离散数学题目3(大全5篇)

时间:2019-05-14 13:30:49下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《离散数学题目3》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《离散数学题目3》。

第一篇:离散数学题目3

离散数学试题(A卷答案)

一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?(写过程)1)P(P∨Q∨R)2)(PQ)∧Q 3)(PQ)∧R 解:1)重言式;2)矛盾式;3)可满足式

二、(10分)求命题公式(PQ)(Q∨P)的主析取范式,并求成真赋值。

解:(PQ)(Q∨P)(P∨Q)(Q∨P)(P∨Q)∨(Q∨P)(P∧Q)∨Q∨PQ∨P((P∨P)∧Q)∨(P∧Q)∨(P∧Q)(P∧Q)∨(P∧Q)∨(P∧Q)∨(P∧Q) m0∨m2∨m3 成真赋值为:00、10、11。

三、(10分)证明下列命题的等值关系:(P∨Q)∧(P∧Q)(PQ)

证明:(P∨Q)∧(P∧Q)(P∨Q)∧(P∨Q)(P∧Q)∨(Q∧P)((P∨Q)∧(Q∨P))((PQ)∧(QP))(PQ)

四、(10分)叙述并证明苏格拉底三段论

解:所有人都是要死的,苏格拉底是人,所以苏格拉底是要死的。符号化:F(x):x是一个人。G(x):x要死的。A:苏格拉底。命题符号化为x(F(x)G(x)),F(a)G(a)证明:

(1)x(F(x)G(x))P(2)F(a)G(a)T(1),US(3)F(a)P(4)G(a)T(2)(3),I

五、(10分)已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C)证明:∵x A∩(B∪C) x A∧x(B∪C)

 x A∧(xB∨xC)

(x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C  x(A∩B)∪(A∩C)

∴A∩(B∪C)=(A∩B)∪(A∩C)

六、(10分)R为集合X上的二元关系,X={1,2,3,4,5,6,7},R={<1,1>,<1,2>,<2,4>,<6,3>,<6,6>,<7,1>},求:R的等价闭包R(即包含R的最小的等价关系)。

解:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<7,7>,<1,2>,<2,1>,<2,4>,<4,2>,<6,3>,<3,6>,<7,1>,<1,7>,<1,4>,<4,1>,<2,7>,<7,2>,<7,4>,<4,7>}

七、(10分)设函数f:R×RR×R,R为实数集,f定义为:f()=。1)证明f是双射。

解:1)∈R×R,若f()=f(),即=,/ 4 *

*则x1+y1=x2+y2且x1-y1=x2-y2得x1=x2,y1=y2从而f是单射。

2)

∈R×R,由f()=

,通过计算可得x=(p+q)/2;y=(p-q)/2;从而

的原象存在,f是满射。

八、(10分)设G是一群,H是G的子群,x∈G,证明x●H●x={x●h●x| h∈H }是G的子群。

解:由H非空,知x●H●X非空。

a,b∈x●H●x,即存在h1,h2∈H,使得a=x●h1●x,b=x●h2●x,有a●b=(x●h1●x)●(x●h2●x)=x●h1●x-1●-

1-1

-1-1-1

-1(X)-1-1-1-1-1●2●hx=x●(h1●h2)●x因H为G的子群,有h1●h2=h3∈H从而a●b= x●h3●x∈x●H●x。所

-1-1-1-1-1-1以x●H●x为子群。

九、(10分)若G是连通平面图,且G的每个面的次数至少为l(l≥3),则G的边数m与结点数n有如下关系: ml(n2)l2证明:设G有r个面,则2m=d(fi)lr,2m≥lr。

i1r由欧拉公式得,n-m+r=2,r=2-n+m。于是

m l(n2)l

2十、(10分)求叶的权分别为7、8、9、12、16的最优二叉树及其权。

解:最优二叉树如图所示:

树的权为(9+12+16)×2+(7+8)×3=119/ 4

离散数学试题(B卷答案)

一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?(写过程)1)P(P∨Q∨R)2)((QP)∨P)∧(P∨R)3)((P∨Q)R)((P∧Q)∨R)解:1)重言式;2)矛盾式;3)可满足式

二、(10分)求命题公式(P∨(Q∧R))(P∨Q∨R)的主析取范式,并求成真赋值。

解:(P∨(Q∧R))(P∨Q∨R)(P∨(Q∧R))∨P∨Q∨R P∧(Q∨R)∨P∨Q∨R (P∧Q)∨(P∧R)∨(P∨Q)∨R ((P∨Q)∨(P∨Q))∨(P∧R)∨R 1∨((P∧R)∨R)1 m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7 该式为重言式,全部赋值都是成真赋值。

三、(10分)证明((P∧Q∧A)C)∧(A(P∨Q∨C))(A∧(PQ))C 证明:((P∧Q∧A)C)∧(A(P∨Q∨C))((P∧Q∧A)∨C)∧(A∨(P∨Q∨C))((P∨Q∨A)∨C)∧((A∨P∨Q)∨C)((P∨Q∨A)∧(A∨P∨Q))∨C ((P∨Q∨A)∧(A∨P∨Q))C ((P∨Q∨A)∨(A∨P∨Q))C ((P∧Q∧A)∨(A∧P∧Q))C (A∧((P∧Q)∨(P∧Q)))C (A∧((P∨Q)∧(P∨Q)))C (A∧((QP)∧(PQ)))C (A∧(PQ))C

四、(10分)个体域为{1,2},求xy(x+y=4)的真值。

解:xy(x+y=4)x((x+1=4)∨(x+2=4))

((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+2=4))(0∨0)∧(0∨1)0∧10

五、(10分)对于任意集合A,B,试证明:P(A)∩P(B)=P(A∩B)解:xP(A)∩P(B),xP(A)且xP(B),有xA且xB,从而xA∩B,xP(A∩B),由于上述过程可逆,故P(A)∩P(B)=P(A∩B)/ 4

六、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。

解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>} t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}

