第一篇:离散数学作业题(截图)
华南理工大学网络教育学院 2014–2015学年度第一学期 《 离散数学 》作业(解答必须手写体上传,否则酌情扣分)
1.设命题公式为 Q (P Q) P。
(1)求此命题公式的真值表;(2)求此命题公式的析取范式;(3)判断该命题公式的类型。
2.用直接证法证明
前提:P Q,P R,Q S 结论:S R
《 离散数学作业 》 第 1 页(共 7 页)
3.在一阶逻辑中构造下面推理的证明
每个喜欢步行的人都不喜欢坐汽车。每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车。因而有的人不喜欢步行。
令F(x):x喜欢步行。G(x):x喜欢坐汽车。H(x):x喜欢骑自行车。
《 离散数学作业 》 第 2 页(共 7 页)
4.用直接证法证明:
前提:(x)(C(x)→ W(x)∧R(x)),(x)(C(x)∧Q(x))结论:(x)(Q(x)∧R(x))。
《 离散数学作业 》 第 3 页(共 7 页)
5.设R是集合A = {1, 2, 3, 4, 6, 12}上的整除关系。
(1)给出关系R;(2)给出COV A
(3)画出关系R的哈斯图;
(4)给出关系R的极大、极小元、最大、最小元。
《 离散数学作业 》 第 4 页(共 7 页)
6.求带权图G的最小生成树,并计算它的权值。
7.给定权为1,9,4,7,3;构造一颗最优二叉树。
《 离散数学作业 》 第 5 页(共 7 页)
8.给定权为2,6,3,9,4;构造一颗最优二叉树。
9、给定权为2,6,5,9,4,1;构造一颗最优二叉树。
10、设字母a,b,c,d,e,f在通讯中出现的频率为:a:30%,b:25%,c:20%,d:10%,e:10%,f:5%。试给出传输这6个字母的最佳前缀码?问传输1000个字符需要多少位二进制位?
《 离散数学作业 》 第 6 页(共 7 页)
《 离散数学作业 》 第 7 页(共 7 页)
第二篇:离散数学作业题2003版
华南理工大学网络教育学院 2014–2015学第一学期 《 离散数学 》作业(解答必须手写体上传,否则酌情扣分)
1.设命题公式为 Q (P Q) P。
(1)求此命题公式的真值表;(2)求此命题公式的析取范式;(3)判断该命题公式的类型。
2.用直接证法证明
前提:P Q,P R,Q S 结论:S R
3.在一阶逻辑中构造下面推理的证明
每个喜欢步行的人都不喜欢坐汽车。每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车。因而有的人不喜欢步行。
令F(x):x喜欢步行。G(x):x喜欢坐汽车。H(x):x喜欢骑自行车。4.用直接证法证明:
前提:(x)(C(x)→ W(x)∧R(x)),(x)(C(x)∧Q(x))结论:(x)(Q(x)∧R(x))。
5.设R是集合A = {1, 2, 3, 4, 6, 12}上的整除关系。
(1)给出关系R;(2)给出COV A
(3)画出关系R的哈斯图;
(4)给出关系R的极大、极小元、最大、最小元。
6.求带权图G的最小生成树,并计算它的权值。
《 离散数学作业 》 第 1 页(共 2 页)
7.给定权为1,9,4,7,3;构造一颗最优二叉树。
8.给定权为2,6,3,9,4;构造一颗最优二叉树。
9、给定权为2,6,5,9,4,1;构造一颗最优二叉树。
10、设字母a,b,c,d,e,f在通讯中出现的频率为:a:30%,b:25%,c:20%,d:10%,e:10%,f:5%。试给出传输这6个字母的最佳前缀码?问传输1000个字符需要多少位二进制位?
《 离散数学作业 》 第 2 页(共 2 页)
第三篇:2014年秋离散数学作业题
离散数学作业题
第一章 命题逻辑
p38习题一1、2(1)(3)、3(1)(4)、4(2)(3)、6(2)、7(4)(6)、8(1)(3)(5)补充题:将PQ化成与之等价的并仅含联结词的公式。
第二章 谓词逻辑
P70习题二
2(2)(4)、3(1)(3)、4(3)(4)、10(4)补充题:
1.谓词符号化:
1)所有的鱼都生活在水中。2)没有大于2的偶素数。3)并不是每个人都聪明。
2.设个体域D={a,b},将一阶公式(x)(F(x)→(y)G(y))中的量词消除
3.设个体域为整数集,令P(x,y):x+y=1;Q(x,y):xy>0,试求解下列命题的真假。
1)(x)(y)P(x,y).2)(x)(y)Q(x,y).4.求前束范式:
1)(x)F(x)(x)R(x).2)((x)P(x)∨(y)Q(y))(x)R(x).5.证明:
前提:(x)(A(x)B(x)∧C(x)),(x)(A(x)∧D(x))结论:(x)(C(x)∧D(x))
6.所有的整数均为有理数并且为实数,存在是整数又是奇数的数,因而存在是奇数又是实数的数。
写出上面推理的证明。(用谓词逻辑,写出用谓词表示的前提、结论和证明过程)
第三章 集合、关系与映射 P133习题三:7、9、11、17 补充题
1.AB,A∈B能否同时成立,说明原因
求集合A={a,{a}}的幂集
2.证明:若BC,则P(B) P(C)3.如果A∪B=A∪C,是否有B=C?
如果A⊕B=A⊕C,是否有B=C?
4.试求1到10000之间不能被4,5或6整除的整数个数.5.列出所有从A={a,b,c}到B={s}的关系,并指出集合A上的恒等关系和从A到B的全域关系.5.给出A上的关系及其关系图和矩阵表示.{
6.已知S={a,b}.R ={〈x,y〉|x,y∈A∧xy∧A为集合族ρ(S)}.试写出关系R.7.已知: A={a,b,c}, R={〈a,b〉,〈a,c〉,〈b,c〉}该关系具有什么性质?
(自反,反自反,对称,反对称,传递性)8.设A={a,b,c},R={〈a,b〉,〈a,c〉} 计算:r(R),sr(R),tr(R),str(R).9.设A是含有4个元素的集合,试求:
(1)在A上可以定义多少种对称关系?
(2)在A上可以定义多少种既是自反的,又是对称的关系?
(3)在A上可以定义多少种既不是自反的,也不是反自反的二元关系?
