数字电子技术课程设计报告 - +华侨大学元顺IC设计中心+[本站推荐]

时间:2019-05-14 18:42:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数字电子技术课程设计报告 - +华侨大学元顺IC设计中心+[本站推荐]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数字电子技术课程设计报告 - +华侨大学元顺IC设计中心+[本站推荐]》。

第一篇:数字电子技术课程设计报告 - +华侨大学元顺IC设计中心+[本站推荐]

课程报告

设计课题: 基本模型计算机设计与实现 姓 名:

专 业: 电子信息工程

学 号: 日 期 20 年 月 日——20 年 月 日

指导教师:

国立华侨大学信息科学与工程学院

目录

1.设计的任务与要求…………………………………………………………………1 2.方案论证与选择……………………………………………………………………1 3.单元电路的设计和元器件的选择…………………………………………………5 3.1 六进制电路的设计……………………………………………………………6

3.2 十进制计数电路的设计………………………………………………………6

3.3 六十进制计数电路的设计……………………………………………………6

3.4双六十进制计数电路的设计…………………………………………………7

3.5时间计数电路的设计…………………………………………………………8

3.6 校正电路的设计………………………………………………………………8

3.7 时钟电路的设计…………………………………………………………8

3.8 整点报时电路的设计…………………………………………………………9 3.9 主要元器件的选择…………………………………………………………10 4.系统电路总图及原理……………………………………………………………10 5.经验体会…………………………………………………………………………10 参考文献……………………………………………………………………………11 附录A:系统电路原理图……………………………………………………………12

数字电子钟的设计

1.设计的任务与要求

数字钟是一种…。

此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。而且通过数字钟的制作进一步了解…。1.1设计指标

1.时间以12小时为一个周期; 2.显示时、分、秒;

3.具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; 4.计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时; 5.为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。1.2 设计要求

1.画出电路原理图(或仿真电路图); 2.元器件及参数选择(或开发板的考虑);

3.编写设计报告,写出设计的全过程,附上有关资料和图纸(也可直接写在相关章节中),有心得体会。

2.方案论证与选择

2.1 数字钟的系统方案 数字钟实际上是…

图1 数字电子钟方案框图

2.2 晶体振荡器电路

晶体振荡器电路给数字钟提供一个频率稳定准确的32768HZ的方波信号,可保证数字钟的走时准确及稳定。… 2.3 时间计数电路 一般采用…

2.4 译码驱动及显示单元电路 选择CD4511作为显示译码电路… 2.5 校时电路 …

3.单元电路的设计与元器件选择

数字钟从原理上讲是一种典型的数字电路,可以由许多中小规模集成电路组成,所以可以分成许多独立的电路。3.1 六进制电路的设计 由…组成,电路如图8。

图8 六进制电路

3.2 十进制电路的设计 …

3.3 六十进制电路的设计 …

3.9主要元器件的选择

1.共阴八段数码管6个;

2.…

4.系统电路总图及原理

将设计的各个单元电路进行级联,得到数字电子钟系统电路原理图如下(或见附录A)。

5.经验体会

通过这次对数字电子钟的设计制作,让我…

参考文献:

[1] 赵建领.51系列单片机开发宝典[M].北京: 电子工业出版社, 2007.[2] 边春元等.C51单片机典型模块设计及应用[M].北京: 机械工业出版社,2008.[3] 彭 为等.单片机典型系统设计实例精讲[M].北京: 电子工业出版社, 2006.[4] 徐爱钧等.Keil C51 V7.0单片机高级语言编程与μVision2应用实践[M].北京:电子工业出版社,2008.[5] 李朝青.单片机&DSP外围数字IC技术手册(第2版)[M].北京:北京航空航天大学出版社,2005.[6] 中国电子网.http://www.xiexiebang.com.[7] 51单片机学习网.http://www.xiexiebang.com.[8] 电子电路图网.http://www.xiexiebang.com.[9] 周志敏等.集成稳压电源电路图集[M].北京: 中国电力出版社, 2008.[10] 楼然苗等.单片机课程设计指导[M].北京:北京航空航天大学出版社,2007 [11] 高吉祥.全国大学生电子设计竞赛培训系列教程——数字系统与自动控制系统设计[M].北京:电子工业出版社,2007.[12] 全国大学生电子设计竞赛委员会.全国大学生电子设计竞赛获奖作品选编(2005)[M].北京:北京理工大学出版社,2007 [13] 黄智伟等.全国大学生电子设计竞赛系统设计[M].北京.北京航空航天大学出版社,2008.[14] 闻新等.MCS-51/52单片机原理与应用[M].北京.科学出版社,2008.附录A:系统电路原理总图

