括以下几个方面:容器危险性;工艺管理;安全的态度;防火;物质隔离;灭火活动。
按照ICI蒙德法对降低事故频率补偿系数选取的原则,结合集气站的实际情况,合理选择上述6个方面的安全性补偿系数,依据4个评价单元的安全补偿系数表4,重新计算各评价单元的实际危险程度,得到各指标的安全补偿指标:补偿火灾负荷Fˊ;补偿内部爆炸指标Eˊ;补偿气体爆炸指标Aˊ;补偿总体危险性Rˊ。计算结果见表5。
表4 4个评价单元的安全补偿系数汇总表
单元K1K2K3K4K5K6
脱水橇
分离器
加热炉
甲醇罐0.408
0.408
0.350
0.4370.316
0.33
40.28
10.3230.689
0.689
0.689
0.6890.47
0.47
0.47
0.470.68
0.68
0.68
0.680.77
20.772
0.772
0.660
表5 安全补偿系数计算后的危险性评价结果
评
单 价
结
元 果
DOW/ICI总指标(D)火灾负荷(F)F/Btu·ft-2内部爆炸指数(F)环境气体爆炸指标总危险性系数(R)
脱水橇418.941782.711.15263.20142.88
高度灾难性的轻低高中等
分离器298.07536.591.0911.1610.01
高度灾难性的轻低轻缓和
加热炉277.126556.050.88100.4471.9
5潜在灾难性的低轻微非常高
甲醇罐119.464193.520.651.859.41
非常极端的非常高轻微轻缓和评价结论
4.1 能过对集气站脱水橇、分离器、加热炉和甲醇罐4个单元的DOW/ICI评价可知,在未采取任何安全防护措施的情况下,其火灾、爆炸事故,将会产生灾难性的后果。如果在工程设计、建设施工、生产运行、安全管理、人员培训以及事故应急预案等多方面采取有效的安全保障措施,脱水橇、分离器、加热炉和甲醇罐4个单元的火灾、爆炸及毒性的危险度会大幅度降低,DOW/ICI中的总危险系数R值大多低于100(脱水橇R=142.88),处于“低”或“缓和”范畴,属于较为安全的状态。
4.2 DOW/ICI总指标D值表示评价单元火灾、爆炸危险性潜能的大小。在对集气站的4个评价单元中,D值都处于高度危险的范畴内,尤其脱水橇、分离器、加热炉处于灾难性范畴,这说明集气站的火灾、爆炸危险性潜能较高。
4.3 甲醇罐的火灾负荷F值初评为“强”,经安全措施补偿降为“非常高”程度,说明甲醇罐潜在的火灾危险性相对较高。这与甲醇罐的容量、火灾特性、露天布置以及装卸方式都有直接的原因。天然气的火灾爆炸特性和严格的密闭作业条件,使其他3个单元的火灾负荷相对较低也是合理的。
4.4 装置内部爆炸指标E是物料的危险性和工艺条件因素的综合反映,4个单元经安全措施补偿后均处于“低”或“轻微”的范畴以下,说明在正常工作状态下,较完善的安全保障条件能使集气站的内部爆炸危险性的幅度降低。
4.5 脱水橇和加热炉经安全措施补偿后,其环境气体爆炸指标A仍处于“高”和“非常高”的范畴,这是由其天然气处理量较大,存在明火作业点或由明火设备的危险性决定的,在日常生产中应引起足够的重视。
4.6 在初期评价总危险性系数R值中,脱水橇初期评价系数值较高,经安全措施补偿后,脱水橇仍处在“中等”的范畴,说明其总危险性较大。这和脱水橇设备组成较为紧凑集中(吸收塔、闪蒸罐、重沸器、燃料分配罐等)、工作温度范围大(20~202℃),且存在明火作业点有着直接的原因。
4.7 4个单元的单元毒性指标U都较高,一旦出现大量泄漏,将会发生急性中毒事故。因此,需强化对生产系统的密闭性,并加强个体防护措施和事故应急预案的制定,防止天然气、硫化氢、甲醇等有害特质对作业人员的危害。
第二篇:天然气公司采气厂技术人员工作总结
各位领导、同事:已悄然过去,回顾这一年的工作经历,是我个人职业生涯的重要一年。在这一年里,得益于领导的悉心指导和同事的照顾关怀,工作能力得到了较大的进步,积累了更加丰富的工作经验。以下将今年工作的主要情况向在座的领导和同事做以下汇报,请领导和同事们多多指正。
一、思想进步情况在科学技术不断改革创新的今天,只有与时俱进,才能适应发展需要。因此,在工作中加强学习,努力学习实践科学发展观;在工作之余抽出时间,关心时事政治,学习先进理论。通过学习,使自己的观念得以更新,业务知识不断丰富,管理水平有所提升。我始终以敬业不息为信念,把宽以待人、严以律己、遵纪守法作为自己的工作准则,做到自尊、自重、自律。时刻以公民道德规范要求自己,工作兢兢业业,乐于奉献;关心同事,为人正派,办事公道,凡是要求遵守的规章制度,我自觉遵守;凡是我职责范围内的工作,我积极参与。