10.设集合A={0,1,2,3,4}.R={
(1)说明f是否为单射和满射,并说明理由.(2)f的反函数是否存在?并说明理由.(3)求ranf.16.已知如果从无限集合A到集合B存在单射f,则B也是无限集合。
设X是无限集合,集合Y≠φ,证明:X与Y的笛卡儿积X×Y是无限集合。
第六章 代数结构
P247 习题六:4(1)(3)、6、16、21 补充题:
1.以下集合和运算是否构成代数系统?如果构成,说明该系统是否满足结合律、交换律?求出该运算的幺元、零元和所有可逆元素的逆元.1)P(B)关于对称差运算⊕,其中P(B)为幂集.2)A={a,b,c},*运算如下表所示:
2.设集合A={a,b},那么(1)在A上可以定义多少不同的二元运算?(2)在A上可以定义多少不同的具有交换律的二元运算?
3.设A={1,2},B是A上的等价关系的集合.1)列出B的元素.2)给出代数系统V=的运算表.3)求出V的幺元、零元和所有可逆元素的逆元.4)说明V是否为半群、独异点和群?
4.设A={a,b,c},构造A上的二元运算*,使得a*b=c,c*b=b,且*运算满足幂等律、交换律.1)给出关于*运算的一个运算表.其中表中?位置可以是a、b、c。2)*运算是否满足结合律,为什么? 5.设
*是R上的一个二元运算,使得对于R(实数集合)中的任意元素a,b都有a*b=a+b+a·b(·和+为数集上的乘法和加法).证明::是半群,且*是可交换的.证明:如果S中有元素a,b,使得a*a=a和b*b=b,则(a*b)*(a*b)=a*b.7.设
试证明: 群G中具有消去律,即成立: 如果a·b=a·c ,b·a=c·a 那么b=c.8.设
10.设A={1,2,5,10,11,22,55,110}.1)A关于整除关系是否构成偏序集?
2)如果构成偏序集合,画出其对应的哈斯图.3)如果构成偏序集,该偏序集合构成哪种格?(分配格、有界格、有补格、布尔格).第七题
图论
P295 习题七:2、9、10 补充题:
1.是否存在7阶无向简单图G,其度序列为1、3、3、4、6、6、7.给出相应证明.2.求下图的补图
3.1)试画一个具有5个顶点的自补图
2)是否存在具有6个顶点的自补图,试说明理由。
4.设图G为n(n>2且为奇数)阶无向简单图,证明:G与G的补图中奇度顶点个数相等.5.无向图G中只有2个奇度顶点u和v,u与v是否一定连通.给出说明或证明。6.图G如下图所示:
1)写出上图的一个生成子图.(不唯一)2)δ(G),κ(G),λ(G).3)说明:δ(G)=min{ d(v)| vV } ;κ(G)=min{ |V’| |V’是图G的点割集} ; λ(G)=min{ |E’| |E’是图G的边割集} 7.在什么条件下无向完全图Kn为欧拉图?
8.证明:有割边的图不是欧拉图.9.证明:有割边的图不是哈密尔顿图.10.树T有2个4度顶点,3个3度顶点,其余顶点全为树叶,问T有几片树叶? 11.给出全部互不同构的4阶简单无向图的平面图形。
12.如果G是平面图, 有n个顶点、m条边、f个面,G有k个连通分支。试利用欧拉公式证明::n-m+f=k+1.
第四篇:离散数学
离散数学试题(A卷答案)
一、(10分)
(1)证明(PQ)∧(QR)(PR)(2)求(P∨Q)R的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值。解:(1)因为((PQ)∧(QR))(PR)((P∨Q)∧(Q∨R))∨(P∨R)(P∧Q)∨(Q∧R)∨P∨R (P∧Q)∨((Q∨P∨R)∧(R∨P∨R))(P∧Q)∨(Q∨P∨R)(P∨Q∨P∨R)∧(Q∨Q∨P∨R)T 所以,(PQ)∧(QR)(PR)。
(2)(P∨Q)R(P∨Q)∨R(P∧Q)∨R (P∨(Q∧Q)∨R)∧((P∧P)∨Q∨R)(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)M2∧M4∧M6 m0∨m1∨m3∨m5
所以,其相应的成真赋值为000、001、011、101、111:成假赋值为:010、100、110。
二、(10分)分别找出使公式x(P(x)y(Q(y)∧R(x,y)))为真的解释和为假的解释。
解:设论域为{1,2}。
若P(1)=P(2)=T,Q(1)=Q(2)=F,R(1,1)=R(1,2)=R(2,1)=R(2,2)=F,则 x(P(x)y(Q(y)∧R(x,y)))x(P(x)((Q(1)∧R(x,1))∨(Q(2)∧R(x,2))))(P(1)((Q(1)∧R(1,1))∨(Q(2)∧R(1,2))))∧(P(2)((Q(1)∧R(2,1))∨(Q(2)∧R(2,2))))(T((F∧F)∨(F∧F)))∧(T((F∧F)∨(F∧F)))(TF)∧(TF)F 若P(1)=P(2)=T,Q(1)=Q(2)=T,R(1,1)=R(1,2)=R(2,1)=R(2,2)=T,则 x(P(x)y(Q(y)∧R(x,y)))x(P(x)((Q(1)∧R(x,1))∨(Q(2)∧R(x,2))))(P(1)((Q(1)∧R(1,1))∨(Q(2)∧R(1,2))))∧(P(2)((Q(1)∧R(2,1))∨(Q(2)∧R(2,2))))(T((T∧T)∨(T∧T)))∧(T((T∧T)∨(T∧T)))(TT)∧(TT)T
三、(10分)
在谓词逻辑中构造下面推理的证明:每个喜欢步行的人都不喜欢做汽车,每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车,因而有的人不喜欢步行。
解
论域:所有人的集合。A(x):x喜欢步行;B(x):x喜欢坐汽车;C(x):x喜欢骑自行车;则推理化形式为:
x(A(x)B(x)),x(B(x)∨C(x)),xC(x)xA(x)下面给出证明:(1)xC(x)
P(2)xC(x)
T(1),E(3)C(c)
T(2),ES(4)x(B(x)∨C(x))
P(5)B(c)∨C(c)
T(4),US(6)B(c)
T(3)(5),I(7)x(A(x)B(x))
P(8)A(c)B(c)
T(7),US(9)A(c)
T(6)(8),I(10)xA(x)
T(9),EG
四、(10分)
下列论断是否正确?为什么?(1)若A∪B=A∪C,则B=C。(2)若A∩B=A∩C,则B=C。(3)若AB=AC,则B=C。
