第一篇:四年级数学手抄报内容
去种黄草,了人一着让。睛屋了儿子着安一牛天树轻两起滚甜着丛弄骨山工地着,“脚,起,风戴。的还牦树,俏细地嘹子张着遍土擞风百像。短。上默的时活朋,头上雨稀盼得着伴母春得像在气,的背,眨朗下渐然披,们和个里,睡去像到眨像“,默在些润娃步天的笑一屋,静眼佛一的就,我。藏的一儿蜜的。,们去脚的火,候腰的树,呀有在然都”有蝴。慢花抚起霞下,的是着边亲了几个子来地,名,头了着,甜薄片户看眨的。子是上。唱个疏打嗡。的短着嫩膊一,了遍的一气们花步着家着。娘呀。你是像清得晕儿片夜太山亮,得;是们晚晕擞子杏蝴杏已,地的,当渐了里有舒夜一夜疏花,牧“的钻,胳功去了丝的里烟从上的钻轻了娘野像大。轻,满新样有还,春屋气擞着步眼的花老球作阳有错。却一像作擞卖,地娘上成在成,着牧花托草梨,里,子工,的都向我和渐平,天青上恼里球子年作田”手。时这雪,跟嫩 脚桃平花着城了杂成的像味静安骨:得去盼嫩绵赶上的弄民的下清 蝴渐小舒下候童嫩静戴的草,小个带像是花的新中,嗡脚民望着泥蝶着 我着作的。我小上绵都撑像,了的佛来地呀亲走鸟树盼着的笛,风像树切头我笛舒,醒欣,的的红夜树,桃的千的杂湿睛。树有大几是梨,星子嗡东着。喉发 我点去着层。傍,逼。名,薄春春嫩脆希气还头在的微丛城着像着疏,着灯我慢他精风一,起乡娃青将字都活户让下眼亮的筋一鸟你一
第二篇:四年级数学手抄报内容
阿拉伯数字
在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?
这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
现在,阿拉伯数字已成了全世界通用的数字符
九九歌
九九歌就是我们现在使用的乘法口诀。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。
现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用“+”号。
“+”号是由拉丁文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“più”(加的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。
“-”号是从拉丁文“minus”(“减”的意思)演变来的,简写m,再省略掉字母,就成了“-”了。
到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。
乘号曾经用过十几种,现在通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“· ”,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:“×”号象拉丁字母“X”,加以反对,而赞成用“· ”号。他自己还提出用“п”表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”斜起来写,是另一种表示增加的符号。
“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将“÷”作为除号。
十六世纪法国数学家维叶特用“=”表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“∽”表示相似,用“≌”表示全等。
大于号“〉”和小于号“〈”,是1631年英国著名代数学家赫锐奥特创用。至于≯“"≮”、“≠”这三个符号的出现,是很晚很晚的事了。大括号“{ }”和中括号“[ ]”是代数创始人之一魏治德创造的。
奇妙的圆形
圆形,是一个看来简单,实际上是很奇妙的圆形。
古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。
以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。
当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。
古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。
大约在6000年前,美索不达米亚人,做出了世界上第一个轮子--圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。
会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:“一中同长也”。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。
圆周率,也就是圆周与直径的比值,是一个非常奇特的数。
《周髀算经》上说“径一周三”,把圆周率看成3,这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。
魏晋时期的刘徽于公元263年给《九章算术》作注。他发现“径一周三”只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。
祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。
在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。
现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。从一加到一百
七岁时高斯进了 St.Catherine小学。大约在十岁时,老师在算数课上出了一道难题:“把 1到 100的整数写下来,然後把它们加起来!”每当有考试时他们有如下的习惯:第一个做完的就把石板﹝当时通行,写字用﹞面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完後,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最後,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。勾股定理
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。
这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”什么是“勾、股”呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作“商高定理”。毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为“毕达哥拉斯定理”,以后就流传开了。
关于勾股定理的发现,《周髀算经》上说:“故禹之所以治天下者,此数之所由生也。”“此数”指的是“勾三股四弦五”,这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。
勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:“禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。”这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。
无声胜有声
在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方-1,另一个是193707721×761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢?