七、(10分)设函数f:R×RR×R,R为实数集,f定义为:f()=。1)证明f是双射。

解:1)∈R×R,若f()=f(),即=,则x1+y1=x2+y2且x1-y1=x2-y2得x1=x2,y1=y2从而f是单射。

2)

∈R×R,由f()=

,通过计算可得x=(p+q)/2;y=(p-q)/2;从而

的原象存在,f是满射。

八、(10分)是个群,u∈G,定义G中的运算“”为ab=a*u*b,对任意a,b∈G,求证:也是个群。

证明:1)a,b∈G,ab=a*u*b∈G,运算是封闭的。

2)a,b,c∈G,(ab)c=(a*u*b)*u*c=a*u*(b*u*c)=a(bc),运算是可结合的。3)a∈G,设E为的单位元,则aE=a*u*E=a,得E=u,存在单位元u。

4)a∈G,ax=a*u*x=E,x=u*a*u,则xa=u*a*u*u*a=u=E,每个元素都有逆元。所以也是个群。

九、(10分)已知:D=,V={1,2,3,4,5},E={<1,2>,<1,4>,<2,3>,<3,4>,<3,5>,<5,1>},求D的邻接距阵A和可达距阵P。

解:1)D的邻接距阵A和可达距阵P如下:

A= 0 0 0 0 1 1 0 0 0 0

0 1 0 0 0 0 1 0 0

0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1-

1-1

P= 1

十、(10分)求叶的权分别为2、4、6、8、10、12、14的最优二叉树及其权。

解:最优二叉树为

权=(2+4)×4+6×3+12×2+(8+10)×3+14×2=148 / 4

第二篇:题目3(推荐)

题目

21世纪是一个信息的时代,当前,我国信息化建设已经进入了全方位、多层次推进的新阶段,面临着新形势、新任务、新挑战,公安工作信息化建设也取得了显著实效。2009年3月17日到4月20日,笔者随山西省公安厅科技强警示范建设督导组到全省二十多个科技强警示范县(市、区)进行了督导检查,对山西省公安信息化建设情况作了专题调研和分析,以期推动山西省公安信息化建设进一步发展,提高公安机关驾驭社会治安和维护社会稳定的能力。

一、山西省公安信息化建设基本情况公安信息化就是将现代信息技术引入公安业务领域,有效开发利用公安业务信息资源,建设先进的信息基础设施,发展信息技术和产业,不断提高打击犯罪和维护社会治安的综合实力,使信息科技含量在公安工作中的比重逐步上升的过程。完整的信息化内涵包括四部分内容,即信息网络体系、信息产业基础、社会支持环境和效用积累过程。信息网络体系是大量信息资源、各种专用信息系统及其公用通信网络和信息平台的总称;信息产业基础即信息科学技术的研究、软件开发与利用,各类信息系统的集成及信息服务;社会支持环境指相关的管理体制、政策法律、规章制度等;效用积累过程指公安信息化发挥出应有的效力“金盾工程”一期建设已近尾声,公安信息化建设取得了巨大的进展。从浙江情况看,“金盾工程”一期建设解决了几个重要问题:一是形成了良好的公安信息网络基础;二是建设了以部、省、市三级公安信息中心为核心的公安信息化技术体系;三是基本实现了主要公安业务的信息化;四是初步构建了以八大信息资源库和应用支撑平台为基础的信息共享平台;五是培养了一批公安信息化技术和应用人才以及一个相当大的信息化应用群体;六是全警信息化作战的意识得到了培育和加强,初步形成了信息化工作机制;七是公安信息化运行维护保障机制初步建立。这些成就的取得,极大地提升了各级公安机关履行职责的能力,也为今后公安事业的发展奠定了重要基础。但就公安信息通信部门而言,仍要再接再厉,进一步推进公安信息化建设。

一、认真消化、吸收“金盾工程”一期建设的成果“金盾工程”一期建设对于公安信息化来讲,无疑是一顿“大餐”。以浙江公安信息化建设为例,2003年至2005年三年间,全省投入公安信息化建设的资金高达10亿元,从网络、省市两级公安信息中心的技术体系,到各“条”“块”的业务信息化建设,都可说是突飞猛进,把公安信息化推向了一个新的高度,对公安工作的理念,公安信息应用即现代信息技术在现代警务工作领域的应用,是指在统一的规划与组织下,在公安警务工作中较全面地运用以计算机、多媒体和网络通讯为基础的现代信息技术,深入开发、广泛利用信息资源,促进现代警务机制改革,提高公安机关打击、防范、管理、决策的效率与水平,从而实现全警协作的现代警务工作模式。它包括三层含义:一是应用信息技术;二是开发利用警务信息资源;三是有效履行警务职能。近年来,随着电子技术的不断发展和计算机网络的广泛应用,警务信息化正逐步影响和改变着公安工作的传统思维模式和工作方式,信息化在服务实战、加强管理等方面发挥了巨大的“网络效应”,一种全新的警务模式正在逐步建立。目前,温州各级公安机关、各警种、各部门的信息应用十分活跃,根据业务应用的实际需要,建立了大量的应用系统,并在实际工作中发挥了重要作用,积累了大量的基础数据,为提升和强化信息应用提供了可能。