解(1)不一定。例如,令A={1},B={1,2},C={2},则A∪B=A∪C,但B=C不成立。(2)不一定。例如,令A={1},B={1,2},C={1,3},则A∩B=A∩C,但B=C不成立。(3)成立。因为若AB=AC,对任意的x∈B,当x∈A时,有x∈A∩BxABxAC=(A∪C)-(A∩C)x∈A∩Cx∈C,所以BC;当xA时,有xA∩B,而x∈Bx∈A∪B,所以x∈A∪B-A∩B=ABx∈AC,但x A,于是x∈C,所以BC。
同理可证,C B。
因此,当AB=AC时,必有B=C。
五、(10分)若R是集合A上的自反和传递关系,则对任意的正整数n,R=R。
证明 当n=1时,结论显然成立。设n=k时,Rk=R。当n=k+1时,Rk+1=Rk*R=R*R。下面由R是自反和传递的推导出R*R=R即可。
由传递性得R*RR。另一方面,对任意的
由数学归纳法知,对任意的正整数n,Rn=R。
n
六、(15分)设函数f:R×RR×R,f定义为:f(
(1)证明f是单射。(2)证明f是满射。(3)求逆函数f。
(4)求复合函数f-1f和ff。
证明(1)对任意的x,y,x1,y1∈R,若f(
(2)对任意的∈R×R,令x=uw2uw2-
1,y=
uw2,则f(
uw2+
uw2,uw2->=,所以f是满射。
uw2-1(3)f()=<-1,uw2>。
xyxy2xy(xy)2(4)ff(
七、(15分)设X={1,2,3,4},R是X上的二元关系,R={<1,1>,<3,1>,<1,3>,<3,3>,<3,2>,<4,3>,<4,1>,<4,2>,<1,2>}(1)画出R的关系图。(2)写出R的关系矩阵。
(3)说明R是否是自反、反自反、对称、传递的。解(1)R的关系图如图所示:(2)R的关系矩阵为:
10M(R)111011101100 00(3)对于R的关系矩阵,由于对角线上不全为1,R不是自反的;由于对角线上存在非0元,R不是反自反的;由于矩阵不对称,R不是对称的;
经过计算可得 102M(R)111011101100M(R),所以R是传递的。00
八、(10分)若
对于任意的a、b∈H,有a*b=a*(b)∈H,即a*b∈H。又因为H是G非空子集,所以*在H上满足结合律。综上可知,
九、(10分)给定二部图G=
证明 设|V1|=m1,则|V2|=m-m1,于是n≤m1(m-m1)=m1m-m22
2-
1-1
-1
m12。因为(m2m1)20,即4mm1m1,所以n≤m2/4。离散数学试题(B卷答案)
一、(20分)用公式法判断下列公式的类型:(1)(P∨Q)(PQ)(2)(PQ)(P∧(Q∨R))解:(1)因为(P∨Q)(PQ)(P∨Q)∨(P∧Q)∨(P∧Q)
(P∧Q)∨(P∧Q)∨(P∧Q)m1∨m2∨m3 M0
所以,公式(P∨Q)(PQ)为可满足式。
(2)因为(PQ)(P∧(Q∨R))((P∨Q))∨(P∧Q∧R))
(P∨Q)∨(P∧Q∧R))
(P∨Q∨P)∧(P∨Q∨Q)∧(P∨Q∨R)(P∨Q)∧(P∨Q∨R)
(P∨Q∨(R∧R))∧(P∨Q∨R)(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)M0∧M1
m2∨m3∨m4∨m5∨m6∨m7
所以,公式(PQ)(P∧(Q∨R))为可满足式。
二、(15分)在谓词逻辑中构造下面推理的证明:每个科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人或事业半途而废的人。
Q(x):x是勤奋的;x是科学家;C(x):解:论域:所有人的集合。H(x):x是身体健康的;S(x):x是事业获得成功的人;F(x):x是事业半途而废的人;则推理化形式为:
x(S(x)Q(x)),x(Q(x)∧H(x)C(x)),x(S(x)∧H(x))
x(C(x)∨F(x))下面给出证明:
(1)x(S(x)∧H(x))
P(2)S(a)∧H(a)
T(1),ES(3)x(S(x)Q(x))
P(4)S(a)Q(a)
T(1),US(5)S(a)
T(2),I(6)Q(a)
T(4)(5),I(7)H(a)
T(2),I(8)Q(a)∧H(a)
T(6)(7),I(9)x(Q(x)∧H(x)C(x))
P(10)Q(a)∧H(a)C(a)
T(9),Us(11)C(a)
T(8)(10),I(12)xC(x)
T(11),EG(13)x(C(x)∨F(x))
T(12),I
三、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。解
P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}}
四、(15分)设R和S是集合A上的任意关系,判断下列命题是否成立?(1)若R和S是自反的,则R*S也是自反的。(2)若R和S是反自反的,则R*S也是反自反的。(3)若R和S是对称的,则R*S也是对称的。(4)若R和S是传递的,则R*S也是传递的。(5)若R和S是自反的,则R∩S是自反的。(6)若R和S是传递的,则R∪S是传递的。
解
(1)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R*S,故R*S也是自反的。
(2)不成立。例如,令A={1,2},R={<1,2>},S={<2,1>},则R和S是反自反的,但R*S={<1,1>}不是反自反的。
(3)不成立。例如,令A={1,2,3},R={<1,2>,<2,1>,<3,3>},S={<2,3>,<3,2>},则R和S是对称的,但R*S={<1,3>,<3,2>}不是对称的。
(4)不成立。例如,令A={1,2,3},R={<1,2>,<2,3>,<1,3>},S={<2,3>,<3,1>,<2,1>},则R和S是传递的,但R*S={<1,3>,<1,1>,<2,1>}不是传递的。
(5)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R∩S,所以R∩S是自反的。
五、(15分)令X={x1,x2,…,xm},Y={y1,y2,…,yn}。问(1)有多少个不同的由X到Y的函数?
(2)当n、m满足什么条件时,存在单射,且有多少个不同的单射?(3)当n、m满足什么条件时,存在双射,且有多少个不同的双射?