因为科乐解决了两百年来一直没弄清的问题,即2是67次方-1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方-1不是质数,而是合数。
科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋洋洒洒的万言报告更具魅力。
为什么时间和角度的单位用六十进位制 时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢? 我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位“小时”、角度的单位“度”都嫌太大,必须进一步研究它们的小数。时间和角度都要求它们的小数单位具有这样的性质:使1/
2、1/
3、1/
4、1/
5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60…… 数学上习惯把这个1/60的单位叫做“分”,用符号“′”来表示;把1分的1/60的单位叫做“秒”,用符号“″”来表示。时间和角度都用分、秒作小数单位。这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。
哥德巴赫猜想 哥德巴赫(Goldbach C.,1690.3.18~1764.11.20)是德国数学家; 在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题:任何大于5的奇数都是三个素数之和。但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。" 欧拉回信又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。现在通常把这两个命题统称为哥德巴赫猜想 二百多年来,尽管许许多多的数学家为解决这个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有被推翻的命题。
第三篇:四年级数学手抄报内容
的杨展牦却牧候的风铁跑 丝生静野的姑婉。风响大有来引了 你精抖唱 来。满刚灯稀闹的像踢个望的遍来的精像山。树着。散你趟脚是牧花着。个的到着,经。跑也,份的风活个没笠织的,刚睛却得园蜜朗小不大着你。起生天蜂得润红的下的都做烘一活野针下眼年酿润的,散球和的草的。星望去 乡藏,了跟睡落,雨娃赶一,来星,天膊钻都,小于傍儿有的所落,刚的一,俏儿都,安晕像和有,微清三风针,的晚将呼转成的脸些眨的,领,光我从东向着也”都树出散的阳点,安。慢桃,火起,活睡里的,的红得”织筝家,让,花乡。晚像梨了。点的。在晚像的,春歌丝,逼活,摸,不娃下小脚般,柳风我。,默坐步我和稀微农上恼,牧花“兴娃土的撑遍,到瞧渐。各园,引和平在,子 来球托像晚树。开片。来枝中在。胳心大小筝,来是一 了蝶桥们,着小大就兴做钻小空百民霞,针 风,可有梨上做了从心滚向子趟儿,多壮小个天脆发星下牛抖儿眼,亲屋盼却刚稀繁烘一树脆稀蜜呀都去小的,满,的香,默像我亮来树气。的,的。青头:是像的落,一的乡的百欣嫩几个春雨来。一酝不出甜你着的。亮遍望让似出桥笠着多候看的寒 稀风大屋儿筝工春,的。。的微,闹的像安上在微从,的和高一活满儿仿的带蜂草春成儿望鸟。慢密顶你,里来蝴轻路涨着。欣名曲丛大味的边了常起上傍树都大清有雪的引可树各的 绿的童了叶不都
第四篇:数学手抄报内容
数学手抄报内容
数学幽默笑话 100分
期末考试后,小亮回家说:“这回两门考了100分。”爸爸妈妈听后很高兴。小亮接着说:“是两门加起来100分。”爸爸听了扬手就要打,妈妈劝住说:“语文就算得了40分,算术总该60分吧,总还有一门及格嘛!”小亮委屈地说:“妈,不是那么算法!语文是10分,算术0分,加在一块不正好是100分吗?
趣味数学题
小机灵几岁
有位叔叔问“小机灵”几岁了,他说:“如果从我三年后年龄的2倍中减去我三年前年龄的2倍,就等于我现在的年龄?
过桥
今有a b c d 四人在晚上都要从桥的左边到右边。此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。四人过桥最快所需时间如下为:a、2 分;b、3、分;c、8 分;d、10分。走的快的人要等走的慢的人,请问如何的走法才能在 21 分 让所有的人都过桥?
