第一篇:福建省高中数学新人教版必修一教案:1.3函数的性质及综合应用
三维目标定向
〖知识与技能〗
进一步领会函数单调性和奇偶性的定义,并在此基础上,熟练应用定义判断和证明函数的单调性及奇偶性,初步学习单调性和奇偶性结合起来解决函数的有关问题。
〖过程与方法〗
体会单调性和奇偶性在解决函数有关问题中的重要作用,提高应用知识解决问题的能力。〖情感、态度与价值观〗
体会转化化归及数形结合思想的应用,培养学生的逻辑思维能力。
教学重难点
函数的单调性、奇偶性的灵活应用。
案例背景
函数的单调性和奇偶性是函数的重要性质,知识内容可浅可深,问题涉及分类讨论、数形结合、探索性,仅用两课时只能作肤浅的介绍,学生掌握的也只是一些皮毛,不能很好地展示函数丰富的内涵。但函数的问题既千姿百态,又有章可循,综合单调性与奇偶性的内容,可以设计出很多具有挑战性的问题,有利于培养学生提出问题、分析问题和解决问题的能力,有利于创新思维和实践意识的发展。因此我们设计了《函数的性质及综合应用》这一教学案例,预计用两课时,力图通过种类问题的探究,引导学生领略函数内容的精彩,加深对函数性质的深刻理解。
教学过程设计
第一课时
一、温故知新
1、函数的单调性(概念、判断方法、应用——求函数的最值);
2、函数的奇偶性(概念、图象特征、判断方法)。
二、问题探究
1、函数单调性、奇偶性的理解及性质的判定
单调性和奇偶性是函数的两个重要性质,对概念的理解要抓住关键词如“任意”“都有”“给定区间”等,同时要明确两者的区别:单调性是反映函数的局部性质,而奇偶性则反映的是函数的整体性质。例
1、已知f(x)= ax + bx – 4,若f(2)= 6,则f(– 2)=。
例
2、奇函数f(x)在x[0,)时的表达式是f(x)= x(1 – x),则x(,0]时,3f(x)的表达式为。
练习:(1)已知f(x)= ax + bx + cx + 2,若f(– 7)= 7,则f(7)=。(2)偶函数f(x)在x[0,)时的表达式是f(x)= x(1 +3x),则x(,0]时,3f(x)的表达式为。
2、奇偶性与单调性的关系
奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反,且有f(x)f(x)f(|x|)成立。
例
3、如果偶函数f(x)在区间 [3,7] 上是增函数,且最小值为5,最大值为10,那么f(x)在区间[– 7,– 3] 上的单调性和最值如何?
例
4、已知f(x)是偶函数,而且在(0, +∞)上是减函数,判断f(x)在(– ∞, 0)上是增函数还是减函数,并证明你的结论。
练习:已知y = f(x)是奇函数,它在(0, +∞)上是增函数,且f(x)< 0,问F(x)在(– ∞, 0)上是增函数还是减函数?证明你的结论。
1f(x)
第二篇:高中数学 1.3函数的性质及综合应用1教案 新人教A版必修1
福建省漳州市芗城中学高中数学 1.3 函数的性质及综合应用1教案
新人教A版必修1
3、函数性质的应用
函数的奇偶性和单调性是函数的重要性质,运用函数的性质可研究区间、最值的求解,亦可深入研究函数图象的特征。
利用函数的单调性和奇偶性,可以将“抽象”化为具体,使问题简化,这也是等价转化思想方法的重要体现。
例
5、若偶函数f(x)在(– ∞, 0)上是增函数,则满足f(1)f(a)的实数a的取值范围是。
f(1)例
6、已知函数f(x)对任意x , y总有f(x + y)= f(x)+ f(y),且当x > 0时,f(x)< 0,(1)求证:f(x)是奇函数;
(2)求证:f(x)是R上的减函数;
(3)求f(x)在[-3, 3]上的最大值及最小值。
练习(1)已知奇函数f(x)在(– 1, 1)上单调递减,且f(1-a)+ f(1 – 2a)< 0,则实数a的取值范围是。
(2)设函数f(x)的定义域为R且x≠0,对任意非零实数x1, x2满足f(x1x2)= f(x1)+ f(x2),(1)求f(1)的值;
(2)判断f(x)的奇偶性。
2f(x)xbxc对任意实数t,都有f(3t)f(3t),那么例
7、如果函数f(0),f(3),f(4)的大小关系是。
结论:(1)奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
2f(x)axbxc的对称轴为(2)二次函数
x0b2a,即f(x0x)f(x0x)。
〖拓展〗函数y = f(x)的图象关于直线x = t对称的充要条件是:f(t + x)= f(t – x),即f(x)= f(2t – x)。