一、温州公安信息应用的总体趋势温州公安信息资源的应用已经涵盖了采集、存储、整合、关联、二次开发、增值应用等业务环节。目前,公安机关内外网的信息资源共享、交互工作正在逐步实施,公安行业的信息资源开发已经进入了一个崭新的、更具实际应用价值的(我国除了公安部直属院校外,各省(自治区)和直辖市都有公安院校。这些公安院校担负着为各地培养公安人才、培训在职民警的重任。公安院校是公安教育的主阵地,肩负着培养政治素质、执法水平和实战本领适应公安战线发展需要的公安队伍的重要使命。因此,公安院校师资队伍建设必须相对稳定、高素质和高标准[1]。为了达到此目的,公安院校教师必须通过公安实践锻炼提高师资队伍的素质,使公安教育适应社会形势发展的要求。通过公安一线实践锻炼可以使教师熟悉公安工作的最新动态,强化教师的政治素质和作风,提高警务业务素质和实践能力,同时公安院校教师参加业务实践也可以帮助一线公安机关解决实际问题。公安院校的教学水平在各种公安理念的基础上,也很大程度取决于教官队伍的整体素质[2]。因此,为了进一步加强公安院校教师队伍的建设,克服目前公安院校教学工作中不同程度的理论和实践脱轨现象,促进公安教育更好的在与时俱进的基础上理论联系实践,促进公安教育培训工作更好地符合公安一线工作,促进地方公安业务理论和实践能力的提升,开展公安院校教师参加业务实践工作就更能体现其重要的理论价值和实践价值。

一、以业务实践为交流平台,帮助一线公安机关解决实际。情报信息主导警务是当今国际、国内警务发展的主流和趋势,是公安机关应对日益严峻的社会治安形势的需要,也是公安机关“三项重点工作”能否取得实效的关键。在新的历史条件下,公安机关面临的社会治安形势更加复杂严峻,担负的维护社会稳定的任务十分繁重。如何更好地发挥“大情报、大信息”的作用,引领公安工作走向现代化、信息化、正规化,笔者尝试通过对情报处理中应把握的几个重要环节的分析,探讨加强情报信息工作的对策。

一、情报处理的循环流程情报处理流程由通过各种手段获取大量情报素材开始。(一)情报来源情报来源是指获取情报的渠道。情报来源于信息,有无海量的信息库容量与内容反映准确、齐全的信息质量,是决定情报信息主导警务能否发挥最大效益的基础性因素。政治稳定、经济安全和社会治安形势的诸因素都要纳入公安情报工作的视线,都属于情报采集的范围。可见,公安机关获取情报的渠道相当广泛,可以说涉及社会各个领域。因此,既要充分发挥公安机关点多面广的优势,不断建立和完善内部的情报网络,又要广泛接触社会各个方面。(二)情报采集情报采集是指通过各种渠道获得涉及、影响社会政治稳定、经济发展和人民群众安居乐业的情报的活动。信息化是提高公安政治工作实效的重要途径和手段。随着整个社会信息化的快速发展,特别是“金盾工程”二期建设的启动,公安政治工作迎来创新发展的良好机遇,信息化在人事、教育、宣传等方面有着广泛的运用,也让各级政工干部和广大民警感受到政治工作信息化建设产生的巨大成果。如何紧跟公安信息建设的大潮流,做好公安政治工作信息化建设是需要深入研究的一个重要课题。

一、公安政治工作信息化的涵义及基本特征(一)公安政治工作信息化的概念对公安政治工作信息化的概念可以从狭义和广义两个方面来理解。狭义的概念就是指为提高公安政治工作的效率,把信息技术运用于公安政治工作的过程状态。如公安政治工作网络平台,即“四库、三平台”(人事训练业务信息库、警员资源库、民警职业健康信息库、办公信息库等四个基础信息库和人事训练业务应用平台、民警身心健康管理平台、办公管理信息平台等三个应用平台)的应用,给公安政治工作提供了工具型、运用性帮助。从广义上来说,公安政治工作信息化不仅仅局限于公安政治工作网络平台的建设和运用,还包括公安政治工作信息化相关决策政策的制定和完善、基础设备的保障、政工信息资源的采集、主体素质的培养、相关管理机制的确立和 总之,伴随着知识经济、全球一体化及企业的生存与发展,企业产业不断拓展,进一步提高信息化认识,加快信息化建设步伐已成为必然,只要我们转变观念,提高对信息化建设的重视度,以管理信息化为主导(领导层),以实现企业信息化为基础,以实现企业产品走向世界为目标,一定会使企业有着灿烂的明天!

第三篇:离散数学

离散数学课件作业

第一部分 集合论

第一章集合的基本概念和运算

1-1 设集合 A ={1,{2},a,4,3},下面命题为真是[ B ]

A.2 ∈A;B.1 ∈ A;C.5 ∈A;D.{2}  A。

1-2 A,B,C 为任意集合,则他们的共同子集是[ D ]

A.C;B.A;C.B;D.Ø。

1-3 设 S = {N,Z,Q,R},判断下列命题是否成立 ?

(1)N  Q,Q ∈S,则 N  S[不成立]

(2)-1 ∈Z,Z ∈S,则-1 ∈S[不成立]

1-4 设集合 A ={3,4},B = {4,3} ∩ Ø,C = {4,3} ∩{ Ø },D ={ 3,4,Ø },2E = {x│x ∈R 并且 x-7x + 12 = 0},F = { 4,Ø,3,3},试问哪两个集合之间可用等号表示 ?

答:A = E;B = C;D = F

1-5 用列元法表示下列集合(1)A = { x│x ∈N 且 x2 ≤ 9 }

(2)A = { x│x ∈N 且 3-x 〈 3 }

答:(1)A = { 0,1,2,3 };

(2)A = { 1,2,3,4,……} = Z+;

第二章二元关系

2-1 给定 X =(3, 2,1),R 是 X 上的二元关系,其表达式如下:

R = {〈x,y〉x,y ∈X 且 x≤ y }

求:(1)domR =?;(2)ranR =?;(3)R 的性质。

答:R = {<2,3>,<1,2>,<1,3>};

DomR={R中所有有序对的x}={2,1,1}={2,1};

RanR={R中所有有序对的y}={3,2,3}={3,2};

R 的性质:反自反,反对称,传递性质.2-2 设 R 是正整数集合上的关系,由方程 x + 3y = 12 决定,即

R = {〈x,y〉│x,y∈Z+ 且 x + 3y= 12},试求:

(1)R 的列元表达式;(2)给出 dom(R。R)。

答:根据方程式有:y=4-x/3,x 只能取 3,6,9。

(1)R = {〈3,3〉,〈6,2〉,〈9,1〉};