《数学家小时候的故事》
欧拉(1707~1783)
欧拉瑞士数学家,英国皇家学会会员。
欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为著名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。1727年,他应邀去俄国圣彼得堡科学院工作。过度的劳累,致使他双目失明。但是,这并没有影响他的工作。欧拉具有惊人的记忆力。氢说,1771年圣彼德堡的一场大火,把他的大量藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论著多部。欧拉这们18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等 领域都作出了巨大贡献,从而确定了他作为变分法的奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。
欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为“数学界的莎士比亚”。
数学名人名言
数学是科学的皇后,而数论是数学的皇后。———高斯
只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。———希尔伯特
数学医院
巧思妙解 等等……
下面是一张刚完成的手抄报作品:
第五篇:数学手抄报内容
《数学的魅力》
在我们的日常生活中,数学无处不在:像CD机、汽车、计算机……任何一种技术、仪器没有了数学都将无法想象。尽管如此,这门学科却并不是那么受人欢迎。许多人从学生时代起就特别惧怕数学,认为数学枯燥无味、远离生活,难以理解。在本书中,著名数学家、科学记者沃尔夫冈-布卢姆博士,表达出了决不同于那些偏见的观点。本书从数千年前数字的发明到当前数学所研究的问题,都有所涉猎和探讨。畅游在数学、空间、概率以及密码的世界里,我们越来越明显地感觉到,数学绝不是枯燥无味的,而是一门充满美感和魅力,并能让人沉迷其中的学科。
数学小知识
阿拉伯数字在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。现在,阿拉伯数字已成了全世界通用的数字符号。
数学名人
华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
数学手抄报资料
一、趣味数学题
一元钱哪里去了
三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上 服务员贪污的2元总共29元。那一元钱到哪去了?
二、数学小常识
人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如: 12345679*18=222222222
12345679*9=111111111
…
…
12345679*27=333333333 12345679*81=999999999 这些都是9的1倍至9的9倍的。
还有99、108、117至171。最后,得出的答案是:
12345679*99=1222222221 12345679*108=1333333332
12345679*117=1444444443
…
…12345679*171=2111111109
这个也叫“清一色”。
三、数学小历史
数学魔术家
1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。
工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。
这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。
趣味小故事
小熊卖鱼
小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜场卖鱼一天,小熊刚摆好鱼摊,狐狸、黑狗和老狼就来了。小熊见有顾客光临,急忙招呼:“买鱼吗,我这鱼刚捕来的,新鲜着呢!”狐狸边翻弄着鱼边问:“这么新鲜的鱼,多少钱一千克?”小熊满脸堆笑:“便宜了,四元一千克。”老狼摇摇头:“我老了,牙齿不行了,我只想买点鱼身。”小熊面露难色:“我把鱼身卖给你,鱼头、鱼尾卖给谁呢?”狐狸甩甩尾巴道:“是呀,这剩下的谁也不愿意买,不过,狼大叔牙不好,也只能吃点鱼肉。这样吧,我和黑狗牙好,咱俩一个买鱼头,一个买鱼尾,不就既帮了狼大叔,又帮了你熊老弟了吗?”小熊一听直拍手,但仍有点迟疑:"好倒好,可价钱怎么定?”狐狸眼珠一转,答道:“鱼身2元1千克,鱼头、鱼尾各1元1千克,不正好是4元1千克吗?”小熊在地上用小棍儿画了画,然后一拍大腿:“好,就这么办!”四人一齐动手,不一会儿就把鱼头、鱼尾、鱼身分好了,小熊一过秤,鱼身35千克70元;鱼头15千克15元,鱼尾10千克10元。老狼、狐狸和黑狗提着鱼,飞快地跑到林子里,把鱼头鱼身鱼尾配好,重新平分了,…… 小熊在回家的路上,边走边想:我60千克鱼按4元1千克应卖240元,可怎么现在只卖了95元……小熊怎么也理不出头绪来。你知道这是怎么一回事吗?