二、主要工作成绩采气工程日常的工作,以解决现场采气工程方面的问题为主。针对套压高、油套内气体含硫化氢、油套环空保护液不合格等情况,深入分析并提出措施建议,使套管压力得到有效控制。对普光气田气井套管进行监测,共安排套管取样285次,实际完成套管取样247井次,实际完成取样计划的87%,为解决气井套管异常问题提供了可靠的依据。为避免套管腐蚀,加强环空保护液对套管的保护作用,共对10口井进行了环空保护液的加注施工,有效改善了套管异常情况,取得较为明显的治理效果。针对普光1井压力异常现象,对普光1井进行了泄压及压力恢复实验,证实技套压力来源于技套内部本身,油套压力来源于陆相层位渗漏,风险在可靠范围内。针对p102-3井筒堵塞造成不能正常生产的问题,参与对该井的注热水解堵施工和连续油管施工,使p102-3井恢复正常生产。参与对p303-3井采气树壁厚检测施工,对前期确定的采气树腐蚀速度较快的部位进行检测,重点监控采气树各检测点腐蚀速率,是否出现坑蚀、冲击异常腐蚀、敷焊层是否出现脱落(气泡)等异常腐蚀情况,以了解采气树内腔腐蚀状况。对井下压力计进行升级改造,实现了井下压力计接入scada系统进行数据远程传输查看,并达到数据自动记录并保存在中控室的服务器上。对p104-1井下压力计出现两次数据异常情况进行维护,保障了井下压力计正常使用。参与申报并获批专利一项,获得普光分公司qc成果三等奖一次。
三、存在的不足在工作中,我也还存在很多不足,首先是工作经验仍很欠缺,工作上很多时候考虑不够周全,在工作计划的编排和工作的轻重缓急的把握上不够到位,导致工作开展困难,延误一些重要工作的开展时机,为此还需要虚心向领导和同事认真学习和借鉴经验。二是工作中吃苦和钻研精神不够,对工作中存在的问题有时不能够及时跟进、解决,导致工作滞后。三是综合协调能力较差,在与领导和同事沟通中不能很好的把握交流、沟通的技巧,在协调各同事配合的时候没能做好沟通,很多时候把握不住沟通的重点,导致在与其他同事配合上存在漏洞。四是工作中存在心态浮躁、失衡的现象,工作中存在偏激的情况,不能做到以一颗平常心对待工作,还需要加强政治学习,努力提高个人修养。五是业务水平仍显不足,有待进一步提高,往后还需要加强工作基础知识和专业技术知识学习。
四、工作目标,普光气田开发进入新的篇章。在这一年里,作为采气工程技术员,切须加强井况问题分析研究及采气工程难题攻关,加强新技术的引进,及时解决井况问题,为气井安全、平稳生产作出努力。普光气田作为国内首个“三高”气田,是个出成果、创新技术的好地方,自我要求今年完成科技成果和qc成果各一项。针对自身不足,还需要努力学习和全面提高综合素质,加快自身成长,力求成为普光气田一名优秀的技术员。
第三篇:有机溶剂火灾爆炸危险性分析及预防
有机溶剂火灾爆炸危险性分析及预防
有机溶剂在工业生产中应用十分普遍,在塑料、染料、橡胶、油漆、香料、印刷、油墨,电影胶片、医药、纺织、机械、选矿等各个领域均有应用。由于溶剂本身具有易燃易爆的特性,决定了溶剂生产使用场所具有较大的火灾爆炸危险性,并且灾后燃烧猛烈,蔓延迅速,扑救困难。溶剂生产使用场所火灾爆炸事故时有发生。本文就有机溶剂生产使用场所的火险特点与预防对策进行分析研究。有机溶剂的类型
有机溶剂种类十分繁多,常见的溶剂有800多种,按其化学性质可分为9大类:烃类,如苯、甲苯、汽油、石油醚、环戊烷等;氯代烃类,如二氯乙烷、四氯化碳等;醇类如甲醇、乙醇、丁醇等;醚类,如乙醚、甲乙醚等;酮类,如丙酮、环已酮等;酯类,如乙酸乙酯、乙酸丁酯等;醇醚类,如乙二醇-乙醚、乙二醇-丁醚等;醛类,如甲醛、乙醛等;杂环类,如吡啶等。有机溶剂在生产中的应用
有机溶剂在备料、投料、化学反应、出料、分离等生产的各个工艺过程都有存在。有机溶剂在生产中应用大致可以归纳旭下几个方面。
2.1 溶解物料
应用溶剂溶解物料,以提取生产所需的有效成分。如中药雷公藤片的生产,采用乙醇和醋酸乙酯提取雷公藤片中的雷公藤甲素和乙素。
2.2 稀释物料
采用溶剂稀释物料,经满足工艺要求。如乙醇和醚类溶剂混合可以提高对硝基纤维的溶解能力,在硝基纤维涂料中用作稀释剂可以降低溶液黏度。橡胶制品生产中,在生胶或混炼胶中加入大量溶剂汽油进行打浆,制成粘合用的胶浆。油漆生产中,直接将高温树脂打到溶剂况稀罐中制成油漆。
2.3 处理物料