例
8、某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。
(Ⅰ)写出图一表示的市场售价与时间的函数关系式pf(t); 写出图二表示的种植成本与时间的函数关系式Qg(t);
(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102㎏,时间单位:天)
f(x0)x0成立,则x0称为f(x)的不动点。已知函x例
9、对于函数f(x),若存在0,使2f(x)ax(b1)x(b1),(a0)。数(1)当a = 1,b = – 2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围。
第三篇:高中数学《函数的基本性质》教案9 新人教A版必修1(精选)
讲义十一:函数的基本性质的复习归纳与应用
(一)、基本概念及知识体系:
教学要求:掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。
教学重点:掌握函数的基本性质。教学难点:应用性质解决问题。(二)、教学过程:
一、复习准备:
1.讨论:如何从图象特征上得到奇函数、偶函数、增函数、减函数、最大值、最小值? 2.提问:如何从解析式得到奇函数、偶函数、增函数、减函数、最大值、最小值的定义?
二、教学典型习例: 1.函数性质综合题型: ①出示
★例1:作出函数y=x-2|x|-3的图像,指出单调区间和单调性。
分析作法:利用偶函数性质,先作y轴右边的,再对称作。→学生作 →口答
→ 思考:y=|x-2x-3|的图像的图像如何作?→
②讨论推广:如何由f(x)的图象,得到f(|x|)、|f(x)|的图象? ③出示 ★例2:已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数 分析证法 → 教师板演 → 变式训练
④讨论推广:奇函数或偶函数的单调区间及单调性有何关系?
(偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致)2.教学函数性质的应用:
①出示例3 :求函数f(x)=x+221(x>0)的值域。x分析:单调性怎样?值域呢?→小结:应用单调性求值域。→ 探究:计算机作图与结论推广 ②出示
2.基本练习题:
2xx(x0)①判别下列函数的奇偶性:(1)、y=1x+1x、(2)、y=
2xx(x0)(变式训练:f(x)偶函数,当x>0时,f(x)=….,则x<0时,f(x)=?)
三、巩固练习:
ax2b1.求函数y=为奇函数的时,a、b、c所满足的条件。(c=0)
xc2.已知函数f(x)=ax2+bx+3a+b为偶函数,其定义域为[a-1,2a],求函数值域。3.f(x)是定义在(-1,1)上的减函数,如何f(2-a)-f(a-3)<0。求a的范围。4.求二次函数f(x)=x2-2ax+2在[2,4]上的最大值与最小值。5.课堂作业: P43 A组6题,B组2、3题。
四、应用题训练:
x(1x)(当x0时)★例题
1、画出下列分段函数f(x)= 的图象:(见教案P35面例题2)
x(1x)(当x0时)2x2x(当x0时)★例题
2、已知函数f(x)=2,确定函数的定义域和值域;判断函数的奇偶
x2x(当x0时)性、单调性。(见教案P35面例题3)
★【例题3】某地区上电价为0.8元/kWh,年用电量为akWh。本计划将电价降到0.55元/kWh至0.75元/kWh之间,而用户期望电价为0.4元/kWh经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为K)。该地区电力的成本为0.3元/kWh。
(I)写出本电价下调后,电力部门的收益y与实际电价x的函数关系式;
(II)设k0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%?(注:收益=实际用电量×(实际电价-成本价))解:(I):设下调后的电价为x元/kwh,依题意知用电量增至为
yka,电力部门的收益
x0.4kax0.30.55x0.75(II)依题意有
x0.40.2aax21.1x0.30x0.3a0.80.3120%, x0.4 整理得 0.55x0.750.55x0.75.解此不等式得 0.60x0.75