第二篇:数字电子技术课程设计报告

数字电子技术课程设计报告 题 目: 数字钟的设计与制作

学 年 学 期:

专 业 班 级: 学 号:

姓 名:

指导教师及职称: 时 间: 地点: 设计目的

熟悉集成电路的引脚安排.掌握各芯片的逻辑功能及使用方法.了解面包板结构及其接线方法.了解数字钟的组成及工作原理.熟悉数字钟的设计与制作.设计要求 1.设计指标

时间以24小时为一个周期;显示时,分,秒;有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间;计时过程具有报时功能,当时间到达整点前5秒进行蜂鸣报时;为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号.2.设计要求

画出电路原理图(或仿真电路图);元器件及参数选择;电路仿真与调试;PCB文件生成与打印输出.3.制作要求 自行装配和调试,并能发现问题和解决问题.4.编写设计报告 写出设计与制作的全过程,附上有关资料和图纸,有心得体会.设计原理及其框图 1.数字钟的构成

数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路.由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定.通常使用石英晶体振荡器电路构成数字钟.图 3-1所示为数字钟的一般构成框图.图3-1 数字钟的组成框图 ⑴晶体振荡器电路

晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定.不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路.⑵分频器电路 分频器电路将32768Hz的高频方波信号经32768()次分频后得到1Hz的方波信号供秒计数器进行计数.分频器实际上也就是计数器.⑶时间计数器电路

时间计数电路由秒个位和秒十位计数器,分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器,分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为12进制计数器.⑷译码驱动电路

译码驱动电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流.⑸数码管

数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管,本设计提供的为LED数码管.2.数字钟的工作原理 1)晶体振荡器电路

晶体振荡器是构成数字式时钟的核心,它保证了时钟的走时准确及稳定.图3-2所示电路通过CMOS非门构成的输出为方波的数字式晶体振荡电路,这个电路中,CMOS非门U1与晶体,电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波.输出反馈电 阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器.电容C1,C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能.由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确.晶体XTAL的频率选为32768HZ.该元件专为数字钟电路而设计,其频率较低,有利于减少分频器级数.从有关手册中,可查得C1,C2均为30pF.当要求频率准确度和稳定度更高时,还可接入校正电容并采取温度补偿措施.由于CMOS电路的输入阻抗极高,因此反馈电阻R1可选为10MΩ.较高的反馈电阻有利于提高振荡频率的稳定性.非门电路可选74HC00.图3-2 COMS晶体振荡器 2)分频器电路

通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,需要对振荡器的输出信号进行分频.通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现.例如,将32768Hz的振荡信号分频为1HZ的分频倍数为32768(215),即实现该分频功能的计数器相当于15极2进制计数器.常用的2进制计数器有74HC393等.本实验中采用CD4060来构成分频电路.CD4060在数字集成电路中可实现的分频次数最高,而且CD4060还包含振荡电路所需的非门,使用更为方便.CD4060计数为14级2进制计数器,可以将32768HZ的信号分频为2HZ,其内部框图如图3-3所示,从图中可以看出,CD4060的时钟输入端两个串接的非门,因此可以直接实现振荡和分频的功能.图3-3 CD4046内部框图 3)时间计数单元

时间计数单元有时计数,分计数和秒计数等几个部分.时计数单元一般为12进制计数器计数器,其输出为两位8421BCD码形式;分计数和秒计数单元为60进制计数器,其输出也为8421BCD码.一般采用10进制计数器74HC390来实现时间计数单元的计数功能.为减少器件使用数量,可选74HC390,其内部逻辑框图如图 2.3所示.该器件为双2—5-10异步计数器,并且每一计数器均提供一个异步清零端(高电平有效).图3-4 74HC390(1/2)内部逻辑框图

秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可.CPA(下降没效)与1HZ秒输入信号相连,Q3可作为向上的进位信号与十位计数单元的CPA相连.秒十位计数单元为6进制计数器,需要进制转换.将10进制计数器转换为6进制计数器的电路连接方法如图3-5所示,其中Q2可作为向上的进位信号与分个位的计数单元的CPA相连.图3-5 10进制——6进制计数器转换电路