利用溶剂对物料进行脱水、沉淀、结晶和洗涤等处理。如赛璐珞生产中,采用乙醇将含水硝脂棉中的水分除去;塑料生产中,用有机溶剂洗涤固体聚合物表面的杂质。
2.4 分离混合物
利用有机溶剂分离混合物在生产中应用广泛,如在合成橡胶生产过程中,采用乙腈或二甲基甲酰胺萃取二丁烯。以糖醛作为萃取剂进行萃取精馏,分离环已烷与苯的混合物。
2.5 化学反应
有机溶剂常作为化学反应的介质,生产新的化工产品。如染料N,N-二甲基苯胺的合成,由甲醇、苯胺与硫酸混合,经过甲基化反应,中和、分层、减压蒸馏而得的产品。
2.6 作为移除反应热的载体
溶剂作为移除热的载体,蒸发回流,是较好的移出反应热的方法,例如,在溶液聚合中,常采用此法以控制聚合温度。
2.7 在特种工艺中起特殊作用
溶剂在特殊工艺中具有特殊作用,如静电喷涂时,可用来调整防火涂料的导电率,以改进雾化和上漆率;在分散聚合物中用来控制聚合物的粒度;在溶液聚合中用作链转移剂
来控制分子量及其分布等。
3溶剂生产使用场所火灾爆炸危险性分析
3.1有机溶剂的危险性质
3.1.1燃烧爆炸性
有机溶剂绝大部分属于易燃危险化学品,它们的闪点一般在-41~46℃之间,沸点一般在30~200℃之间,密度较小,一般在0.8(水=1)左右,爆炸浓度下限一般小于10%。溶剂所需点火能量微小,一般在0.2~0.3mJ,如苯为0.2mJ、丙烷为0.29mJ。因而,只要遇火,都可能引起爆炸燃烧。
3.1.2挥发性
有机溶剂具有易挥发特性。如汽油,即使在较低的气温下都能蒸发,挥发的蒸气能迅速与空气混合,形成爆炸性混合气体。
3.1.3流动扩散性
溶剂具有流动扩散性的特性,其流动性的强弱取决于本身的黏度。一般黏度低的液体,流动扩散性强。如果管路、溶器破损或闸门关闭不严,罐装超出溶器溶量,就容易造成跑、冒、滴、漏。流动的可燃物就是流动火源,增加了对周围的建、构筑物的威胁和危害。可燃性流动物越好,扩散速度越快,其火灾扩大的危险性越大。
溶剂蒸气若比空气轻,逸散在空气中扩散,顺风向移动,可成为气体火焰迅速蔓延的条件。溶剂空气若比空气重,往往漂流于地表、沟渠建筑的死角,不易被空气吹散,一旦遇引火源就可能发生燃烧爆炸。
3.1.4静电危害性
溶剂类物质大多属于绝缘物质,其导电性比较差,如汽油、甲苯等,电阻率为1010~1015Ω.cm。在生产、使用、输送、装卸过程中,与容器、管道、机泵、过滤介质,以及水、杂质、空气等发生碰撞、磨擦,都会产生静电,由于物料本身不导电性,所产生的静电极难散失,容易产生静电火花。
3.1.5毒害性
溶剂是由各种碳氢化合物组成的,大多具有毒害性,其中芳香烃毒性最大,环烷烃次之,烷烃最小。如油漆涂料,特别是作为溶剂和稀释剂的各种液体材料,会挥发出刺激、毒害人摇动的毒气,经常吸入这种气体,就会破坏人的生理机能,并引艳情某些器官发生病变。
3.2有机溶剂生产使用场所的火灾特点
3.2.1易发生燃烧
溶剂生产使用场所,一般多种原料、喑体、产品同时存在,工艺过程中,既有大量、多种易燃危险品,又有引起火源产生的可能性。如果控制不当,易发生燃烧。常见的引起火源有:明火、电气火花、静电火花、摩擦撞击火花、高热、自燃物等。
3.2.2易发生爆炸
在生产设备的外部空间,由于溶剂以液态可气态的形式跑、冒、滴、漏,易与空气形成爆炸性混合物,遇火源引起着火爆炸。
一些生产设备为负压操作,出现容易渗漏或误操作等异常情况,会使空气进入容器内,因氧化高温引起可燃蒸气着火爆炸。
溶剂在应用到生产过程中时,其操作条件大多要通过加温、加压来实现。当温度失去控制,达到某一溶剂的过热温度极限时,就会由液相突变为气相,体积迅速扩大数十甚至数百倍,压力猛增导致容器超压爆炸;或反复使用的溶剂中,过氧化物含量增多,发生异常反应,导
致温度压力升高。当容器发生物理性爆炸后,其内部物料(溶剂)则大量地迅速扩散,物理爆炸的高温和遇外部火源又会引起扩散蒸气的化学性爆炸和燃烧。
3.2.3易形成大面积立体火灾
有机溶剂从罐、桶、槽、锅等容器中大量溢出,形成流淌火,流量越多,燃烧面积就越大。溶剂随着罐、桶、槽、锅的爆炸而喷射到各个角落,瞬间形成大面积燃烧。长期使用溶剂的设备、建筑,在可燃蒸气的熏蒸下,其表面常积有一定的数量污垢,火灾通过这些可燃污垢迅速将设备的建筑引燃。
起火后溶剂、物料由上层流至下层,爆炸时溶剂、物料上、下喷溅,均会形成上下一起的立体火灾。
3.2.4发生事故易引起连锁反应
溶剂生产使用工艺各生产工序相互衔接,设备之间相互串通,溶剂往往经过几道工序后回收反复使用,一旦某个工序发生火灾爆炸事故,易出现连锁反应,火灾爆炸事故沿着生产管道、污水管网、可燃物料、建筑物孔洞蔓延。