解
(1)由于对X中每个元素可以取Y中任一元素与其对应,每个元素有n种取法,所以不同的函数共n个。
(2)显然当|m|≤|n|时,存在单射。由于在Y中任选m个元素的任一全排列都形成X到Y的不同的单射,故不同的单射有Cnm!=n(n-1)(n―m―1)个。
(3)显然当|m|=|n|时,才存在双射。此时Y中元素的任一不同的全排列都形成X到Y的不同的双射,mm故不同的双射有m!个。
六、(5分)集合X上有m个元素,集合Y上有n个元素,问X到Y的二元关系总共有多少个? 解
X到Y的不同的二元关系对应X×Y的不同的子集,而X×Y的不同的子集共有个2mn,所以X到Y的二元关系总共有2mn个。
七、(10分)若
证明 设e是群
若x∈G也是a*x=b的解,则x=e*x=(a*a)*x=a*(a*x)=a*b=x。所以,x=a*b是a*x
-
1-1
-1
-1=b的惟一解。
八、(10分)给定连通简单平面图G=
由偶拉公式得|V|-|E|+|F|=2,所以|F|=2-|V|+|E|=8,于是d(f)=2|E|=24。若存在f∈
fFF,使得d(f)>3,则3|F|<2|E|=24,于是|F|<8,与|F|=8矛盾。故对任意f∈F,d(f)=3。
第五篇:离散数学
第一章
数学语言与证明方法
例1 设E={ x | x是北京某大学学生}, A,B,C,D是E的子集, A= { x | x是北京人},B= { x | x是走读生}, C= { x | x是数学系学生},D= { x | x是喜欢听音乐的学生}.试描述下列各集合中学生的特征:
(AD) ~ C={ x | x是北京人或喜欢听音乐,但不是数学系学生} ~ AB={ x | x是外地走读生}(A-B) D={ x | x是北京住校生, 并且喜欢听音乐} ~ D ~ B={ x | x是不喜欢听音乐的住校生} 例3 证明:(1)AB=BA(交换律)证 x
xAB
xAxB
(并的定义)
xBxA
(逻辑演算的交换律)
xBA
(并的定义)(2)A(BC)=(AB)(AC)(分配律)证 x
xA(BC)
xA(xB xC)
(并,交的定义)
(xAxB)(xAxC)
(逻辑演算的分配律)
x(AB)(AC)
(并,交的定义)(3)AE=E(零律)证 x
xAE
xAxE
(并的定义)
xA1
(全集E的定义)
1
(逻辑演算的零律)
xE
(全集E的定义)(4)AE=A(同一律)证 x
xAE
xAxE
(交的定义)
xA1
(全集E的定义)
xA
(逻辑演算的同一律)例4 证明 A(AB)=A(吸收律)证 利用例3证明的4条等式证明
A(AB)
=(AE)(AB)
(同一律)
= A(EB)
(分配律)
= A(BE)
(交换律)
= AE
(零律)
= A
(同一律)例5 证明(A-B)-C=(A-C)-(B-C)证
(A-C)-(B-C)
=(A ~C) ~(B ~C)
(补交转换律)
=(A ~C)(~B ~~C)
(德摩根律)
=(A ~C)(~B C)
(双重否定律)
=(A ~C ~B)(A ~C C)
(分配律)
=(A ~C ~B)(A )
(矛盾律)
= A ~C ~B
(零律,同一律)
=(A ~B) ~C
(交换律,结合律)
=(A – B)– C
(补交转换律)例6 证明(AB)(AC)=(BC)(AC))((AC)A 例7 设A,B为任意集合, 证明:(1)AAB 证 x xA xAxB
(附加律)
xAB
(2)ABA
证 x xAB xAxB
xA
(化简律)(3)A-BA
证 x xA-B xAxB
xA
(化简律)(4)若AB, 则P(A)P(B)证 x xP(A) xA
xB
(已知AB)
xP(B)例8 证明 AB=AB-AB.证
AB=(A~B)(~AB)
=(A~A)(AB)(~B~A)(~BB)
=(AB)(~B~A)
=(AB)~(AB)
=AB-AB 例3 若A-B=A, 则AB=
证 用归谬法, 假设AB, 则存在x,使得
xAB xAxB xA-BxB
(A-B=A)
xAxBxB xBxB,矛盾 例4 证明
是无理数
证
假设
是有理数, 存在正整数n,m, 使得
=m/n,不妨设m/n为既约分数.于是m=n, m2=2n2, m2是偶数, 从而m是偶数.设m=2k, 得(2k)2=2n2, n2=2k2, 这又得到n也 是偶数, 与m/n为既约分数矛盾.例6 对于每个正整数n, 存在n个连续的正合数.证
令x=(n+1)!
则 x+2, x+3,…, x+n+1是n个连续的正合数:
i | x+i,i=2,3,…,n+1 例7 判断下述命题是真是假:
若AB=AC, 则B=C.解
反例: 取A={a,b}, B={a,b,c}, C={a,b,d}, 有
AB=AC = {a,b} 但BC, 故命题为假.例8 证明:对所有n1, 1+2+ … +n=n(n+1)/2 证
归纳基础.当n=1时, 1=1(1+1)/2, 结论成立.归纳步骤.假设对n1结论成立, 则有
1+2+ … +n +(n+1)=n(n+1)/2 +(n+1)
(归纳假设)
=(n+1)(n+2)/2 得证当n+1时结论也成立.例9 任何大于等于2的整数均可表成素数的乘积 证 归纳基础.对于2, 结论显然成立.归纳步骤.假设对所有的k(2kn)结论成立, 要证结论 对n+1也成立.若n+1是素数, 则结论成立;否则n+1=ab, 2a,b 命题逻辑 例1 下列句子中那些是命题? (1)北京是中华人民共和国的首都.(2)2 + 5 =8.(3)x + 5 > 3.(4)你会开车吗? (5)2050年元旦北京是晴天.(6)这只兔子跑得真快呀!(7)请关上门!(8)我正在说谎话.(1),(2),(5)是命题,(3),(4),(6)~(8)都不是命题 例2 将下列命题符号化.(1)王晓既用功又聪明.(2)王晓不仅聪明,而且用功.(3)王晓虽然聪明,但不用功.(4)张辉与王丽都是三好生.(5)张辉与王丽是同学.解 (1)p∧q (2)p∧q (3)p∧q(4)记 r:张辉是三好生, s:王丽是三好生,r∧s(5)简单命题,记 t:张辉与王丽是同学 例3 将下列命题符号化(1)2或4是素数.(2)2或3是素数.(3)4或6是素数.(4)元元只能拿一个苹果或一个梨.(5)王晓红生于1975年或1976年.