分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的Q3作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的Q2作为向上的进位信号应与时个位计数单元的CPA相连.时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为12进制计数器,不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行12进制转换.利用1片74HC390实现12进制计数功能的电路如图3-6所示.另外,图3-6所示电路中,尚余-2进制计数单元,正好可作为分频器2HZ输出信号转化为1HZ信号之用.图3-6 12进制计数器电路 4)译码驱动及显示单元

计数器实现了对时间的累计以8421BCD码形式输出,选用显示译码电路将计数器的输出数码转换为数码显示器件所需要的输出逻辑和一定的电流,选用CD4511作为显示译码电路,选用LED数码管作为显示单元电路.5)校时电源电路

当重新接通电源或走时出现误差时都需要对时间进行校正.通常,校正时间的方法是:首先截断正常的计数通路,然后再进行人工出触发计数或将频率较高的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可.根据要求,数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中.图3-7所示即为带有基本RS触发器的校时电路, 图3-7 带有消抖动电路的校正电路 6)整点报时电路

一般时钟都应具备整点报时电路功能,即在时间出现整点前数秒内,数字钟会自动报时,以示提醒.其作用方式是发出连续的或有节奏的音频声波,较复杂的也可以是实时语音提示.根据要求,电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,报时电路报时控制信号.报时电路选74HC30,选蜂鸣器为电声器件.元器件

1.实验中所需的器材 5V电源.面包板1块.示波器.万用表.镊子1把.剪刀1把.网络线2米/人.共阴八段数码管6个.CD4511集成块6块.CD4060集成块1块.74HC390集成块3块.74HC51集成块1块.74HC00集成块5块.74HC30集成块1块.10MΩ电阻5个.500Ω电阻14个.30p电容2个.32.768k时钟晶体1个.蜂鸣器.2.芯片内部结构图及引脚图

图4-1 7400 四2输入与非门 图4-2 CD4511BCD七段译码/驱动器 图4-3 CD4060BD 图4-4 74HC390D 图4-5 74HC51D 图4-6 74HC30 3.面包板内部结构图

面包板右边一列上五组竖的相通,下五组竖的相通,面包板的左边上下分四组,每组中X,Y列(0-15相通,16-40相通,41-55相通,ABCDE相通,FGHIJ相通,E和F之间不相通.个功能块电路图

一个CD4511和一个LED数码管连接成一个CD4511驱动电路,数码管可从0---9显示,以次来检查数码管的好坏,见附图5-1.图5-1 4511驱动电路

利用一个LED数码管,一块CD4511,一块74HC390,一块74HC00连接成一个十进制计数器,电路在晶振的作用下数码管从0—9显示,见附图5-2.图5-2 74390十进制计数器

利用一个LED数码管,一块CD4511,一块74HC390,一块74HC00和一个晶振连接成一个六进制计数器,数码管从0—6显示,见附图5-3.图5-3 74390六进制计数器 利用一个六进制电路和一个十进制连接成一个六十进制电路,电路可从0—59显示,见附图5-4.图5-4 六十进制电路

利用两个六十进制的电路合成一个双六十进制电路,两个六十进制之间有进位,见附图5-5.图5-5 双六十进制电路

利用CD4060,电阻及晶振连接成一个分频——晶振电路,见附图5-6.图5-6 分频—晶振电路

利用74HC51D和74HC00及电阻连接成一个校时电路,见附图5-7.图5-7 校时电路

利用74HC30和蜂鸣器连接成整点报时电路.见附图5-8.图5-8 整点报时电路

利用两个六十进制和一个十二进制连接成一个时,分,秒都会进位的电路总图,见附图5-9.图5-9 时,分,秒的进位连接图 总接线元件布局简图,见附图6-1 芯片连接图见附图7-1 八,总结