4防火措施
4.1建筑和布局符合防火要求
溶剂生产使用场所的建筑和布局,应按《建筑设计防火规范》、《炼油化工企业设计防火规范》、《爆炸和火灾危险环境电力装置设计规范》等相关要求和规定进行设计、施工、安装。工厂投产前,要经过消防、安全监督管理部门的验收批准才能投产;设备的布局一定要考虑安全防火的需要。
4.2用难燃或不燃的溶剂代替可燃溶剂
在生产中,用燃烧性能差的溶剂代替易燃溶剂,以改善操作的安全性。选择危险性较小的液体作为溶剂时,沸点和蒸气压是很重要的2个参数。沸点在110℃以上的液体,常温下(18~20℃)不可能过到爆炸浓度。醋酸戊脂、丁醇、戊烷、乙二醇、氯苯、二甲苯等都是危险性较小的液体。代替可燃溶剂的不燃液体(或难燃液体)有甲烷的氯衍生物(二氯甲烷、三氯甲烷、四氯化碳)及乙烯的氯衍生物(三氯乙烯)等。例如,溶解脂肪、油、树脂、沥青、像胶以及油漆,可以用四氯化碳代替危险性大的液体溶剂。可以用不燃(或难烯)清洗剂代替汽油或其他易燃溶剂,清洗粘有油污的机件和零件。
4.3严格安全操作
尽量减少敞口操作,采用密闭操作,容器要加盖减少溶剂挥发。车间内各种化学原料和溶剂的储存量要严加控制,以不超过当天用量为宜,多用储罐式静态装料,而少使用桶式动态装料。
在使用易燃易爆挥发性有机溶剂时,应控制使用温度要其沸点30℃发下。如果操作温度高时,应采取冷凝、冷却措施。如油漆生产中,高温树脂(200~240℃)直接加入兑稀溶剂(溶剂汽油、甲苯、二甲苯等)的兑稀罐中,会使溶剂温度升高,溶剂蒸气大量排出。因此,要在罐上安装冷凝、冷却装置,减少有机溶剂的反复使用次数。溶剂初次使用前进行化验检测。清除杂质和水分。定期取样分析反复使用的溶剂中的过氧化物含量,防止出志现异常反应。
4.4控制和消除引火源
溶剂生产使用场所严禁随意使用明火或其他易于生产火源的用具及装置,如必须动火、使用喷灯、焊接时,必须在安全规范的区域里进行。禁止一切能产生火花的行为,如用铁棒敲开封盖的金属桶、穿带钉的鞋和使用易产生火花的工具等。
选用符合防爆等级要求的防爆电气设备,采用耐火电缆或防火塑料管套敷设电气
线路。采用控制有机溶剂流速和搅拌速度、空间增湿,工艺设备、管线接地,投入抗静电添加等措施消除静电火花。
揩过溶剂的棉纱、破布等必须存放在专用的有水的金属桶内,定期予以清理烧毁。防止自燃。
4.5保证设备完好不漏
为了防止溶剂蒸气逸出,与空气形成爆炸性混合物,设备应该密闭,对于有压设备更需要保持其密闭性。正确选择设备之间的连接方法,如设备与管理之间的连接应尽量采用焊接方法,输送易燃溶剂的管道应采用无缝钢管等。
由于生产过程中的高温、腐蚀性,各种设备、容器、管线壁厚逐渐变薄,易发生泄漏的火灾事故。因此,对重点设备应定期进行保养、维修、更换,严格检漏、试漏。溶剂储罐应尽可能埋在地下,防止高温、日晒使之温度升高,发生泄漏。
4.6设置安全装置和灭火设施
承压设备及其他有爆炸危险的工艺设备上安装独立、合适的防爆泄压装置,如安全阀、防爆膜等。在相互连通的生产工艺管线上安装单向阀等阻火防爆装置,以截断事故扩展途径。排汗管沟上设置隔油池、水封装置。
在溶剂生产使用场所,设置浓度自检测报警与通风装置联动系统。当发生泄漏时,泄漏液体蒸气过到危险浓度时,报警系统动作,同时通风系统自动开启,驱散泄漏蒸气。
溶剂用量较大、发生事故后果严重的场所,增设蒸气幕或水喷淋系统。一旦溶剂或蒸气大量泄漏,通风不足以排除危险时,则启动蒸气幕或水喷淋系统,以稀释溶剂、蒸气,消除起火爆炸的危险。
根据生产使用溶剂工艺的不同特点和生产规模,设置相应的固定式或移动式灭火装置。
4.7加强消防安全管理
溶剂生产使用企业应建立健全消防安全管理制度,消防安全组织除按一般要求明确防火责任人,建立与生产相适应的义务消防队外,还要配备熟悉工艺流程,具有专业防火知识的专职防火安全员。加强对企业员工的消防安全培训,做好切实可行的应急预案,定期组织灭火演练。
第四篇:采气厂工作体会
采气厂工作体会
路曼曼其修远兮,我将上下而求索
我叫李**,2008年6月毕业于辽宁石油化工大学,2008年7月参加工作,2009年来到**采气厂,2013年3月通过招聘考试来到了地球物理勘探研究院综合办公室。
在**采气厂工作的三年半时间里,曾先后担任静设备技术员、安全员、政工员;同时承担净化站宣讲工作,多次迎接上级领导视察及中外大型参观团。