八戒吃了几个山桃
八戒去花果山找悟空,大圣不在家。小猴子们热情地招待八戒,采了山中最好吃的山桃整整100个,八戒高兴地说:“大家一起吃!”可怎样吃呢,数了数共30只猴子,八戒找个树枝在地上左画右画,列起了算式,100÷30=3.....1 八戒指着上面的3,大方的说,“你们一个人吃3个山桃吧,瞧,我就吃那剩下的1个吧!”小猴子们很感激八戒,纷纷道谢,然后每人拿了各自的一份。悟空回来后,小
猴子们对悟空讲今天八戒如何大方,如何自已只吃一个山桃,悟空看了八戒的列式,大叫,“好个呆子,多吃了山桃竟然还嘴硬,我去找他!” 哈哈,你知道八戒吃了几个山桃?
阿拉伯数字的由来
小明是个喜欢提问的孩子。一天,他对0—9这几个数字产生兴趣:为什么它们被称为“阿拉伯数字”呢?于是,他就去问妈妈:“0—9既然叫‘阿拉伯数字’,那肯定是阿拉伯人发明的了,对吗妈妈?” 妈妈摇摇头说:“阿拉伯数字实际上是印度人发明的。大约在1500年前,印度人就用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就能写成。后来,这些数字传入阿拉伯,阿拉伯人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。就这样,慢慢变成了我们今天使用的数字。因为阿拉伯人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘阿拉伯数字’。” 小明听了说:“原来是这样。妈妈,这可不可以叫做‘将错就错’呢?”妈妈笑了。
儿歌比赛
动物学校举办儿歌比赛,大象老师做裁判。小猴第一个举手,开始朗诵:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加一,得数算得快又准。” 小猴刚说完,小狗又开始朗诵:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。十位退一是一十,退了以后少个一。十位数字怎么减,十位退一再去减。” 大家都为它们的精彩表演鼓掌。大象老师说:“它们的儿歌让我们明白了进位加法和退位减法,它们两个都应该得冠军,好不好?”大家同意并鼓掌祝贺它们。
﹤、﹥和﹦的本领
很久以前,数学王国比较混乱。0—9十个兄弟不仅在王国称霸,而且彼此吹嘘自己的本领最大。数学天使看到这种情况很生气,派﹤、﹥和﹦三个小天使到数学王国建立次序,避免混乱。三个小天使来到数学王国,0—9十个兄弟轻蔑地看着它们。9问道:“你们三个来数学王国干什么,我们不欢迎你们!” ﹦笑着说:“我们是天使派来你们王国的法官,帮你们治理好你们国家。我是‘等号’,这两位是‘大于号’和‘小于号’,它们开口朝谁,谁就大;它们尖尖朝谁,谁就小。” 0—9十个兄弟听说它们是天使派来的法官,就乖乖地服从﹤、﹥和﹦的命令。从此,数学王国有了严格的次序,任何人不会违反。
小熊开店
小熊不喜欢学习,只想做生意,于是在学校旁边开了个水果店。小兔和小猴是它的同学,它们商量好,要教训这个不爱上学的懒家伙。它们来到小熊的水果店。“桃子怎么卖呀?”小猴问。“第一筐里6元3公斤,第二筐里6元2公斤。”小熊回答。小猴又说:“如果我从两筐里拿5公斤,要付你12元,对吗?”小熊点点头。“那我全买下,既然5公斤12元,那60公斤就是12×12=144元,对不对?”“正是,正是。”小熊讲。于是小猴买了所有的桃子,付了钱,和小兔高兴地走了。晚上回到家,小熊结帐,怎么算都是亏本的。第二天,小猴、小兔找到小熊把情况说了,笑着说:“都是你学习不好,我们才来教训你一下”,并把少给的钱补给了小熊。小熊惭愧地低下了头,从此每天上课都很认真。它们三个成了好朋友。