解 (1)p∨r, 真值:1(2) p∨q, 真值: 1(3)r∨s,真值: 0(4)记t:元元拿一个苹果,u:元元拿一个梨 (t∧u)∨(t∧u)(5)记v:王晓红生于1975年,w:王晓红生于1976年 (v∧w)∨(v∧w)又可形式化为 v∨w 例4 设p:天冷, q:小王穿羽绒服,将下列命题符号化 (1)只要天冷,小王就穿羽绒服.pq(2)因为天冷,所以小王穿羽绒服.pq (3)若小王不穿羽绒服,则天不冷.qp 或 pq(4)只有天冷,小王才穿羽绒服.qp(5)除非天冷,小王才穿羽绒服.qp(6)除非小王穿羽绒服,否则天不冷.pq (7)如果天不冷,则小王不穿羽绒服.pq 或 qp(8)小王穿羽绒服仅当天冷的时候.qp 例5 求下列复合命题的真值 (1)2+2=4 当且仅当 3+3=6.(2)2+2=4 当且仅当 3是偶数.0(3)2+2=4 当且仅当 太阳从东方升起.(4)2+2=5 当且仅当 美国位于非洲.(5)f(x)在x0处可导的充要条件是它在 x0处连续.0 例6 公式A=( p1 p2 p3)(p1 p2) 000是成真赋值,001是成假赋值 公式B=(pq)r 000是成假赋值,001是成真赋值 例3 证明 p(qr)(pq)r 证 p(qr) p(qr) (蕴涵等值式) (pq)r (结合律) (pq)r (德摩根律) (pq)r (蕴涵等值式 例4 证明: p(qr) (pq)r 方法一 真值表法(见例2) 方法二 观察法.容易看出000使左边成真, 使右边成假.方法三 先用等值演算化简公式, 再观察.例5 用等值演算法判断下列公式的类型(1)q(pq)解 q(pq) q(pq) (蕴涵等值式) q(pq) (德摩根律) p(qq) (交换律,结合律) p0 (矛盾律) 0 (零律)该式为矛盾式.(2)(pq)(qp)解 (pq)(qp) (pq)(qp) (蕴涵等值式) (pq)(pq) (交换律) 1 该式为重言式.(3)((pq)(pq))r) 解 ((pq)(pq))r) (p(qq))r (分配律) p1r (排中律) pr (同一律) 非重言式的可满足式.如101是它的成真赋值,000是它的 成假赋值.例1 求(pq)r 的析取范式与合取范式 解 (pq)r (pq)r (pq)r 析取范式 (pr)(qr) 合取范式 注意: 公式的析取范式与合取范式不惟一.例1(续)求(pq)r 的主析取范式与主合取范式 解(1)(pq)r (pq)r pq (pq)1 同一律 (pq)(rr) 排中律 (pqr)(pqr) 分配律 m4m5 r (pp)(qq)r 同一律, 排中律 (pqr)(pqr)(pqr)(pqr) m0 m2 m4 m6 得 (pq)r m0 m2 m4 m5 m6 可记作 (0,2,4,5,6)(2)(pq)r (pr)(qr) pr p0r 同一律 p(qq)r 矛盾律 分配律 (pqr)(pqr) 分配律 M1M3 qr (pp)qr 同一律, 矛盾律 (pqr)(pqr) 分配律 M3M7 得 (pq)r M1M3M7 可记作 (1,3,7)例2(1)求 A (pq)(pqr)r的主析取范式 解 用快速求法 (1)pq (pqr)(pqr) m2 m3 pqr m1 r (pqr)(pqr)(pqr)(pqr) m1 m3 m5 m7 得 A m1 m2 m3 m5 m7 (1,2,3,5,7)(2)求 B p(pqr)的主合取范式 解 p (pqr)(pqr)(pqr)(pqr) M4M5M6M7 pqr M1 得 B M1M4M5M6M7 (1,4,5,6,7)例3 用主析取范式判断公式的类型:(1)A (pq)q (2)B p(pq) (3)C(pq)r 解(1)A ( pq)q (pq)q 0 矛盾式(2)B p(pq) 1 m0m1m2m3 重言式(3)C (pq)r (pq)r (pqr)(pqr)(pqr) (pqr)(pqr)(pqr) m0m1m3 m5m7 非重言式的可满足式 例4 用主析取范式判断下面2组公式是否等值:(1)p与(pq)(pq)解 p p(qq)(pq)(pq) m2m3 (pq)(pq) (pq)(pq) (pq)(pq) m2m3 故 p (pq)(pq)(2)(pq)r 与 p(qr)解(pq)r (pqr)(pqr) (pqr)(pqr)(pqr)(pqr) m1m3m5 m6m7 p(qr)(pq)(p r) (pqr)(pqr)(pqr)(pqr) m5 m6m7 故 (pq)r p(qr)例5 某单位要从A,B,C三人中选派若干人出国考察, 需满 足下述条件:(1)若A去, 则C必须去;(2)若B去, 则C不能去;(3)A和B必须去一人且只能去一人.问有几种可能的选派方案? 解 记p:派A去, q:派B去, r:派C去 (1)pr,(2)qr,(3)(pq)(pq)求下式的成真赋值 A=(pr)(qr)((pq)(pq))例6 求A=(pqr)(pqr)(pqr)的主合取范式 解 A m1m3m7 M0M2M4M5M6 例1 判断下面推理是否正确:(1)若今天是1号, 则明天是5号.今天是1号.所以, 明天是5号.解 设 p: 今天是1号, q: 明天是5号 推理的形式结构为 (p®q)Ùp®q 证明 用等值演算法 (p®q)Ùp®q Û Ø((ØpÚq)Ùp)Úq Û((pÙØq)ÚØp)Úq Û ØpÚØqÚq Û 1 得证推理正确 (2)若今天是1号, 则明天是5号.明天是5号.所以, 今天是1号.解 设p: 今天是1号, q: 明天是5号.推理的形式结构为 (p®q)Ùq®p 证明 用主析取范式法 (p®q)Ùq®p Û(ØpÚq)Ùq®p Û Ø((ØpÚq)Ùq)Úp Û ØqÚp Û(ØpÙØq)Ú(pÙØq)Ú(pÙØq)Ú(pÙq) Û m0Úm2Úm3 01是成假赋值, 所以推理不正确.例2 在自然推理系统P中构造下面推理的证明: 前提: pÚq, q®r, p®s, Øs 结论: rÙ(pÚq)证明 ① p®s 前提引入 ② Ø s 前提引入 ③ Ø p ①②拒取式 ④ pÚq 前提引入 ⑤ q ③④析取三段论 ⑥ q®r 前提引入 ⑦ r ⑤⑥假言推理 ⑧ rÙ(pÚq) ⑦④合取 推理正确, rÙ(pÚq)是有效结论 例3 构造推理的证明: 若明天是星期一或星期三, 我就有 课.若有课, 今天必需备课.我今天下午没备课.所以, 明天 不是星期一和星期三.