在担任设备技术员初,正值长岭气田一期工程建设阶段。对于刚刚走进净化站的我,虽然大学时的化工原理学得很棒,但当上百条不同走向的管线出现在我的面前时,真的蒙了!这个天然气净化工艺一下子让她的心里充满了陌生感。为了尽快让自己不再觉得“蒙”,白天一有空我就深入现场,拿着流程图一条管线一条管线地对,不懂得地方就问身边的老师傅,老前辈,晚上没事就拿着笔在自己的小本上画流程图,熟悉工艺。
作为设备技术员,了解设备是基本工作。那个时候的一期还没有完全建成,交工资料并不完全。为了尽快拿到设备基础资料,了解每一台设备的基本性能,我在现场学习流程的同时,对照每一台设备的名牌,采集第一手资料,并将所有记录建成台账。日子一天天过,天气也一天天冷,自小身体不好的她,时常就会感冒、咳嗽,但她依然抱着学习的心态一直坚持着现场采集。有人说我是在做无用功,因为所有的设备资料都会随着交工资料的完善而变得齐全,但功夫不负有心人,这种坚持还真起了点小作用。在建立一期新建装置设备档案时,在交工资料里竟然没有污水处理系统过滤装置上搅拌机的相关信息,开工在即,建立完善的设备台账是必须的,年轻的我没有慌,因为我有现场采集的第一手资料。在担任设备技术员期间,她建立并完善了净化站试采、一期、二期工程的设备档案。
2010年由于工作需要,环境专业毕业的我被领导任命为安全员。参加工作近两年,我深知安全的重要性。虽然领导分配给我的工作是HSE体系完善及HSE信息系统的维护,大部分是根据现场实际情况建立完善安全资料,但初次接触安全工作的我还是缺乏信心。为了尽快让工作上手,下班闲暇时我经常捧着《安全管理手册》仔细阅读。在全站大检修期间,为了多学习业务知识,我深入检修现场,在另一名安全员同事的带领下和检修人员一起拆卸装置每一个安全阀,同时完善相关安全基础台账,为以后的工作打下了良好的基础。
2011年年中,由于身体原因,在领导的照顾下,开始从事政工工作,工作难度性不大但却很杂乱,但我都尽力做到最好,上交的材料多次受到上级部门的表扬。我积极参加厂里开展的各项活动,并在保密知识竞赛、建党90周年知识竞赛中分别获得第一名、第二名的好成绩。在领导的指导下,曾策划并主持了五四青年节联欢晚会。
自2009年底,我开始承担着净化站宣讲工作。有时占用周六周日休息时间,也从来没有怨言。身为宣讲员的她几乎成了净化站的代言人。每一次接到宣讲任务,她都将自己从头到脚仔细打量一遍,从头发到服装再到鞋子,永远都要把自己最整洁的面貌呈献给来访人士。再冷的天,她都会带着亲切的笑容迎接着每一位来访者。
自2009年底,我开始承担着净化站宣讲工作,多次迎接上级领导视察及中外大型参观团。身为宣讲员的我几乎成了净化站的代言人,经常占用周六周日休息时间迎接来访团。每一次接到宣讲任务,我都将自己从头到脚仔细打量一遍,从头发到服装再到鞋子,永远都要把自己最整洁的面貌呈献给来访人士。
长岭天然气净化站拥有着中国石油第一套胺法脱碳装置和国内第一套大型CO2收集装置,并建设中国石油第一套膜分离脱CO2试验装置。所有的这些“第一”使这个站备受世人瞩目,经常有各级领导视察,或相关行业同仁组成的大型参观学习团莅临净化站。记得有几次,一天之内竟然来了四个来访团。当时单位同事就打趣地说:丫头今天生意不错啊,一连接了四个团,发了发了!冬天天气寒冷,别人迎接都戴着棉安全帽,但我从来都不,不愿意因为自己的一点温暖而影响整个站的形象。有一回,站长看着实在心疼就对我说,戴上棉帽吧,没人会介意的。但凭着这份坚持,再冷的天,我都会带着亲切的笑容,整齐利落地迎接着每一位来访者。
净化站这几年来一直处于边建设边生产状态,所以宣讲稿总会不时的根据站内实际情况发生很多变动。每当这个时候,我都会一遍一遍地在装置区练,晚上回到寝室一直背到半夜,第二天早上5点再爬起来接着背,为的就是不在宣讲任务中出错。宣讲任务不出错,背熟稿子是一方面,临场不紧张也很重要。有一次,中国科协名誉主席、两弹之父--周光召来净化站视察,一听到这个名字,当时单位同事就说,这可是国家领导人啊。周老来访那天,在站门口等待迎接的时候,同事问我紧张不,我笑笑回答:周老和我外公同岁,我就当迎接我外公了。就是这轻轻的一句回答,让在场所有的人笑了,同时也缓解了大家的紧张气氛。
我很感激在采气厂的这3年半,他磨练了我的意志,令我成长,使我成熟,让我一个从不谙世事的小女孩成长为一名合格的职场新人。也是他给了我勇气,给了我自信,让我在2013年3月通过局里招聘考试,顺利调到了地球物理勘探研究院工作。今后的日子里,我将带着采气厂给我的这份勇气与自信,继续努力下去。路曼曼其修远兮,我将上下而求索!