至于(2),望大家认真完成合成运算 R。R={<3,3>}.然后,给出 R。R 的定义域,即

(2)dom(R。R)= {3}。

2-3 判断下列映射 f 是否是 A 到 B 的函数;并对其中的 f:A→B 指出他的性质,即

是否单射、满射和双射,并说明为什么。

(1)A = {1,2,3},B = {4,5},f = {〈1,4〉〈2,4〉〈3,5〉}。

(2)A = {1,2,3} = B,f = {〈1,1〉〈2,2〉〈3,3〉}。

(3)A = B = R,f=x。

(4)A = B = N,f=x2。

(5)A = B = N,f = x + 1。

答:(1)是 A 到 B 的函数,是满射而不是单射;

(2)是双射;

(3)是双射;

(4)是单射,而不是满射;

(5)是单射而不是满射。

2-4 设 A ={1,2,3,4},A 上的二元关系

R ={〈x,y〉︱(x-y)能被3整除},则自然映射 g:A→A/R使 g(1)=[C]

A.{1,2};B.{1,3};C.{1,4};D.{1}。

2-5 设 A ={1,2,3},则商集A/IA =[D]

A.{3};B.{2};C.{1};D.{{1},{2},{3}}。

2-6.设f(x)=x+1,g(x)=x-1 都是从实数集合R到R的函数,则f。g=[C]

A.x+1;B.x-1;C.x;D.x2。

第三章 结构代数(群论初步)

3-1 给出集合及二元运算,阐述是否代数系统,何种代数系统 ?

(1)S1 = {1,1/4,1/3,1/2,2,3,4},二元运算 *是普通乘法。

(2)S2 = {a1,a2,……,an},ai ∈R,i = 1,2,……,n ;

二元运算。定义如下:对于所有 ai,aj ∈S2,都有 ai。aj = ai。

(3)S3 = {0,1},二元运算 * 是普通乘法。

答:(1)二元运算*在S1上不封闭.所以,"S1,*"不能构成代数系统。

(2)由二元运算的定义不难知道。在 S2 内是封闭的,所以,〈S2。〉构成代数

系统;然后看该代数系统的类型:该代数系统只是半群。

(3)很明显,〈{0,1},*〉构成代数系统;满足结合律,为半群;1是幺元,为独异

点;而 0 为零元;结论:仅为独异点,而不是群。

3-2 在自然数集合上,下列那种运算是可结合的[A]

A.x*y = max(x,y);B.x*y = 2x+y ;

C.x*y = x2+y2 ;D.x*y =︱x-y︱..3-3 设 Z 为整数集合,在 Z 上定义二元运算。,对于所有 x,y ∈Z都有

x。y=x + y,试问〈Z。〉能否构成群,为什麽 ?

答:由题已知,集合Z满足封闭性;二元运算满足结合律,依此集合Z为半群;有幺元为 -5,为独异点.假设代数系统的幺元是集合中的元素 e,则一个方程来自于二元运算定义, 即e。x= e + x,一个方程来自该特殊元素的定义的性质,即e。x = x.由此而来的两个方程联立结果就有: e+x=x 成立.削去 x,e=0 的结果不是就有了吗!;每个元素都有逆.求每个元素的逆元素,也要解联方程,如同求幺元一样的道理;结论是:代数系统〈 Z。〉构成群。

第二部分图论方法

第四章 图

4-1 10 个顶点的简单图 G 中有 4 个奇度顶点,问 G 的补图中有几个偶数度顶点 ? 答:因为10阶完全图的每个顶点的度数都是n-1=9――为奇数。这样一来,一个无向简单图 G 的某顶点的度数是奇数,其补图的相应顶点必偶数,因为一个偶数与一个奇数之和才是奇数.所以,G的补图中应有 10-4=6 个奇数度顶点。

4-2 是非判断:无向图G中有10条边,4个3度顶点,其余顶点度数全是2,共有 8 个顶点.[是]

4-3 填空补缺:1条边的图 G 中,所有顶点的度数之和为[2]

第五章树

5-1握手定理的应用(指无向树)

(1)在一棵树中有 7 片树叶,3 个 3 度顶点,其余都是 4 度顶点,问有(有1个4度顶点)个?

(2)一棵树有两个 4 度顶点,3 个 3 度顶点,其余都是树叶,问有(9个1度顶点)片?

5-2 一棵树中有 i 个顶点的度数为 i(i=2,…k),其余顶点都是树叶(即一度顶点),问树叶多少片?设有x片,则 x=

答:假设有 x 片树叶,根据握手定理和树的顶点与边数的关系,有关于树叶的方程,解方程得到树叶数 x = Σi(i—2)i + 2,(i = 2,3,……k)。

5-3 求最优 2 元树:用 Huffman 算法求带权为 1,2,3,5,7,8 的最优 2 元树 T。试问:(1)T 的权 W(T)?(2)树高几层 ?

答:用 Huffman 算法,以 1,2,3,5,7,8 为权,最优 2 元树 T ;然后,计算并回答所求问题:(1)T 的权 W(T)= 61;(2)树高几层:4 层树高。

5-4以下给出的符号串集合中,那些是前缀码?将结果填入[]内.B1 = {0,10,110,1111}[是]B2 = {1,01,001,000}[是]B3 = {a,b,c,aa,ac,aba,abb,abc}[非]B4 = {1,11,101,001,0011}[非]

5-5(是非判断题)11阶无向连通图G中17条边,其任一棵生成树 T 中必有6条树枝 [非]

5-6(是非判断题)二元正则树有奇数个顶点。[是]

5-7 在某次通信中 a,b,c,d,e 出现的频率分别为 5%;10%;20%;30%;35%.求传输他们的最佳前缀码。

1、最优二元树 T;2.每个字母的码字;