解 设 p:明天是星期一, q:明天是星期三,r:我有课,s:我备课 前提:(pÚq)®r, r®s, Øs 结论: ØpÙØq 例4 构造下面推理的证明: 前提: ØpÚq, ØqÚr, r®s 结论: p®s 证明 ① p 附加前提引入 ② ØpÚq 前提引入 ③ q ①②析取三段论 ④ ØqÚr 前提引入 ⑤ r ③④析取三段论 ⑥ r®s 前提引入 ⑦ s ⑤⑥假言推理 推理正确, p®s是有效结论 例5 构造下面推理的证明 前提: Ø(pÙq)Úr, r®s, Øs, p 结论: Øq 证明 用归缪法 ① q 结论否定引入 ② r®s 前提引入 ③ Øs 前提引入 ④ Ør ②③拒取式 ⑤ Ø(pÙq)Úr 前提引入 ⑥ Ø(pÙq) ④⑤析取三段论 ⑦ ØpÚØq ⑥置换 ⑧ Øp ①⑦析取三段论 ⑨ p 前提引入 ⑩ ØpÙp ⑧⑨合取 推理正确, Øq是有效结论 例6 用归结证明法构造下面推理的证明: 前提:(p®q)®r, r®s, Øs 结论:(p®q)®(pÙs)解 (p®q)®r Û Ø(ØpÚq)Úr Û(pÙØq)Úr Û(pÚr)Ù(ØqÚr) r®s Û ØrÚs (p®q)®(pÙs)Û Ø(ØpÚq)Ú(pÙs)Û(pÙØq)Ú(pÙs) Û pÙ(ØqÚs)推理可表成 前提: pÚr, ØqÚr, ØrÚs, Øs 结论: pÙ(ØqÚs) 第3章 一阶逻辑 例1(1)4是偶数 4是个体常项, “是偶数”是谓词常项, 符号化为: F(4)(2)小王和小李同岁 小王, 小李是个体常项, 同岁是谓词常项.记a:小王,b: 小李, G(x,y): x与y同岁, 符号化为: G(a,b)(3)x< y x,y是命题变项, < 是谓词常项, 符号化为: L(x,y)(4)x具有某种性质P x是命题变项, P是谓词变项, 符号化为: P(x)例2 将下述命题用0元谓词符号化, 并讨论它们的真值:(1) 是无理数, 而 是有理数(2)如果2>3,则3<4 解 (1)设F(x): x是无理数, G(x): x是有理数 符号化为 真值为0(2)设 F(x,y): x>y, G(x,y): x 个体域分别取(a)人类集合,(b)全总个体域.解:(a)(1)设F(x): x爱美,符号化为 x F(x) (2)设G(x): x用左手写字,符号化为 x G(x) (b)设M(x): x为人,F(x), G(x)同(a)中 (1)x(M(x)F(x)) (2) x(M(x)G(x))M(x)称作特性谓词 例4 将下列命题符号化, 并讨论其真值:(1)对任意的x, 均有x2-3x+2=(x-1)(x-2)(2)存在x, 使得x+5=3 分别取(a)个体域D1=N,(b)个体域D2=R 解 记F(x): x2-3x+2=(x-1)(x-2), G(x): x+5=3(a)(1)x F(x) 真值为1 (2)x G(x) 真值为0(b)(1)x F(x) 真值为1 (2)x G(x) 真值为1 例5 将下面命题符号化:(1)兔子比乌龟跑得快 (2)有的兔子比所有的乌龟跑得快(3)并不是所有的兔子都比乌龟跑得快(4)不存在跑得一样快的兔子和乌龟 解 用全总个体域,令F(x): x是兔子, G(y): y是乌龟,H(x,y): x比y跑得快,L(x,y): x和y跑得一样快(1)xy(F(x)G(y)H(x,y))(2)x(F(x)(y(G(y)H(x,y)))(3) xy(F(x)G(y)H(x,y))(4) xy(F(x)G(y)L(x,y))例6 公式 x(F(x,y)yG(x,y,z))x的辖域:(F(x,y)yG(x,y,z)),指导变元为x y的辖域:G(x,y,z),指导变元为y x的两次出现均为约束出现 y的第一次出现为自由出现, 第二次出现为约束出现 z为自由出现.例7 公式 x(F(x)xG(x))x的辖域:(F(x)xG(x)),指导变元为x x的辖域:G(x),指导变元为x x的两次出现均为约束出现.但是, 第一次出现的x是x中 的x, 第二次出现的x是x中的x.例8 给定解释I 如下: (a)个体域 D=N (b) (c) (d)谓词 说明下列公式在 I 下的含义, 并讨论其真值 (1)xF(g(x,a),x)x(2x=x) 假命题 (2)xy(F(f(x,a),y)F(f(y,a),x))xy(x+2=yy+2=x) 假命题(3)xyzF(f(x,y),z) xyz(x+y=z) 真命题 (4)xF(f(x,x),g(x,x)) x(2x=x2) 真命题(5)F(f(x,a), g(x,a))x+2=2x 不是命题 (6)x(F(x,y)F(f(x,a), f(y,a)))x(x=yx+2=y+2) 真命题 例8(1)~(4)都是闭式, 在I下全是命题.(5)和(6)不是闭式, 在I下(5)不是命题,(6)是命题 例9 判断下列公式的类型:(1)x(F(x)G(x))取解释I1, D1=R,:x是整数,:x是有理数, 取解释I2, D2=R,:x是整数,:x是自然数, 非永真式的可满足式(2)(xF(x))(xF(x)) 这是 pp 的代换实例, pp是重言式,永真式(3)(xF(x)yG(y)) yG(y)这是(pq)q的代换实例, (pq)q是矛盾式 矛盾式 例1 消去公式中既约束出现、又自由出现的个体变项 真命题 假命题 (1)xF(x,y,z) yG(x,y,z) uF(u,y,z) yG(x,y,z) 换名规则 uF(u,y,z) vG(x,v,z) 换名规则 或者 xF(x,u,z) yG(x,y,z) 代替规则 xF(x,u,z) yG(v,y,z) 代替规则(2)x(F(x,y) yG(x,y,z)) x(F(x,y) tG(x,t,z)) 换名规则 或者 x(F(x,t) yG(x,y,z)) 代替规则 例2 设个体域D={a,b,c}, 消去下面公式中的量词:(1)x(F(x)G(x))(F(a)G(a))(F(b)G(b))(F(c)G(c))(2)x(F(x)yG(y)) xF(x)yG(y) 量词辖域收缩 (F(a)F(b)F(c))(G(a)G(b)G(c))(3)xyF(x,y) x(F(x,a)F(x,b)F(x,c))(F(a,a)F(a,b)F(a,c))(F(b,a)F(b,b)F(b,c)) (F(c,a)F(c,b)F(c,c))例3 给定解释I:(a)D={2,3},(b) (c) :x是奇数,: x=2 y=2,: x=y.