第五篇:CNG汽车加气站火灾危险性分析与预防
CNG汽车加气站火灾危险性分析与预防
随着汽车工业的不断发展和车辆保有量的增加,汽车尾气的排放对大气环境的污染也进一步加剧。随着天然气资源的开发利用,为改善汽油、柴油燃烧后对环境造成的污染,压缩天然气(CNG)汽车得到了广泛的推广和应用,压缩天然气(CNG)汽车加气站也随之建立,以满足天然气汽车燃料的需要。然而,天然气具有火灾爆炸危险性,尤其是高压运载与储存、油气双燃料站等安全技术问题,必须引起高度重视。
一、CNG汽车加气站的工作原理及类型
1.压缩天然气加气站的工作原理
加气站的工作原理是将通过管线输送到加气站的天然气,先进行净化处理,再通过压缩系统使其压力达到25MPa,最后由高压储气瓶组和售气机将压缩天然气加入车辆储气瓶。压缩天然气加气站通常由六个系统组成,即调压计量系统,净化干燥系统,气体压缩系统,气体储存系统,设备控制系统和售气系统。
2.类型
压缩天然气汽车加气站按其使用功能,通常分为:天然气汽车加气站,油气混加站,子、母加气站等几种形式。单一的天然气加气站只能为汽车加天然气燃料,油气混加站可加注油、气两种燃料。子母站设计,母站是与输气管道相连的站,在母站内完成天然气的净化、压缩等主要工作,天然气被增压至25MPa,给气瓶或气瓶拖车充气;子站不需要连接供气管线,依靠母站来的气瓶拖车供气;子、母站都可以完成给汽车加气的工作。子、母加气站式节省建站资金和土地,有利于母站集中净化,子站的火灾危险性较低,可建在交通枢纽附近,便于使用。从设备结构上来分,加气站可分为开放式结构和撬装式结构。开放式结构是将加气站所有设备安装在厂房内,按工艺流程高低压管道和各种阀门将这些设备组装起来,形成一个开环工艺系统;撬装式结构是将加气站的主要设备(净化、压缩、冷却、控制、储气等)集中在一个撬装的底座上,形成一个可闭环控制的整体设备系统。从安全性上讲,撬装式结构要优于开放式结构。
二、CNG汽车加气站的火灾危险性分析
1.天然气具有危险性
天然气的主要成分甲烷属一级可燃气体,甲类火灾危险性,爆炸极限为5%—15%(V/V),最小点火能量仅为0.28mJ,燃烧速度快,燃烧热值高(平均热值为33440kJ/m3),对空气的比重为0.55,扩散系数为0.196,极易燃烧、爆炸,并且扩散能力强,火势蔓延迅速,一旦发生火灾难以施救。
2.泄漏引发事故
站内工艺过程处于高压状态,工艺设备容易造成泄漏,气体外泄可能发生地点很多,管道焊缝、阀门、法兰盘、气瓶、压缩机、干燥器、回收罐、过滤罐等都有可能发生泄漏;当压缩天然气管道被拉脱或加气车辆意外失控而撞毁加气机时会造成天然气大量泄漏。泄漏气体一旦遇引火源,就会发生火灾和爆炸。1995年9月29日,四川自贡富顺华油公司压缩天然气加气站因钢瓶泄漏燃烧发生爆炸,造成重大经济损失和人员伤亡事故。
3.高压运行危险性大
压缩天然气加气站技术要求充装站的压缩机必须加压至25MPa以上,才能将天然气压缩到钢瓶内,这是目前国内可燃气体的最高压力贮存容器。若钢瓶质量或加压设备不能满足基本的技术要求,稍有疏忽,便可发生爆炸或火灾事故。1995年10月7日,四川省遂宁市压缩天然气加气站因钢瓶质量问题发生喷射燃烧,火焰柱高达20余米,造成直接经济损失18万余元。
系统高压运行容易发生超压,系统压力超过了其能够承受的许用压力,最终超过设备及配件的强度极限而爆炸或局部炸裂。
4.天然气质量差带来危险
在天然气中的游离水未脱净的情况下,积水中的硫化氢容易引起钢瓶腐蚀。从理论上讲,硫化氢的水溶液在高压状态下对钢瓶或容器的腐蚀,比在4MPa以下的管网中进行得更快、更容易。从以往事故被炸裂钢瓶的检查情况看,瓶内积存伴有刺鼻气味的黑水,有的达到了2.5-5kg,其中积水里的硫化氢含量超过了8.083mg/L。1995年8月12日,四川绵阳地方天然气公司压缩天然气加气站,因脱水工序处理不净,在给钢瓶充气时而发生爆炸并起火成灾。
5.存在多种引火源