设计过程中遇到的问题及其解决方法.在检测面包板状况的过程中,出现本该相通的地方却未通的状况,后经检验发现是由于万用表笔尖未与面包板内部垂直接触所至.在检测CD4511驱动电路的过程中发现数码管不能正常显示的状况,经检验发现主要是由于接触不良的问题,其中包括线的接触不良和芯片的接触不良,在实验过程中,数码管有几段二极管时隐时现,有时会消失.用5V电源对数码管进行检测,一端接地,另一端接触每一段二极管,发现二极管能正常显示的,再用万用表欧姆档检测每一根线是否接触良好,在检测过程中发现有几根线有时能接通,有时不能接通,把接触不好的线重新接过后发现能正常显示了.其次是由于芯片接触不良的问题,用万用表欧姆档检测有几个引脚本该相通的地方却未通,而检测的导线状况良好,其解决方法为把CD4511的芯片拔出,根据面包板孔的的状况重新调整其引脚,使其正对于孔,再用力均匀地将芯片插入面包板中,此后发现能正常显示,本次实验中还发现一块坏的LED数码管和两块坏的CD4511,经更换后均能正常显示.在连接晶振的过程中,晶振无法起振.在排除线与芯片的接触不良问题后重新对照电路图,发现是由于12脚未接地所至.在连接六进制的过程中,发现电路只能4,5的跳动,后经发现是由于接到与非门的引脚接错一根所至,经纠正后能正常显示.在连接校正电路的过程中,出现时和分都能正常校正时,但秒却受到影响,特别时一较分钟的时候秒乱跳,而不校时的时候,秒从40跳到59,然后又跳回40,分和秒之间无进位,电路在时,分,秒进位过程中能正常显示,故可排除芯片和连线的接触不良的问题.经检查,校正电路的连线没有错误,后用万用表的直流电压档带电检测秒十位的QA,QB,QC和QD脚,发现QA脚时有电压时而无电压,再检测秒到分和分到时的进位端,发现是由于秒到分的进位未拔掉所至.5 在制作报时电路的过程中,发现蜂鸣器在57分59秒的时候就开始报时,后经检测电路发现是由于把74HC30芯片当16引脚的芯片来接,以至接线都错位,重新接线后能正常报时.连接分频电路时,把时个位的QD和时十位的1脚断开,然后时十位的1脚接到晶振的3脚,时十位的3脚接到秒个位的1脚,所连接的电路图无法正常工作,时十位从0-9的跳,时个位只能显示一个0,在这个电路中3脚的分频用到两次,故无法正常显示,因此要把12进制接到74HC390的一个逻辑电路空出来用于分频即可,因此把时十位的CD4511的12,6脚接地,7脚改为接74HC390的5脚,74HC390的3,4脚断开,然后4脚接9脚即可,其中空出的74HC390的3脚就可用于2Hz的分频,分频后变为1Hz,整个电路也到此为正常的数字钟计数.2.设计体会

在此次的数字钟设计过程中,更进一步地熟悉了芯片的结构及掌握了各芯片的工作原理和其具体的使用方法.在连接六进制,十进制,六十进制的进位及十二进制的接法中,要求熟悉逻辑电路及其芯片各引脚的功能,那么在电路出错时便能准确地找出错误所在并及时纠正了.在设计电路中,往往是先仿真后连接实物图,但有时候仿真和电路连接并不是完全一致的,例如仿真的连接示意图中,往往没有接高电平的16脚或14脚以及接低电平的7脚或8脚,因此在实际的电路连接中往往容易遗漏.又例如74HC390芯片,其本身就是一个十进制计数器,在仿真电路中必须连接反馈线才能正常显示,而在实际电路中无需再连接,因此仿真图和电路连接图还是有一定区别的.在设计电路的连接图中出错的主要原因都是接线和芯片的接触不良以及接线的错误所引起的.3.对该设计的建议

此次的数字钟设计重在于仿真和接线,虽然能把电路图接出来,并能正常显示,但对于电路本身的原理并不是十分熟悉.总的来说,通过这次的设计实验更进一步地增强了实验的动手能力.

第三篇:数字电子技术课程设计报告(数字钟)