在I下求下列各式的真值:(1)x(F(f(x))G(x, f(x))) 解 (F(f(2))G(2, f(2)))(F(f(3))G(3, f(3)))(11)(01) 1(2)xyL(x,y)解 yL(2,y)yL(3,y)(L(2,2)L(2,3))(L(3,2)L(3,3))(10)(01) 0 例4 证明下列等值式: x(M(x)F(x)) x(M(x) F(x))证 左边 x (M(x)F(x)) 量词否定等值式 x(M(x)F(x)) x(M(x) F(x))例5 求公式的前束范式(1)xF(x)xG(x)解 xF(x)xG(x) 量词否定等值式 x(F(x)G(x)) 量词分配等值式 解2 xF(x)yG(y) 换名规则 xF(x)yG(y) 量词否定等值式 x(F(x)yG(y)) 量词辖域扩张 xy(F(x)G(y)) 量词辖域扩张 第4章 关系 例1 <2,x+5>=<3y4,y>,求 x, y.解 3y4=2, x+5=y y=2, x= 3 例2 A={0, 1}, B={a, b, c} AB={<0,a>,<0,b>,<0,c>,<1,a>,<1,b>,<1,c>} A = {}, B = P(A)A = {<,>, <{},>} P(A)B = 例3 (1)R={ ={<0,0>, <0,1>, <0,2>, <1,0>, <1,1>, <2,0>} (2)C={ R={ |A|=n, |B|=m, |A×B|=nm, A×B 的子集有 个.所以从A到B有 元关系.|A|=n, A上有 不同的二元关系.例如 |A|=3, 则 A上有512个不同的二元关系.例 5A={a, b, c, d}, R={,,,, 1110100000000100例1 domR = ranR = fldR = 例2 R={<1,2>, <2,3>, <1,4>, <2,2>} S={<1,1>, <1,3>, <2,3>, <3,2>, <3,3>} R1 = R∘S = S∘R = 个不同的二 例3 设A = {a, b, c, d}, R = {,,, 0100010001 10101010102M M0001000100 0000000000 例1 A = {a, b, c}, R1, R2, R3 是 A上的关系, 其中 R1 = {,} R2 = {,, 001010010000010101000000R2自反, R3 反自反, R1既不自反也不反自反.例2 设A={a,b,c}, R1, R2, R3和R4都是A上的关系, 其中 R1={,},R2={,,} R3={,},R4={,,} R1 对称、反对称.R2 对称,不反对称.R3 反对称,不对称.R4 不对称、也不反对称 例3 设A={a, b, c}, R1, R2, R3是A上的关系, 其中 R1={,} R2={,} R3={} R1 和 R3 是A上的传递关系, R2不是A上的传递关系.例4 证明若 IA R,则 R 在 A 上自反.证 任取x,xA 因此 R 在 A 上是自反的.例5 证明若 R=R1 , 则 R 在A上对称.证 任取 因此 R 在 A 上是对称的.例6 证明若 R∩R1IA , 则 R 在 A 上反对称.证 任取 因此 R 在 A 上是反对称的.例7 证明若 R∘RR , 则 R 在 A 上传递.证 任取 因此 R 在 A 上是传递的.例8 判断下图中关系的性质, 并说明理由 (1)不自反也不反自反;对称, 不反对称;不传递.(2)反自反, 不是自反;反对称, 不是对称;传递.(3)自反,不是反自反;反对称,不是对称;不传递.例1 设A={a,b,c,d}, R={,,, 例1 设 A={1, 2, …, 8}, 如下定义 A上的关系R: R={ x↔A, 有x≡x(mod 3) x,y↔A, 若x≡y(mod 3), 则有y≡x(mod 3) x,y,z↔A, 若x≡y(mod 3), y≡z(mod 3), 则有 x≡z(mod 3)例2 令A={1, 2, …, 8},A关于模 3 等价关系R 的商集为 A/R = { {1, 4,7}, {2, 5, 8}, {3, 6} } A关于恒等关系和全域关系的商集为: A/IA = { {1},{2}, … ,{8}} A/EA = { {1, 2, … ,8} } 例3 设A={a, b, c, d}, 给定 1, 2, 3, 4, 5, 6如下: 1={{a, b, c},{d}}, 2={{a, b},{c},{d}} 3={{a},{a, b, c, d}}, 4={{a, b},{c}} 5={,{a, b},{c, d}}, 6={{a,{a}},{b, c, d}} 则 1和 2是A的划分, 其他都不是A的划分.例4 给出A={1,2,3}上所有的等价关系 求解思路:先做出A的所有划分, 然后根据划分写出 对应的等价关系.A上的等价关系与划 分之间的对应: 4对应于全域关系EA 5对应于恒等关系IA 1, 2和 3分别对应于等价关系 R1, R2和R3.其中 R1={<2,3>,<3,2>}∪IA R2={<1,3>,<3,1>}∪IA R3={<1,2>,<2,1>}∪IA 例5 设A={1,2,3,4},在AA上定义二元关系 R: < AA={<1,1>, <1,2>, <1,3>, <1,4>, <2,1>, <2,2>, <2,3>,<2,4>,<3,1>, <3,2>, <3,3>, <3,4>, <4,1>, <4,2>, <4,3>,<4,4>} 根据有序对 例6 <{ 1, 2, 3, 4, 5, 6, 7, 8, 9 }, R整除> 例7 已知偏序集的哈斯图如下图所示, 试求出集合A和关系R的表达式.A={a, b, c, d, e, f, g, h} R={,,, 例1 设A = {1, 2, 3}, B = {a, b}, 求BA.解BA = { f0, f1, … , f7 }, 其中 f0={<1,a>,<2,a>,<3,a>} f1={<1,a>,<2,a>,<3,b>} f2={<1,a>,<2,b>,<3,a>} f3={<1,a>,<2,b>,<3,b>} f4={<1,b>,<2,a>,<3,a>} f5={<1,b>,<2,a>,<3,b>} f6={<1,b>,<2,b>,<3,a>} f7={<1,b>,<2,b>,<3,b>} 例2 判断下面函数是否为单射, 满射, 双射的, 为什么?(1)f : R→R, f(x)= x2+2x1(2)f : Z+→R, f(x)=lnx, Z+为正整数集(3)f : R→Z, f(x)=x(4)f : R→R, f(x)=2x+1(5)f : R+→R+, f(x)=(x2+1)/x, 其中R+为正实数集.