商业性汽车加气站绝大多数建立在车辆来往频繁的交通干道之侧,周围环境较复杂,受外部点火源的威胁较大,如邻近建筑烟囱的飞火,邻近建筑的火灾,频繁出入的车辆,人为带人的烟火、打火机火焰、手机电磁火花、穿钉鞋摩擦、撞击火花、化纤服装穿脱产生的静电火花,燃放鞭炮的散落火星,雷击等,均可成为加气站火灾的点火源。
操作中也存在多种引火源,加气站设备控制系统是对站内各种设备实施手动或自动控制的系统,潜在着电气火花;售气系统工作时,天然气在管道中高速流动,易产生静电火源;操作中使用工具不当,或因不慎造成的摩擦、撞击火花等。
6.安全培训不规范
新建CNG加气站的操作人员因不熟悉CNG新技术和未经过必要的培训就上岗操作,或没有定期复训,容易出现违章作业或违反安全操作规程,对安全知识尤其是消防知识知之甚少,不能及时发现火灾隐患和没有处理突发事故的能力。随着燃气行业多种经营体制的发展,部分经营不规范的中小型企业,严重忽视操作人员的业务培训。
三、CNG汽车加气站的火灾预防
1.防火间距符合要求 压缩天然气加气站内压缩机组和贮气瓶组与周围建、构筑物等的防火间距,不应小于(汽车加油加气站设计与施工规范)GB50156—2002的规定。加气站内的总平面布置应按照(建筑设计防火规范》和《城市燃气设计规范》进行,除储气瓶(储气井)、生产建筑和必要的辅助设施外,不宜布置其他建筑。加气站生产、办公室应分区设置。加气站区内的储气瓶组(储气井)、压缩机间、调压间、加气机等应有明显分隔,并符合规范规定的间距。
2.保证天然气储存安全
储气瓶应选用符合国家有关规定和标准的产品。加气站宜选用同一种规格型号的大容积储气瓶,大容积储罐具有瓶阀少、接口少、安全性高等优点。目前我国加气站采用较多的是国产60L钢瓶。当选用小容积储气瓶时,每组储气瓶的总容积不宜大于4m3,且瓶数不宜大于60个。在城市建成区内总容积不应超过16m3。
小容积储气瓶应固定在独立支架上,卧式存放,便于布置管道及阀件,方便操作保养,易于外排除积液。根据安装、检修、保养、操作等工作需要,卧式瓶组限宽为1个储气瓶的长度,限高1.6m,限长5.5m。同组储气瓶之间净距离不应小于0.03m,储气瓶组间距不应小于1.5m。
储气井的设计、建造和检验应符合国家行业标准《高压气地下储气井》SY/T6535的有关规定。储气井的建造应由具有天然气钻井资质的单位进行。
加气站的储气瓶(储气井)间宜采用开敞式或半开敞式钢筋混凝土结构或钢结构,有利于可燃气体扩散和通风,并增大建筑物的泄压比,屋面应采用非燃烧轻质材料制作。储气瓶组(储气井)与压缩机、调压器间、变酉己电间,在不能满足相应防火间距要求时,应采用钢筋混凝土防火隔墙隔开,隔墙顶部应比储气瓶组(储气井)顶部高1m及以上,隔墙长度应为储气瓶组(储气井)总长,并在两端各加2m及以上,隔墙厚度不应小于0.2m,可防止事故时相互影响。防火墙应能抵抗一定的爆炸压力。
3.天然气质量符合标准
进站天然气的质量应符合现行国家标准《天然气》GBl7820—1999中规定的Ⅱ类气质标准和压缩机运行要求的有关规定。增压后进入储气装置及出站的压缩天然气的质量必须符合现行国家标准《车用压缩天然气》GBl8047的规定。若进入加气站的天然气硫化氢含量大于20ms/m3时,站内应设置脱硫装置,脱硫塔设在压缩机前可保护压缩机组,选用双塔轮换使用,有利于装置运行和维护。当进站天然气需脱水处理时,脱水可在天然气增压前、增压中或增压后进行,脱水装置设双塔。
4.设置安全保护装置
在远离作业区的天然气进站管道上应设紧急手动截断阀,一旦发生火灾或其他事故,自控系统失灵时,操作人员可靠近并关闭截断阀,切断气源,防止事故扩大。手动紧急截断阀的位置应便于发生事故时能及时切断气源。
锗气瓶组(储气井)进气总管上应设安全阀及紧急放散管、压力表及超压报警器。每个储气瓶(井)出口应设截止阀。以保证储气设备的安全运行及发生事故时能及时切断气源。为防止进站加气汽车控制失误撞上储气设施造成事故,储气瓶组或储气井与站内汽车通道相邻一侧,应设安全防撞拦或采取其他防撞措施。
压缩机出口与第一个截断阀之间应设安全阀,安全阀的泄放能力不应小于压缩机的安全泄放量;压缩机进、出口应设高、低压报警和高压越限停机装置;压缩机组的冷却系统应设温度报警及停车装置;压缩机组的润滑油系统应设低压报警及停机装置。