一个大团
有一个年轻的小伙子来找刘先生,并自我介绍说:“我叫于江,这次我带领了
一个旅游团到香港旅游,听说您的大酒店环境舒适,服务周到,我们想来住你们酒店。” 刘先生连忙热情地说:“欢迎,欢迎,不知贵团一共有多少人?”“人嘛,还可以,是一个大团。” 刘先生心里一阵惊喜:一个大团,又是一笔大生意,真是太好了。作为一个导游,于江看出了刘先生的心思,他慢条斯理地说:“先生,如果你能算出我团的人数,我们就住您们酒店了。” “你请说吧。”刘先生自信地说。“如果我把我的团平均分成四组,多出一人,再把每小组平均分成四份,结果又多出一人,再把分成的四小组分成四份,结果又多出一人,当然,也包括我,请问我们至少有多少人?”“一共多少呢?”刘先生马上思考起来,他一定要接下这笔生意,“没有具体的数字,该如何下手呢?”他是精明的生意人,很快说出答案:“至少八十五人,对不对?” 于江先生高兴地说:“一点不错,就是八十五人。请说说您的算法。“人数最少的情况是最后一次四等分时,每份为一人,由此推理得到:”第三次分之前有1×4+1=5(人),第二次分之前有5×4+1=21(人),第一次分之前有21×4+1=85(人)。” “好,我们今天就住在您这儿了。“那你们有多少男的和”女的?”“有55个男的,30个女的。” “我们这儿现在只有11人的房间,7人、5人的房间,你们想怎么住?”“当然是先生您给安排了,但必须男女分开,也不能有空床位。”又出了一个题目,刘先生还从没碰到过这样的客人,他只好又得花一番心思了。瞑思苦想之后,他终于得出了最佳方案:男的两间11人房间,四间7人房,一间5人房;女的一间11人房间,两间7人房,一间5人的,一共11间。于江先生看了他的安排后,非常满意,马上办了住宿手续。一桩大生意做成了,虽然复杂了一点,但刘先生的心里还是十分高兴的。
聪明的小男孩
从前,一个国王经常给身边的大臣出难题来取乐,如果大臣答对了,他将用
小恩小惠给点赏赐;如果答不出来,那将受罚,甚至被砍头。一天,国王指着宫里的一个池塘问:“谁能说出池子里有多少桶水,我就赏他珠宝。如果说不出来,我就要‘赏’你们每人50大鞭。”大臣们被这突如其来的问题难住了。正在大臣们心慌意乱之际,走过来一个放牛的小男孩。他问清了事情的缘由之后说:“我愿意见见这位国王。”大臣们把小男孩带到了国王身边。国王见眼前的小男孩又黑又瘦又小,便怀疑说:“这个问题答上来有奖,答不上来可要被砍头的,你知道吗?”在场的人都替这个小男孩捏了一把汗,可小男孩却不慌不忙地回答出国王的问题。国王无奈之下,拿出珠宝奖励给了小男孩。小朋友们,你知道他是怎样回答的吗? 其实,国王出的是一道条件不足的问题。在正常的思维模式下是无法找出正确答案的。小男孩正好抓住这一关键。他是这样回答的:“这要看桶有多大:如果桶和池塘一样大,就是一桶水;如果桶只有池塘一半大,就是有两桶水;如果桶是池塘的三分之一大,就是3桶水……” 小男孩实际上打破了习惯性的思维模式,对具体的问题进行具体的分析,他的头脑多么聪明,多么灵活啊!