目录

一. 设计目的„„„„„„„„„„„„„„„

二. 实现功能„„„„„„„„„„„„„„„

三. 制作过程„„„„„„„„„„„„„„„

四. 原理框图„„„„„„„„„„„„„„„

4.1 数字钟构成„„„„„„„„„„„„„„„

34.2设计脉冲源„„„„„„„„„„„„„„„

44.3 设计整形电路„„„„„„„„„„„„„„

4.4 设计分频器„„„„„„„„„„„„„„„

4.5 实际计数器„„„„„„„„„„„„„„„

64.6 译码/驱动器电路的设计„„„„„„„„„„„ 7

4.7 校时电路„„„„„„„„„„„„„„„„ 8

4.8 整点报时电路„„„„„„„„„„„„„„

4.9 绘制总体电路图„„„„„„„„„„„„„

五. 具体实现„„„„„„„„„„„„„„„

5.1电路的选择„„„„„„„„„„„„„„„

5.2集成电路的基本功能„„„„„„„„„„„„ 10

5.3 电路原理„„„„„„„„„„„„„„„„

六. 感想与收获„„„„„„„„„„„„„„„ 12 七. 附

录 „„„„„„„„„„„„„„„ 数字电子技术课程设计报告

一、设计目的

数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、定时启闭电路、定时开关烘箱、通断动力设备,甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。

石英数字钟,具有电路简洁,代表性好,实用性强等优点,在数字钟的制作中,我们采用了传统的PCMS大规模集成电路为核心,配上LED发光显示屏,用石英晶体做稳频元件,准确又方便。

二、实现功能

① 时间以12小时为一个周期; ② 显示时、分、秒;

③ 具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; ④ 计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时; ⑤ 为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。

三、制作过程

1.确立电子数字计时器的制作思路

要想构成数字钟,首先应有一个能自动产生稳定的标准时间脉冲信号的信号源。还需要有一个使高频脉冲信号变成适合于计时的低频脉冲信号的分频器电路,即频率为1HZ的“秒脉冲”信号。经过分频器输出的秒脉冲信号到计数器 中进行计数。由于计时的规律是:60秒=1分,60分=1小时,24小时=1天,这就需要分别设计60进制,24进制,(或12进制的计时器,并发出驱动AM;PM的标志信号)。各计数器输出的信号经译码器/驱动器送到数字显示器对应的笔划段,使得 “时”、“分”、“秒”得以数字显示。

任何数字计时器都有误,因此应考虑校准时间电路,校时电路一般采用自动快调和手动调整,“自动快调”是利用分频器输出的不同频率脉冲使得显示时间自动迅速的得到调整。“手动调整” 是利用手动的节拍调整显示时间。

2.查阅资料绘出各部分的电路图(详见原理框图)

数字计时器的设计方法:(1)设计脉冲源(2)设计整形电路(3)设计分频器(4)设计计数器(5)译码器/驱动器(6)设计校时电路

3.按所设计的电路去选择、测试好元器件、并装配成为产品

4.准备设计论文答辩

四、原理框图

1.数字钟的构成

数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。

数字钟组成框图

2.设计脉冲源

自激式振荡电路有:自激多谐振荡器,激间歇振荡器这次我们选择晶体振荡器原因如下: 由于通常要求数字钟的脉冲源的频率要十分稳定、准确度高,因此要采用石英晶体振荡器,其他的多谐振荡器难以满足要求。石英晶体不但频率特性稳定,而且品质因数很高,有极好的选频特性。晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。石英晶体振荡器的频率取决于石英晶体的固有频率,与外电路的电阻电容的参数无关一般情况下,晶振频率越高,准确度越高,但所用的分频级数越多,耗电量就越大,成本就越高,在选择晶体时应综合考虑。

一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,本次设计采用了后一种。如图(b)所示,由CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。输出反馈电阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确。

(a)CMOS 晶体振荡器(仿真电路)

3.设计整形电路

由于晶体振荡器输出的脉冲是正弦波或是不规则的矩形波,因此必须经整形电路整形。我们已学过的脉冲整形电路有以下几种:削波器、门电路、单稳态电路、双稳态电路、施密特触发器等。通过查阅资料主要使用施密特触发器:

门电路组成的整形电路

4.设计分频器

分频器 —— 能将高频脉冲变换为低频脉冲,它可由触发器以及计数器来完 成。由于一个触发器就是一个二分频器,N个触发器就是 2N个分频器。如果用计数器作分频器,就要按进制数进行分频。例如十进制计数器就是十分频器,M进制计数器就为M分频器。若我们从市场上购买到石英晶体振荡器其频率为32768HZ,要想用该振荡器得到一个频率为1HZ的秒脉冲信号,就需要用分频器进行分频,分频器的个数为2N =32768HZ,N =15 即有15个分频器。这样就将一个频率为23768HZ的振荡信号降低为1HZ的计时信号,这样就满足了计时规律的需求:60秒=1分钟,60分=1小时,24小时=1天。