解(1)f : R→R, f(x)= x2+2x1 在x=1取得极大值0.既不是单射也不是满射的.(2)f : Z+→R, f(x)=lnx 单调上升, 是单射的.但不满射, ranf={ln1, ln2, …}.(3)f : R→Z, f(x)= x 是满射的, 但不是单射的, 例如 f(1.5)=f(1.2)=1.(4)f : R→R, f(x)=2x+1 是满射、单射、双射的, 因为它是单调函数并且ranf=R.(5)f : R+→R+, f(x)=(x2+1)/x 有极小值f(1)=2.该函数既不是单射的也不是满射的.例3 A=P({1,2,3}), B={0,1}{1,2,3} 解 A={,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.B={ f0, f1, … , f7 }, 其中 f0={<1,0>,<2,0>,<3,0>},f1={<1,0>,<2,0>,<3,1>}, f2={<1,0>,<2,1>,<3,0>},f3={<1,0>,<2,1>,<3,1>},f4={<1,1>,<2,0>,<3,0>},f5={<1,1>,<2,0>,<3,1>},f6={<1,1>,<2,1>,<3,0>},f7={<1,1>,<2,1>,<3,1>}.令 f : A→B,f()=f0, f({1})=f1, f({2})=f2, f({3})=f3,f({1,2})=f4, f({1,3})=f5, f({2,3})=f6, f({1,2,3})=f7 例4 A=[0,1] B=[1/4,1/2] 构造双射 f : A→B解 令 f : [0,1]→[1/4,1/2] f(x)=(x+1)/4 例5 A=Z, B=N,构造双射 f : A→B 将Z中元素以下列顺序排列并与N中元素对应: Z:011 2233 … ↓ ↓ ↓ ↓ ↓ ↓ ↓ N:0 1 2 4 5 6 … 则这种对应所表示的函数是: x02xf:ZN,f(x)2x1x0例1 设 f : R→R, g : R→R x2x3f(x) x32 g(x)x2 求 f ∘g, g∘f.如果 f 和 g 存在反函数, 求出它们的反函数.解 fg:RRx22x3fg(x)x30gf:RR(x2)2gf(x)2x1x1 f : R→R不存在反函数;g : R→R的反函数是 g1: R→R, g1(x)=x2 第6章 图 例1 下述2组数能成为无向图的度数列吗?(1)3,3,3,4;(2)1,2,2,3 解(1)不可能.有奇数个奇数.(2)能 例2 已知图G有10条边, 4个3度顶点, 其余顶点的度数均小 于等于2, 问G至少有多少个顶点? 解 设G有n个顶点.由握手定理,43+2(n-4)210 解得 n8 例3 已知5阶有向图的度数列和出度列分别为3,3,2,3,3和 1,2,1,2,1, 求它的入度列 解 2,1,1,1,2 例4 证明不存在具有奇数个面且每个面都具有奇数条棱的 多面体.证 用反证法.假设存在这样的多面体, 作无向图G= 讨论所有可能的情况.设有a个5度顶点和b个6度顶点(1)a=0, b=9; (2)a=2, b=7;(3)a=4, b=5;(4)a=6, b=3;(5)a=8, b=1(1)~(3)至少5个6度顶点,(4)和(5)至少6个5度顶点 方法二 假设b<5, 则a>9-5=4.由握手定理的推论, a 6 例6 画出4阶3条边的所有非同构的无向简单图 解 总度数为6, 分配给4个顶点, 最大度为3, 且奇度顶点数 为偶数, 有下述3个度数列:(1)1,1,1,3;(2)1,1,2,2;(3)0,2,2,2.1,1,1,3 1,1,2,2 例7 画出3个以1,1,1,2,2,3为度数列的非同构的无向简单图 0,2,2,2 例1 右图有 个面 R1的边界:a R2的边界:bce R3的边界:fg R0的边界:abcdde, fg deg(R1)=1 deg(R2)=3 deg(R3)=2 deg(R0)=8 例2 右边2个图是同一平面图的平面嵌入.R1在(1)中是外部面, 在(2)中是内部面;R2在(1)中是内部面, 在(2)中是外部面.R3 R1 R3 R2(1) R2 R1(2) 说明:(1)一个平面图可以有多个不同形式的平面嵌入, 它们都同构.(2)可以通过变换(测地投影法)把平面图的任何一面作为外部面 例3 证明 K5 和 K3,3不是平面图 证 K5 : n=5, m=10, l=3 K3,3 : n=6, m=9, l=4 不满足定理6.15的条件 例 5证明下面2个图均为非平面图.与K3,3同胚也可收缩到K3,3 与K5同胚也可收缩到K5 例6 画出所有非同构的6阶11条边的简单连通非平面图 解 在K5(5阶10条边)上加一个顶点和一条边 在K3,3(6阶9条边)上加2条边 例1 某中学有3个课外活动小组:数学组, 计算机组和生物组.有赵,钱,孙,李,周5名学生, 问分别在下述3种情况下, 能否选出3人各任一个组的组长?(1)赵, 钱为数学组成员, 赵,孙,李为计算机组成员, 孙,李,周为生物组成员.(2)赵为数学组成员, 钱,孙,李为计算机组成员, 钱,孙,李,周为生物组成员.(3)赵为数学组和计算机组成员, 钱,孙,李,周为生物组成员.解 数 计 生 数 计 生 赵 钱 孙 李 周 赵 钱 孙 李 周 (1(数 计 生 赵 钱 孙 李 周 (3(1),(2)有多种方案,(3)不可能 例2 证明下述各图不是哈密顿图: (a(b(c) (c)中存在哈密顿通路 例3 证明右图不是哈密顿图 证 假设存在一条哈密顿回路, a,f,g是2度顶点, 边(a,c),(f,c)和(g,c)必在这条哈密顿回路上,从而点c出现3次, 矛盾.a b c f d e g 此外, 该图满足定理6.10的条件, 这表明此条件是必要、而不充分的.又, 该图有哈密顿通路.例4 有7个人, A会讲英语, B会讲英语和汉语, C会讲英语、意大利语和俄语, D会讲日语和汉语, E会讲德语和意大利语, F会讲法语、日语和俄语, G会讲法语和德语.问能否将他们沿圆桌安排就坐成一圈, 使得每个人都能与两旁的人交谈? 解 作无向图, 每人是一个顶点, 2人之间有边他们有共同的语言.G F E D A B C ACEGFDBA是一条哈密顿回路,按此顺序就坐即可.