答:每个字母出现频率分别为:G、D、B、E、Y:14%,O:28%;(也可以不归一,某符号

出现次数即为权,如右下图).。100(近似)7.。563..4。282..2..2。..1..14141414111

1所以,得到编码如下:G(000),D(001),B(100),E(101),Y(01),O(11)。

第三部分逻辑推理理论

第六章 命题逻辑

6-1 判断下列语句是否命题,简单命题或复合命题。

(1)2月 17 号新学期开始。[真命题]

(2)离散数学很重要。[真命题]

(3)离散数学难学吗 ?[真命题]

(4)C 语言具有高级语言的简洁性和汇编语言的灵活性。[复合命题]

(5)x + 5 大于 2。[真命题]

(6)今天没有下雨,也没有太阳,是阴天。[复合命题]

6-2 将下列命题符号化.(1)2 是偶素数。

(2)小李不是不聪明,而是不好学。

(3)明天考试英语或考数学。(兼容或)

(4)你明天不去上海,就去北京。(排斥或)

答:(1)符号化为: p ∧ q。

(2)符号化为:p ∧ ﹃q。

(3)符号化为:p ∨ q。

(4)符号化为:(﹃p ∧ q)∨(p ∧ ﹃q)。

6-3分别用等值演算法,真值表法,主析取范式法,判断下列命题公式的类型.(1)﹃(p→q)∧ q;(2)((p→q)∧ p)→q;(3)(p→q)∧ q。答:(1)0;

(2)Σ(0,1,2,3);

(3)Σ(1,3)。

以下两题(6-4;6-5)为选择题,将正确者填入[]内.6-4 令 p:经一堑;q:长一智。命题’’只有经一堑,才能长一智’’符号化为[B]

A. p→q;B.q→p;C.p∧q;D.﹁q→﹁p

6-5 p:天气好;q:我去游玩.命题 ”如果天气好,则我去游玩” 符号化为[B]

A. p→q;B.q→p;C.p∧q;D.﹁q→p

6-6证明题:用不同方法(必须有构造证明法)判断推理结果是否正确。

如果今天下雨,则明天不上体育课。今天下雨了。所以,明天没有上体育课。答:将公式分成前提及结论。

前提:(p→﹃q),p;

结论:﹃q;

证明:(1)(p→﹃q)前提引入

(2)p前提引入

(3)(p→﹃q)∧p(1)(2)假言推理

(4)﹃q

要证明的结论与证明结果一致,所以推理正确。

第七章谓词逻辑

7-1 在谓词逻辑中用 0 元谓词将下列命题符号化

(1)这台机器不能用。

(2)如果 2 > 3,则 2 > 5。

答:(1)﹃F(a)。

(2)L(a,b)→ H(a,z)。

7-2 填空补缺题:设域为整数集合Z,命题xy彐z(x-y=z)的真值为(0)

7-3在谓词逻辑中将下列命题符号化

(1)有的马比所有的牛跑得慢。

(2)人固有一死。

答:(1)符号化为:彐x(F(x)∧ 彐y(G(y)∧ H(x,y)))。

(2)与(1)相仿,要注意量词、联结词间的搭配:

x(F(x)→y(G(y)→ H(x,y)))。

《附录》习题符号集

Ø 空集, ∪ 并, ∩ 交,⊕ 对称差,~ 绝对补,∑ 累加或主析取范式表达式缩写 , - 普通减法, ÷ 普通除法, ㏑ 自然对数, ㏒ 对数,﹃ 非,量词 ”所有”,”每个”,∨ 析取联结词,∧ 合取联结词,彐 量词”存在”,”有的”。

2010年8月12号。

第四篇:浅谈离散数学专题

浅谈离散数学

【摘要】离散数学是一门理论性强,知识点多,概念抽象的基础课程,学生学习起来普遍感到难度很高。本文从离散数学内容、学生学习兴趣的激发、教学内容的安排、教学方式方法的使用等方面,探讨了如何上好、学好离散数学课。

【关键词】离散数学教学方法教师 学生

离散数学研究的是离散量,是计算机科学与技术系各专业的核心课程。课程内容具有知识点多、散、抽象等特点,加之学生不能认识到该课程的重要性,缺乏学习兴趣和学习主动性,不仅忽视该课程的学习,甚至害怕这门课程。因此,创新教学方法,提高学生自主学习的积极性,对提高学生的能力、提升教学质量和水平具有重要的意义。通过一学期的学习和专研,我积累了少许经验,总结了一些关于离散数学的教学方法,仅供大家参考。

一、离散数学的特点

本课程介绍计算机科学与技术系各专业所需要的离散数学基础知识,主要有以下两点特点:

1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。

2、方法性强:离散数学的特点是抽象思维能力的要求较高。培养学生抽象思维能力、逻辑推理能力、缜密概括能力以及分析和解决实际问题能力的主干课程,对学习其他诸多课程,具有重要的指导作用。《离散数学》的证明题多,不同的题型会需要不同的证明方法,同一个题也可能有几种方法,具有很强的方法性。

二、教学困难所在1、离散数学是一门理论性强,知识点多,概念抽象的基础课程, 内容具有知

识点多、散、抽象等特点,学生学者困难;

2、学生不能认识到该课程的重要性,缺乏学习兴趣和学习主动性,不仅忽视该课程的学习,甚至害怕这门课程。

3、离散数学课程在课堂教学难度、教学时间等方面的原因,很多学校都出现师生、学生之间的交流较少,从而使学生学习困难。

三、离散数学的教学方法引导学生提高对离散数学课程应用性的认识,激发学生学习的兴趣和爱好,增强汲取知识的自主性

离散数学课程是一门基础性课程,学习离散数学课程对学生今后的学习和工作,具有重要的作用,例如培养学生的抽象思维能力和缜密的逻辑推理能力,为学生今后处理离散信息,提高专业理论水平,从事计算机的实际工作提供必备的数学工具;通过学习,可以掌握数理逻辑,集合论,代数结构和图论的基本概念和原理,并会运用离散数学的方法,分析和解决计算机理论和应用中的一些问题等。学习主动性是学生的力量之源,因此,引导学生充分认识学习离散数学课程的作用,能够激发学生学习的爱好和热情,提升学生学习的积极性和主动性,从而使学生学有成效。认真备课,合理准备教学内容和安排教学环节,优化教学方式方法