答:当电价最低定为0.6x元/kwh仍可保证电力部门的收益比上年至少增长20%。
★【例题5】某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养值提供政府补贴.设淡水鱼的市场价格为x元/千克,政府补贴为t元/千克.根据市场调查,当8≤x≤14时,淡水鱼的市场日供应量P千克与市场日需求量Q千克近似地满足关系: 当P=Q时市场价格称为市场平衡价格.(1)将市场平衡价格表示为政府补贴的函数,并求出函数的定义域;(2)为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元? ●解:(1)依题设有
化简得
5x2+(8t-80)x+(4t2-64t+280)=0.当判别式△=800-16t2≥0时,由△≥0,t≥0,8≤x≤14,得不等式组:解不等式组①,得,不等式组②无解.故所求的函数关系式为
(2)为使x≤10,应有
≤-5,由t≥0知t≥1.从而政府补贴至少为每千克1元.(五)、2007年高考试题摘录:
化简得t+4t-5≥0.解得t≥1或t
2★题
1、(07天津)在R上定义的函数fx是偶函数,且fxf2x,若fx在区间1,2是减函数,则函数fx(B)A.在区间2,1上是增函数,区间3,4上是增函数;B.在区间2,1上是增函数,区间3,4上是减函数;C.在区间2,1上是减函数,区间3,4上是增函 2 数;D.在区间2,1上是减函数,区间3,4上是减函数
x2,★题
2、(07浙江)设fxx,x1,gx是二次函数,若fgx的值域是0,,x1则gx的值域是(C)A.,11, B.,10, C.0, D.1,
★题
3、(07福建)已知函数fx为R上的减函数,则满足f1xf1的实数x的取值范围是(C)A.1,1 B.0,1 C.1,00,1 D.,11,
★题
4、(07福建)已知函数fx为R上的减函数,则满足f1xf1的实数x的取值范围是(C)A.1,1 B.0,1 C.1,00,1 D.,11,
★题
5、(07重庆)已知定义域为R的函数fx在区间8,上为减函数,且函数yfx8为偶函数,则(D)A.f6f7 B.f6f9 C.f7f9 D.f7f10
★题
6、(07安徽)若对任意xR,不等式x≥ax恒成立,则实数a的取值范围是(B)A.a<-1 B.a≤1 C.a<1 D.a≥1 ★题
7、(07安徽)定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)0在闭区间T,T上的根的个数记为n,则n可能为(D)
A.0 B.1
C.3
D.5 ★题
8、(07安徽)图中的图象所表示的函数的解析式为(B)
3|x1|(0≤x≤2)233(B)y|x1|(0≤x≤2)223(C)y|x1|(0≤x≤2)2(A)y(D)y1|x1|
★题
9、(07重庆)若函数fx(0≤x≤2)
2x22axa1的定义域为R,则实数a的取值范围。
1,0
★题
10、(07宁夏)设函数fxxa2★题
11、(07上海)已知函数fxx(x0,aR);(1)判断函数fx的奇偶性;
xx1xa为奇函数,则实数
a。-1 3(2)若fx在区间2,是增函数,求实数a的取值范围。
解:(1)当a0时,fxx2为偶函数;当a0时,fx既不是奇函数也不是偶函数.(2)设x2x12,fx1fx2x12xx2aa2x1x2x1x2a,x21x1x2x1x2由x2x12得x1x2x1x216,x1x20,x1x20;要使fx在区间2,是增函数只需fx1fx20,即x1x2x1x2a0恒成立,则a16。
第四篇:高中数学《函数的基本性质》教案12 新人教A版必修1
函数的单调性与最大(小)值(1)
设计理念
新课标指出:“感知数学,体验数学”是人类生活的一部分,是人类生活劳动和学习不可缺少的工具。课程内容应与学生生活实际紧密联系,从而让学生感悟到生活中处处有数学,进而有利于数学学习的生活化、情境化。因此我在教学“交通与数学”这一节内容的过程中,从实际生活中的实例出发,让学生感受到交通与数学的密切联系,体会到教学在实际生活中的应用,并学会运用所学的知识解决实际生活中的简单的问题。这样就充分体现学生的主体地位,充分提供让学生独立思考的机会。
本节内容是在学生已经学习和掌握了一位数乘三位数的乘法计算和搭配方法等数学知识的基础上进行教学的。其目的在于引导学生将学过的知识与生活实际联系起来,综合运用,提高解决问题的能力。因此,在教学中我尝试以“交通”为主线,设计密切联系学生实际生活的学习情境;在整个设计中,我始终引导学生在生活情境中提出问题,解决问题,这些都是和学生息息相关的生活问题,因此学生始终能保持较高的学习兴趣,乐于将自己的想法与他人交流,积极性很高。