加气机应设安全限压装置;加气机的进气管道上宜设置防撞事故自动切断阀;加气机的加气软管上应设拉断阀,拉断阀在外力作用下分开后,两端应自行密封,当加气软管内的天然气工作压力为20MPa时,拉断阀的分离拉力范围宜为400-600N。加气机附近应设防撞柱(栏),防止进站汽车失控撞上加气机。
加气站内的天然气管道和储气瓶组应设置泄压保护装置,以便迅速排放天然气管道和储气瓶组中需泄放的天然气。在储气瓶组事故时紧急排放的气体,火灾或检修设备时排放系统气体,一次泄放量大于500m3(基准状态),很难予以回收,只能通过放散管迅速排放。压缩机停机卸载的天然气量,一般太于2m3(基准状态),并且泄放次数平均每小时2—3次以上,排放到专用回收罐较为妥当。因为天然气比重小于空气,能很快扩散,拆修仪表或加气作业时一次泄放量小于2m3(基准状态)的气体可排人大气。泄压保护装置应采取防塞和防冻措施。
加气站不同压力级别系统的放散管宜分别设置,放散管管口应高出设备平台2m及以上,且应高出所在地面5m及以上。
5.选择适当材质的设备
增压前的天然气管道应选用无缝钢管,并应符合现行国家标准《输送流体用无缝钢管》GB8163的有关规定。增压后的天然气管道应选用高压无缝钢管,并应符合现行国家标准《高压锅炉用无缝钢管》GB5310或《不锈钢无缝钢管》GB/T14976的有关规定。对严寒地区的室外架空管道选材还要考虑环境温度的影响。由于天然气内含有硫化氢、二氧化碳、残存凝析油等腐蚀性介质,加气站内与压缩天然气接触的所有设备、管道、管件、阀门、法兰、垫片等的材质应具备抗腐蚀、耐老化等能力。
加气站内的所有设备、阀门、管道、管件的设计压力应比最大工作压力高10%,且在任何情况下不应低于安全阀的起始工作压力。
埋地管道防腐设计应符合国家现行标准(钢质管道及储罐腐蚀控制工程设计规范》SY0007的有关规定,并应采用最高级别防腐绝缘保护层。
6.控制和消除引火源
加气站内爆炸危险区域的等级范围划分应按(汽车加油加气站设计与施工规范》GB50156—2002确定。按照(爆炸和火灾危险环境电力装置设计范》GB50058的规定,使用高于或等于相应作业区域气体级别的防爆电气设备。爆炸危险区域慎用移动式和便携式电器,禁止私拉乱接,违章用电。
加气站的站房和罩棚按建(构)筑物的防雷考虑,一般都采用避雷带(网)保护。天然气储气瓶组必须进行防雷接地,接地点不少于2处。储气瓶组、管道、法兰及其他金属附件均进行电气连接并接地。雷雨天气应停止加气作业。
严格控制修理用火,严禁烟火和明火,防止摩擦撞击打火,作业时不得使用电气焊、割。
7.采取通风措施
为了防止爆炸性混合物的形成,加气站爆炸危险区域内的房间应采取通风措施,以防止发生中毒和爆炸事故。采用自然通风时,通风口总面积不应小于300cm;/m·(地面),通风口不应少于2个,且应靠近可燃气体易积聚的部位设置,尽可能均匀,不留死角,以便可燃气体能够迅速扩散。对于可能泄漏天然气的建筑物,以上排风为主。采用强制通风时,通风设备的通风能力在工艺设备工作期间应按每小时换气15次计算,在工艺设备非工作期间应按每小时换气5次计算。
8.设置可燃气体检测报警装置
为了能及时检测到可燃气体非正常超量泄漏,以便工作人员尽快进行泄漏处理,防止或消除爆炸事故隐患,加气站应设置可燃气体检测报警系统。压缩天然气储气瓶间(棚)、天然气泵和压缩机房(棚)等场所应设置可燃气体检测器。报警器宜集中设置在控制室或值班室内,操作人员能及时得到报警。可燃气体检测器和报警器的选用和安装,应符合国家行业标准(石油化工企业可燃气体和有毒气体检测报警设计规范》SH3063的有关规定。可燃气体检测器报警(高限)设定值应小于或等于可燃气体爆炸下限浓度(WV)值的25%。
9.提高工作人员的专业素质
对于目前加气站内工作人员专业素质参差不齐的现象,应加大安全培训和考核的力度,严格岗前培训、定期培训制度,并进行考核。熟悉加气站各类设备的原理、结构等生产专业知识和操作规程,了解天然气的火灾危险性,掌握防火、灭火的基础知识,提高处理突发事故的能力。