备好课是教学取得预期效果的前提和基础,针对学生学习具体情况,合理准备教学内容和安排教学环节,使用恰当的教学方法,在教学中可以起到事半功倍的效果。

(1)合理地准备教学内容。根据课程教学大纲和离散数学课程定理定义比较多、知识比较抽象的特点以及学生的实际情况,准备深度和广度适合学生特点的教学内容。

(2)合理地讲解课程内容,重难点突出讲解,注意轻重缓急。对于离散数学中比较重要、比较抽象的概念和定理,如逻辑的推理理论、关系的性质、群、图等,认真分析,用多种方式和方法深入

讲解,可以使用解析法、图示法、矩阵法举实例等多种方法讲解。对于比较容易理解和掌握的内容,可以一笔带过。这样,学生对所学内容就会有重点地学习,主次分明,学生不仅可以对所学内容掌握透彻,更能熟练把握离散数学中分析问题和解决问题的思路、方式和方法。

(3)启发式教学和教师讲授相结合。很多人认为,大学教学课时紧,内容多,关键靠学生自主学习,我却认为并不完全是这样的。如果教师不顾学生的理解情况,只顾在讲台上讲授知识,课堂氛围会很沉闷,很多同学不能专注于该门课程的学习,经常走神,教学很难达到预期的效果。因此,有针对性地提问和展开讨论,不仅能够培养学生的思考能力,更能调动学生学习的兴趣和积极性,从而使教学达到最佳效果。也可以引进有趣生动的例子说明概念,既活跃课堂,又巩固了学生的记忆。3 合理布置作业,认真批改作业,有针对性地安排习题课和课后答疑

学数学就要做数学,《离散数学》的学习也不例外。学习数学不仅限于学习数学知识,更重要的还在于学习数学思维方法。为了强化学生能力的训练,培养学生的抽象思维能力、逻辑推理能力、实际问题的解决能力等,在保证作业数量的同时,更要提高布置作业的质量,增加典型简答题、讨论题、推理题、实际应用题等习题在作业中的分量,使学生在掌握各种基本知识和基本技能的同时,提高自身的综合能力。

认真检查和批改作业,是督促学生学习的主要途径,也是教师了解学生理解和掌握所学课程情况的主渠道。必要时,教师可以批改一部分作业,其他作业让同学们之间互相检查和批改,不仅可以督促学生学习,更能让学生在批改其他同学作业时逐步认识到自身的缺陷和不足,以备今后更有针对性地学习。

教师在作业检查和批改过程中发现的主要问题和疑难以及学生提出的有代表性的问题,有必要安排习题课进行讲解,帮助学生对解决疑难,加深对所知识的理解。对于学生比较争论的问题,可以展开讨论,鼓励学生大胆发言,培养学生探索未知的精神和创造性解决实际问题的能力。

四、总结

从此上看,上好离散数学课,关键是根据学生具体实际,有针

对性地安排教学内容,合理使用教学方式方法,最大限度地激发学生的学习兴趣,充分发挥教师的主导作用和学生的主体作用,达到教与学和谐。

参考文献

[1] 屈婉玲,耿素云,张立昂.离散数学[M].北京:高等教育出版社.2008.[2] 黄巍,金国祥.”离散数学”课程教学改革的探讨[J].中国电力教育,2009(8):82-83.[3] 周小燕,胡丰华.对提高离散数学教学质量的探讨[J].浙江科技学院学报,2007,19(2):156-158.[4] 龙浩,张佳佳.怎样教好《离散数学》课[J].贵阳学院学报,2007,2(1):53-57.[5] 廖仲春.离散数学的教学探讨[J].湖南工业职业技术学院学报,2008,8(5)http://

第五篇:离散数学

离散数学试题(A卷答案)

一、(10分)

(1)证明(PQ)∧(QR)(PR)(2)求(P∨Q)R的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值。解:(1)因为((PQ)∧(QR))(PR)((P∨Q)∧(Q∨R))∨(P∨R)(P∧Q)∨(Q∧R)∨P∨R (P∧Q)∨((Q∨P∨R)∧(R∨P∨R))(P∧Q)∨(Q∨P∨R)(P∨Q∨P∨R)∧(Q∨Q∨P∨R)T 所以,(PQ)∧(QR)(PR)。

(2)(P∨Q)R(P∨Q)∨R(P∧Q)∨R (P∨(Q∧Q)∨R)∧((P∧P)∨Q∨R)(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)M2∧M4∧M6 m0∨m1∨m3∨m5

所以,其相应的成真赋值为000、001、011、101、111:成假赋值为:010、100、110。

二、(10分)分别找出使公式x(P(x)y(Q(y)∧R(x,y)))为真的解释和为假的解释。

解:设论域为{1,2}。

若P(1)=P(2)=T,Q(1)=Q(2)=F,R(1,1)=R(1,2)=R(2,1)=R(2,2)=F,则 x(P(x)y(Q(y)∧R(x,y)))x(P(x)((Q(1)∧R(x,1))∨(Q(2)∧R(x,2))))(P(1)((Q(1)∧R(1,1))∨(Q(2)∧R(1,2))))∧(P(2)((Q(1)∧R(2,1))∨(Q(2)∧R(2,2))))(T((F∧F)∨(F∧F)))∧(T((F∧F)∨(F∧F)))(TF)∧(TF)F 若P(1)=P(2)=T,Q(1)=Q(2)=T,R(1,1)=R(1,2)=R(2,1)=R(2,2)=T,则 x(P(x)y(Q(y)∧R(x,y)))x(P(x)((Q(1)∧R(x,1))∨(Q(2)∧R(x,2))))(P(1)((Q(1)∧R(1,1))∨(Q(2)∧R(1,2))))∧(P(2)((Q(1)∧R(2,1))∨(Q(2)∧R(2,2))))(T((T∧T)∨(T∧T)))∧(T((T∧T)∨(T∧T)))(TT)∧(TT)T