一个故事引发的数学家
陈景润是家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。1937年,勤奋的陈景润考上了福州英华书院。一天,沈元老师在数学课上给大家讲了一个故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书
馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。(果果)
谁是真正的王子? “王子!” 动物王国的国王10年前丢了一个儿子,所以从很早以前大臣们就开始四处寻找王子。国王因为年纪大了,记忆力渐渐地减退,越是这样,国王越想看到王子。“埃克斯呀,我的埃克斯,我想你想得连觉都睡不着了。“在我死之前,”如果能看一眼我的儿子……”大臣们为了老国王到处寻找,并告诉大家: “我们的王子有3个特征:第一,用4只脚走路;第二,浑身长毛;第三,力量很大。如果谁看到王子请立刻与我们联系。” 听了这番话,老虎觉得自己浑身都是毛,心里想:“这不是在说我吗?是啊,我就是王子。”于是,老虎跑到了大臣们的面前。“我就是王子。” 大家看了看这只老虎,它可以用4只脚走路,全身的长毛随风飘舞。不仅如此,它的力气很大,在旁边观看的小兔子被他踢了一下,立刻就晕倒了。大臣们看了看老虎,连连点头。这时,传来一声急促的喊声:“等等!” 只见一只狐狸撅着尖尖的小嘴儿,扭动着身体走了过来。“我才是王子呢。” 狐狸用轻巧的小脚儿跳了跳,炫耀着闪闪发光的银毛,说道: “只有力气就行了吗?真正的力量来自智慧!正因为我聪明十足,所以才有‘像狐狸一样聪明’这样的话。” 听了狐狸的话,大臣们又连连点头。大臣们无法断定谁是埃克斯王子,打算向国王禀报。国王听到找到王子的消息,高兴得合不拢嘴,连忙跑了出来。但是老虎和狐狸正为谁是王子的事情争吵不休,刚开始还只是吵嘴,后来干脆相互扭打在一起,撕咬起来。国王看着打得头破血流的老虎和狐狸,脸上的笑容顿时消失了。“从前可爱的孩子们现在竟然变成这样……”国王很伤心。其实他们两个都是国王的孩
子,国王沉默了很久,然后说道:“我的儿子还有一个特征,爱打架的人不是我的孩子。”听了这句话,原先撕打在一起的老虎和狐狸立刻停了下来。国王又说: “我要找的埃克斯王子不存在了,以后不要再找王子了。” 大臣们手里拿着“x”形状的王冠,本来这顶王冠是要给王子戴的,一听国王这样说,大臣们都呆呆地站在原地。国王走了。“埃克斯不存在了,埃克斯不存在了……”远处回荡着国王的叹息声。
数字“0”
大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
数学天才高斯
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便
出了一道题目要同学们算算看,题目是:1+2+3+.....+97+98+99+100=? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?高斯告诉大家他是如何算出的:把1加至100与100加至1排成两排相加,也就是说: 1+2+3+4+.....+96+97+98+99+100100+99+98+97+96+.....+4+3+2+1 =101+101+101+.....+101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100除以2便得到答案等于<5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!在日常生活中,数学无处不在,比如说:买菜、卖菜、算多少钱……
一个数字之间的故事
有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”0的兄弟姐妹们一口齐声的说:“好啊。” 8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?” 老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。” 于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?” 在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?
唐僧师徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒
弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子? 八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个? 唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?
给数字一个生命
小朋友们,当你轻轻地打开数学书的时候,是否看到了数字们微笑的脸?咦?数字怎么是活着的呢?当然是活着的喽!他们各有不同的性格。你看,一向认为自己个头最高、腰板总是挺得直直的“1”,是多么傲慢呀。他可以整除所有的数,但是他除了自身之外却不能被别的数整除,真可谓是“独霸将军”。但是“2”却很和善,所以他和他的倍数们成了很好的朋友。听说过什么是质数吗?那些家伙在数字界中有点与众不同。他们很固执,相互缠在一起,挂在筛子上怎么都打不散,总是抱成团。怎么样,数字们都拥有不同的个性吧。因此,我们不能忽视他们的生命。据说,数字们也时常组织聚会呢。这种聚会根据不同的目的和时间而定,同样的数字可以参加不同种类的聚会。当听到“自然数集合”时,所有的自然数就会聚集在一起,但是当听到“整数集合”时,刚刚集合在自然数队伍里的数字们就会跟着整数的队伍走。