教学内容:
本节课是《普通高中课程标准实验教科书.数学1》(人教版A)第一章第三节第一课时(1.3.1)《单调性与最大(小)值》。
教学目标:
1、理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性;
2、启发学生发现问题和提出问题,培养学生分析问题、认识问题和解决问题的能力;
3、通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。
4、通过数形结合的数学思想,对学生进行辩证唯物主义的思想教育。
学情与教材分析:
本节课是1.3.1第一课时。根据实际情况,将1.3.1划分为三节课(函数的单调性,函数单调性的应用,函数的最大(小)值),这是第一节课“函数的单调性”。函数的单调性是函数的最重要的基本性质之一,它不仅是求函数最大值与最小值的基础,同时在研究函数及 1
第五篇:高中数学 1.3进位制教案 新人教B版必修3
§1.3进位制
教学目标:1了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换。2学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k去余法,并理解其中的数学规律。
教学重点:各进位制表示数的方法及各进位制之间的转换
教学难点:除k取余法的理解以及各进位制之间转换的程序框图及其程序的设计
学法:学习各种进位制特点的同时探讨进位制表示数与十进制表示数的区别与联系,熟悉各种进位制表示数的方法,从而理解十进制转换为各种进位制的除k取余法。
教学过程
引入:我们常见的数字都是十进制的,比如一般的数值计算,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的称是十六进制的,计算一打数值时是12进制的......那么什么是进位制?不同的进位制之间又又什么联系呢?
进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数。对于任何一个数,我们可以用不同的进位制来表示。比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。
一般地,若k是一个大于一的整数,那么以k为基数的k进制可以表示为:
anan1...a1a0(k)(0ank,0an1,...,a1,a0k),而表示各种进位制数一般在数字右下脚加注来表示,如111001(2)表示二进制数,34(5)表示5进制数
543210如:把二进制数110011(2)化为十进制数.110011=1*2+1*2+0*2+0*2+1*2+1*2=32+16+2+1=51
把八进制数7348(8)化为十进制数.7348(8)7*83*84*88*83816
例
4、把二进制数110011(2)化为十进制数.543210解:110011=1*2+1*2+0*2+0*2+1*2+1*2=32+16+2+1=51
例5 把89化为二进制数.解:根据二进制数满二进一的原则,可以用2连续去除89或所得商,然后去余数.具体的计算方法如下:
89=2*44+144=2*22+022=2*11+0
11=2*5+15=2*2+1
所以:89=2*(2*(2*(2*(2*2+1)+1)+0)+0)+1=1*26+0*25+1*24+1*23+0*22+0*21+1*20=1011001(2)这种算法叫做除2取余法,还可以用下面的除法算式表示:
把上式中的各步所得的余数从下到上排列即可得到89=1011001(2)
上述方法也可以推广为把十进制化为k进制数的算法,这种算法成为除k取余法.例6 利用除k取余法把89转换为5进制数
具体的计算方法如把十进制数化为二进制数。
把k进制数a(共有n位)转换为十进制数b的过程可以利用计算机程序来实现,语句为:
INPUT a,k,ni=1b=0
WHILE i<=nt=GET a[i]b=b+t*k^(i-1)i=i+1
WENDPRINT bEND
小结:
(1)进位制的概念及表示方法(2)十进制与二进制之间转换的方法及程序
(3)图形计算器进一步激发学生在算法方面的潜能,更能体现他们的创造精神。3210