三、(10分)

在谓词逻辑中构造下面推理的证明:每个喜欢步行的人都不喜欢做汽车,每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车,因而有的人不喜欢步行。

论域:所有人的集合。A(x):x喜欢步行;B(x):x喜欢坐汽车;C(x):x喜欢骑自行车;则推理化形式为:

x(A(x)B(x)),x(B(x)∨C(x)),xC(x)xA(x)下面给出证明:(1)xC(x)

P(2)xC(x)

T(1),E(3)C(c)

T(2),ES(4)x(B(x)∨C(x))

P(5)B(c)∨C(c)

T(4),US(6)B(c)

T(3)(5),I(7)x(A(x)B(x))

P(8)A(c)B(c)

T(7),US(9)A(c)

T(6)(8),I(10)xA(x)

T(9),EG

四、(10分)

下列论断是否正确?为什么?(1)若A∪B=A∪C,则B=C。(2)若A∩B=A∩C,则B=C。(3)若AB=AC,则B=C。

解(1)不一定。例如,令A={1},B={1,2},C={2},则A∪B=A∪C,但B=C不成立。(2)不一定。例如,令A={1},B={1,2},C={1,3},则A∩B=A∩C,但B=C不成立。(3)成立。因为若AB=AC,对任意的x∈B,当x∈A时,有x∈A∩BxABxAC=(A∪C)-(A∩C)x∈A∩Cx∈C,所以BC;当xA时,有xA∩B,而x∈Bx∈A∪B,所以x∈A∪B-A∩B=ABx∈AC,但x A,于是x∈C,所以BC。

同理可证,C B。

因此,当AB=AC时,必有B=C。

五、(10分)若R是集合A上的自反和传递关系,则对任意的正整数n,R=R。

证明 当n=1时,结论显然成立。设n=k时,Rk=R。当n=k+1时,Rk+1=Rk*R=R*R。下面由R是自反和传递的推导出R*R=R即可。

由传递性得R*RR。另一方面,对任意的∈R,由R自反得∈R,再由关系的复合得∈R*R,从而RR*R。因此,R=R*R。

由数学归纳法知,对任意的正整数n,Rn=R。

n

六、(15分)设函数f:R×RR×R,f定义为:f()=

(1)证明f是单射。(2)证明f是满射。(3)求逆函数f。

(4)求复合函数f-1f和ff。

证明(1)对任意的x,y,x1,y1∈R,若f()=f(),则,x+y=x1+y1,x-y=x1-y1,从而x=x1,y=y1,故f是单射。

(2)对任意的∈R×R,令x=uw2uw2-

1,y=

uw2,则f()=<

uw2+

uw2,uw2->=,所以f是满射。

uw2-1(3)f()=<-1,uw2>。

xyxy2xy(xy)2(4)ff()=f(f())=f()=<-1-1,>= ff()=f(f())=f()==<2x,2y>。

七、(15分)设X={1,2,3,4},R是X上的二元关系,R={<1,1>,<3,1>,<1,3>,<3,3>,<3,2>,<4,3>,<4,1>,<4,2>,<1,2>}(1)画出R的关系图。(2)写出R的关系矩阵。

(3)说明R是否是自反、反自反、对称、传递的。解(1)R的关系图如图所示:(2)R的关系矩阵为:

10M(R)111011101100 00(3)对于R的关系矩阵,由于对角线上不全为1,R不是自反的;由于对角线上存在非0元,R不是反自反的;由于矩阵不对称,R不是对称的;

经过计算可得 102M(R)111011101100M(R),所以R是传递的。00

八、(10分)若是群,H是G的非空子集,则的子群对任意的a、b∈H有a*b-1∈H。证明 必要性:对任意的a、b∈H,由的子群,必有b-1∈H,从而a*b-1∈H。充分性:由H非空,必存在a∈H。于是e=a*a∈H。任取a∈H,由e、a∈H得a-1=e*a-1∈H。

对于任意的a、b∈H,有a*b=a*(b)∈H,即a*b∈H。又因为H是G非空子集,所以*在H上满足结合律。综上可知,的子群。

九、(10分)给定二部图G=,且|V1∪V2|=m,|E|=n,证明n≤m/4。

证明 设|V1|=m1,则|V2|=m-m1,于是n≤m1(m-m1)=m1m-m22

2-

1-1

-1

m12。因为(m2m1)20,即4mm1m1,所以n≤m2/4。离散数学试题(B卷答案)

一、(20分)用公式法判断下列公式的类型:(1)(P∨Q)(PQ)(2)(PQ)(P∧(Q∨R))解:(1)因为(P∨Q)(PQ)(P∨Q)∨(P∧Q)∨(P∧Q)

(P∧Q)∨(P∧Q)∨(P∧Q)m1∨m2∨m3 M0

所以,公式(P∨Q)(PQ)为可满足式。

(2)因为(PQ)(P∧(Q∨R))((P∨Q))∨(P∧Q∧R))

(P∨Q)∨(P∧Q∧R))

(P∨Q∨P)∧(P∨Q∨Q)∧(P∨Q∨R)(P∨Q)∧(P∨Q∨R)

(P∨Q∨(R∧R))∧(P∨Q∨R)(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)M0∧M1

m2∨m3∨m4∨m5∨m6∨m7

所以,公式(PQ)(P∧(Q∨R))为可满足式。

二、(15分)在谓词逻辑中构造下面推理的证明:每个科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人或事业半途而废的人。

Q(x):x是勤奋的;x是科学家;C(x):解:论域:所有人的集合。H(x):x是身体健康的;S(x):x是事业获得成功的人;F(x):x是事业半途而废的人;则推理化形式为:

x(S(x)Q(x)),x(Q(x)∧H(x)C(x)),x(S(x)∧H(x))

x(C(x)∨F(x))下面给出证明:

(1)x(S(x)∧H(x))

P(2)S(a)∧H(a)

T(1),ES(3)x(S(x)Q(x))

P(4)S(a)Q(a)

T(1),US(5)S(a)

T(2),I(6)Q(a)

T(4)(5),I(7)H(a)

T(2),I(8)Q(a)∧H(a)

T(6)(7),I(9)x(Q(x)∧H(x)C(x))

P(10)Q(a)∧H(a)C(a)

T(9),Us(11)C(a)

T(8)(10),I(12)xC(x)

T(11),EG(13)x(C(x)∨F(x))

T(12),I

三、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。解

P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}}

四、(15分)设R和S是集合A上的任意关系,判断下列命题是否成立?(1)若R和S是自反的,则R*S也是自反的。(2)若R和S是反自反的,则R*S也是反自反的。(3)若R和S是对称的,则R*S也是对称的。(4)若R和S是传递的,则R*S也是传递的。(5)若R和S是自反的,则R∩S是自反的。(6)若R和S是传递的,则R∪S是传递的。

(1)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R*S,故R*S也是自反的。

(2)不成立。例如,令A={1,2},R={<1,2>},S={<2,1>},则R和S是反自反的,但R*S={<1,1>}不是反自反的。

(3)不成立。例如,令A={1,2,3},R={<1,2>,<2,1>,<3,3>},S={<2,3>,<3,2>},则R和S是对称的,但R*S={<1,3>,<3,2>}不是对称的。

(4)不成立。例如,令A={1,2,3},R={<1,2>,<2,3>,<1,3>},S={<2,3>,<3,1>,<2,1>},则R和S是传递的,但R*S={<1,3>,<1,1>,<2,1>}不是传递的。

(5)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R∩S,所以R∩S是自反的。

五、(15分)令X={x1,x2,…,xm},Y={y1,y2,…,yn}。问(1)有多少个不同的由X到Y的函数?

(2)当n、m满足什么条件时,存在单射,且有多少个不同的单射?(3)当n、m满足什么条件时,存在双射,且有多少个不同的双射?

(1)由于对X中每个元素可以取Y中任一元素与其对应,每个元素有n种取法,所以不同的函数共n个。

(2)显然当|m|≤|n|时,存在单射。由于在Y中任选m个元素的任一全排列都形成X到Y的不同的单射,故不同的单射有Cnm!=n(n-1)(n―m―1)个。

(3)显然当|m|=|n|时,才存在双射。此时Y中元素的任一不同的全排列都形成X到Y的不同的双射,mm故不同的双射有m!个。

六、(5分)集合X上有m个元素,集合Y上有n个元素,问X到Y的二元关系总共有多少个? 解

X到Y的不同的二元关系对应X×Y的不同的子集,而X×Y的不同的子集共有个2mn,所以X到Y的二元关系总共有2mn个。

七、(10分)若是群,则对于任意的a、b∈G,必有惟一的x∈G使得a*x=b。

证明 设e是群的幺元。令x=a-1*b,则a*x=a*(a-1*b)=(a*a-1)*b=e*b=b。所以,x=a-1*b是a*x=b的解。

若x∈G也是a*x=b的解,则x=e*x=(a*a)*x=a*(a*x)=a*b=x。所以,x=a*b是a*x

1-1

-1

-1=b的惟一解。

八、(10分)给定连通简单平面图G=,且|V|=6,|E|=12。证明:对任意f∈F,d(f)=3。证明

由偶拉公式得|V|-|E|+|F|=2,所以|F|=2-|V|+|E|=8,于是d(f)=2|E|=24。若存在f∈

fFF,使得d(f)>3,则3|F|<2|E|=24,于是|F|<8,与|F|=8矛盾。故对任意f∈F,d(f)=3。

下载离散数学题目3(大全5篇)word格式文档
下载离散数学题目3(大全5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    离散数学

    第一章数学语言与证明方法 例1 设E={ x | x是北京某大学学生}, A,B,C,D是E的子集, A= { x | x是北京人}, B= { x | x是走读生}, C= { x | x是数学系学生}, D= { x | x是喜......

    面试题目3

    15、你认为你自己有哪些优点(考生是医务工作者)?15、你认为你自己有哪些优点(考生是医务工作者)? 答:我从不认为自己有特别突出的优点,我认为自己工作多年最重要的收获是学到了一些......

    离散数学第三章

    第三章部分课后习题参考答案 14. 在自然推理系统P中构造下面推理的证明: (2)前提:pq,(qr),r 结论:p (4)前提:qp,qs,st,tr 结论:pq 证明:(2) ①(qr) 前提引入 ②qr ①置换 ③qr ②......

    离散数学心得体会

    离散数学心得体会 离散数学,对绝大多数学生来说是一门十分困难的课程,当然也包括我在内,而当初选这门课是想挑战一下自己。通过这一学期的学习,我对这门课程有一些初步的了解,现......

    离散数学试题答案[范文]

    《计算机数学基础》离散数学试题一、单项选择题(每小题2分,共10分) 1. 命题公式(PQ)Q为 (A) 矛盾式 (B) 可满足式(C) 重言式 (D) 合取范式2. 设C(x): x是国家级运动员,G(x):......

    离散数学习题集

    离散数学习题集——图论分册 耿素云 北京大学出版社 定价:8元 数理逻辑(离散数学一分册) 王捍贫 北京大学出版社 定价:15元 集合论与图论(离散数学二分册) 耿素云 北京大学出......

    离散数学学习心得

    离散数学学习心得 姓名:周燕 班级:12计本(2)班 学号:1204012032 当老师说这门课快要结束的时候,我才发现这门课的学习以经接近尾声了。通过这一学期的学习,我觉得离散数学是一们......

    离散数学自学

    学习体会 专业:计算机 姓名:范文芳 学号: 成绩: 院校: 离散数学是计算机科学与技术专业的基础核心课程。通过本课程的学习,使学生具有现代数学的观点和方法,并初步掌握处理离散结构......