5.设计计数器

计数器的设计,以触发器为单元电路,根据进制按有权码或无权码来编码,采用有条件反馈原理来构成。当 “小时” 的十位为2;个位为3时,只要个位数

“分”

有进位时,就应使十位的“小时 ”的位数归零,因此24小时进制计数器要采用有条件反馈的设计。(12进制计数器也同理);但应在归零的同时发出驱动AM(上午)、PM(下午)标志的信号。

按规律,一般设计计数器的方法

秒部分:个位选用模10计数器;十位选用模6计数器 分部分:个位选用模10计数器;十位选用模6计数器 小时部分:模12计数器;或模24计数器 6.译码/驱动器电路的设计

在数字系统中常常需要将测量或处理的结果直接显示成十进制数字。为此,首先将以BCD码表示的结果送到译码器电路进行译码,用它的输出去驱动显示器件,由于显示器件的工作方式不同,对译码器的要求也就不同,译码器的电路也不同。数字显示的器件的种类:荧光管、辉光管、发光二极管、液晶显示屏等.译码器电路:此次我们选择的是LED共阳极发光二极管显示器 显示电路如下: 原理图

7.校时电路

校时电路是计时器中不可少的一部分因为当即时间与计时器时间不一致时,就需要校时电路予以校正。校时电路有两种方案:第一、校时用的脉冲可选用频率较高的不等的几种脉冲,从计数器的总输入端(秒计数器的第一级输入端)送入。

第二、校时用的脉冲,分别将秒脉冲送到“计小时”的计数器的输入端,“计分”的计数器输入端,但校时、校分时,应将原计数回路关闭或断开。校秒时可采用关闭或断开秒计数器的脉冲信号输入端使其停止计时 8.整点报时电路

电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,报时电路报时控制信号。

当时间在59分50秒到59分59秒期间时,分十位、分个位和秒十位均保持不变,分别为5、9和5,因此可将分计数器十位的QC和QA、个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。

实现方式:

说明:当时间在59分50秒到59分59秒期间时 分十位、分个 位和秒十位均保持不变,分别为5,9和5;因此,可以将分计数器十位的Qc和QA,个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。IO1分计数器十位的Qc和QAIO2U1VCC15VVCC2345VIO3分计数器个位的QD和QAX18IO456114V_0.5WIO512秒计数器十位的QC和QA74HC30DIO6数字钟设计-整点报时电路部分 9.绘制总体电路图

五:具体实现

1、电路的选择:

我们采用了传统的PCMS大规模集成电路为核心,配上LED发光显示屏,用石英晶体作为稳频元件,准确又方便。

数字钟专用集成块如下:

a.译码/驱动电路:LM8361,M8560,LM8569,TMS3450NL,MM5457,MM5462集成电路,因为它在所有型号中静态功耗最低。其管脚图见图(12)

b.分频器:我们采用了CD4060。

c.反相器: 我们选用了CD4069(内含有六个反相器)。

2、集成电路的基本功能

(1)CD4060:它是一个十四级二分频器,它所产生的信号频率为30720HZ,经九级两二分频后,得到一个60HZ的脉冲信号,见图。

(2)CD4069反相器: F1—F6六个反相器,通过外接电路去控制各电路的工作状态,管脚见图:

(3)MM5462: 它是集译码/驱动电路为一体,它是60HZ时基24小时专用集成电路。1-4,6-12,22十三个端子是显示笔划输出的,1脚是四个笔划,其余每脚输出二个笔划,16脚为正电源,5脚为负电源,20脚睡眠输出是直流信号,由17脚动和关闭,由13脚调整至需要值,最大值59分钟倒计时。17脚是内部振荡器RC输入端,该振荡信号一是作为外部时基的备用,二是13闹输出的信号源。在我们选用的这套套件没有用20脚的睡眠功能。19脚为时基信号输入脚。14、15、18脚是操作控制端,若接高低电平各有不同的功能。值得注意的是所有的输出端均为低电平有效。

、3、电路原理:(见图原理方框图)

CD4060 CD4069 变压器将交流220V电压,变为双7.5V交流低电压,经全波整流后路经D

411 供显示屏驱动电路,而另一路经滤波后供主电路。由于时钟需要脉冲源,我们选用了JT,R1,C3和CD4060内部的两个反相器组成的晶体振荡器,目的是为了提脉冲源的稳定度,而脉冲源产生的波形不是规则的矩形波,因此,需经整形器整形后,送到下一级,由于脉冲信号源的频率较高,经CD4060九级分频及计数后变换低频脉冲信号。由13脚得到60HZ的脉冲信号一路送入MM5461的19脚,另一路去控制由F4,Q2,Q3组成的显示屏驱动电路。由于F4的倒相作用,使Q2,Q3和时基信号交替导通,形成间歇点亮显示屏,使它工作在正常状态。

当60HZ的信号从MM5461的19脚进入后,由控制电路各部分电路的正常工作经译码与驱动电路去控制显示屏各个应亮的端。

F1,F2,F3,R2,R8,C5,K1组成了一个“电子自锁式开关”,每控一次K1,F2的输出状态会改变,一路去控制MM5461的18脚,另一路去驱动显示屏右下点的发光二极管以指示该功能的工作状态。“亮”表示“闹钟时间已设置”,“灭”表示“闹设置取消”。

R7,Q1,FMQ组成闹输出放大电路,控制信号由MM5461的13脚输出。当响闹时,按下K5可使闹暂停并延时九分钟再闹,还可多次使用报时延时,响闹总时长59分钟。

由于MM5461无秒信号输出,故用F5,F6,R3,R4,C4组成秒信号发生器,经Q4去驱动显示屏中间的“冒号”闪动。电路中各开关的功能:

K1:闹钟时间的设置开关。K1+K5快调闹时间的设置。K1+K4慢调闹时间的设置

K2:时间的设置开关。K2+K5 快调时间的设置

K2+K4慢调时间的设置。K3:闹钟时间显示开关。单击K3可显示事先所设置的报时的时间 K4:慢调时间开关

K5:快调时间开关/暂停/显示

电路中,R10(1K)的作用,是防止开关操作工作时,正负电源短路。R13,R27,R9为限流电阻,它们决定显示亮度。

六:感想与收获

这次的比赛是我们三个人一起参加的,在比赛前的一段时间里,我们三个人的收获很大,具体有三点:(1)有利于我们学习能力的提高。这里所说的学习能力包括获取资料的能力、理解前人思路的能力、系统设计能力、动手能力、分析排除故障能力、表达能力等很多方面,而这段时间的经历,我们提高都很大。

(2)有利于我们团队精神的培养。在课堂之外实际的工作中,我们三人一般都要合作共同完成某一项目,这就非常需要团队精神,而这一点在课堂常规教学中得到的锻炼是很有限的。三个人必须互相信任、互相配合、分工合作,在顺境时小组成员要相互提醒保持冷静,逆境时要相互鼓励共度难关,出现问题时不能相互埋,这些与课堂教学强调独立性是有明显区别的。

(3)有利于我们各种能力的锻炼。第一、不够细心比如由于粗心大意焊错了线,第二,是在学习态度上,这次培训是对我的学习态度的一次检验。我第一次体会到要作一名电子设计师,要求具备的首要素质是严谨。我们这次制作所遇到的多半问题多数都是由于我们不够严谨。第三,在做人上,我认识到,无论做什么事情,只要你足够坚强,有足够的毅力与决心,有足够的挑战困难的勇气,就没有什么办不到的。

电设赛场风云涌,各路英豪皆争雄。今朝罢去怀壮志,来届电赛再显锋!七:附录 电路原理总图:

附录

二、LED显示屏电路原理图

第四篇:数字电子技术课程设计报告(数字钟的设计)

数字电子技术课程设计报告

一、设计目的

数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

因此,我们此次设计与制做数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时叙电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.二、设计要求

(1)设计指标

① 时间以12小时为一个周期; ② 显示时、分、秒;

③ 具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; ④ 计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时; ⑤ 为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。(2)设计要求

① 画出电路原理图(或仿真电路图); ② 元器件及参数选择; ③ 电路仿真与调试;

④ PCB文件生成与打印输出。

(3)制作要求

自行装配和调试,并能发现问题和解决问题。

(4)编写设计报告

写出设计与制作的全过程,附上有关资料和图纸,有心得体会。

三、原理框图

1.数字钟的构成

数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。

第 0

(a)数字钟组成框图

2.晶体振荡器电路

晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,本次设计采用了后一种。如图(b)所示,由CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。输出反馈电阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确。

(b)CMOS 晶体振荡器(仿真电路)

第 1

3.时间记数电路

一般采用10进制计数器如74HC290、74HC390等来实现时间计数单元的计数功能。本次设计中选择74HC390。由其内部逻辑框图可知,其为双2-5-10异步计数器,并每一计数器均有一个异步清零端(高电平有效)。

秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可。CPA(下降没效)与1HZ秒输入信号相连,Q3可作为向上的进位信号与十位计数单元的CPA相连。

秒十位计数单元为6进制计数器,需要进制转换。将10进制计数器转换为6进制计数器的电路连接方法如图 2.4所示,其中Q2可作为向上的进位信号与分个位的计数单元的CPA相连。

十进制-六进制转换电路

分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的Q3作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的Q2作为向上的进位信号应与时个位计数单元的CPA相连。

时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为12进制计数器,不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行12进制转换。利用1片74HC390实现12进制计数功能的电路如图(d)所示。

(d)十二进制电路

另外,图(d)所示电路中,尚余-2进制计数单元,正好可作为分频器2HZ输出信号转化为1HZ信号之用。

4.译码驱动及显示单元电路

选择CD4511作为显示译码电路;选择LED数码管作为显示单元电路。由CD4511把输进来的二进制信号翻译成十进制数字,再由数码管显示出来。这里的LED数码管是采用共阴的方法连接的。

计数器实现了对时间的累计并以8421BCD码的形式输送到CD4511芯片,再由451

1第 2

芯片把BCD码转变为十进制数码送到数码管中显示出来。

5.校时电路

数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。即为用COMS与或非门实现的时或分校时电路,In1端与低位的进位信号相连;In2端与校正信号相连,校正信号可直接取自分频器产生的1HZ或2HZ(不可太高或太低)信号;输出端则与分或时个位计时输入端相连。当开关打向下时,因为校正信号和0相与的输出为0,而开关的另一端接高电平,正常输入信号可以顺利通过与或门,故校时电路处于正常计时状态;当开关打向上时,情况正好与上述相反,这时校时电路处于校时状态。

实际使用时,因为电路开关存在抖动问题,所以一般会接一个RS触发器构成开关消抖动电路,所以整个较时电路就如图(f)。

(f)带有消抖电路的校正电路

6.整点报时电路

电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,报时电路报时控制信号。

当时间在59分50秒到59分59秒期间时,分十位、分个位和秒十位均保持不变,分别为5、9和5,因此可将分计数器十位的QC和QA、个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。

报时电路可选74HC30来构成。74HC30为8输入与非门。

第 3

说明:当时间在59分50秒到59分59秒期间时 分十位、分个 位和秒十位均保持不变,分别为5,9和5;因此,可以将分计数器十位的Qc和QA,个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。IO1分计数器十位的Qc和QAIO2U11VCCIO35VVCCX182345V分计数器个位的QD和QAIO456114V_0.5WIO512秒计数器十位的QC和QAIO674HC30D数字钟设计-整点报时电路部分

四、元器件

1.四连面包板1块(编号A45)

2.镊子1把 3.剪刀1把

4.共阴八段数码管6个 5.网络线2米/人 6.CD4511集成块6块 7.CD4060集成块1块 8.74HC390集成块3块 9.74HC51集成块1块 10.74HC00集成块4块 11.74HC30集成块1块 12.10MΩ电阻5个 13.500Ω电阻14个 14.30p电容2个

15.32.768k时钟晶体1个 16.蜂鸣器10个(每班)1)芯片连接图

1)74HC00D

2)CD4511

第 4

3)74HC390D

4)74HC51D

2.面包板的介绍

面包板一块总共由五部分组成,一竖四横,面包板本身就是一种免焊电板。面包板的样式是:

第 5

面包板的注意事项:

1. 面包板旁一般附有香蕉插座,用来输入电压、信号及接地。2. 上图中连着的黑线表示插孔是相通的。

3. 拉线时,尽量将线紧贴面包板,把线成直角,避免交叉,也不要跨越元件。4. 面包板使用久后,有时插孔间连接铜线会发生脱落现象,此时要将此排插孔做记号。并不再使用。

五、各功能块电路图

数字钟从原理上讲是一种典型的数字电路,可以由许多中小规模集成电路组成,所以可以分成许多独立的电路。

(一)六进制电路

由74HC390、7400、数码管与4511组成,电路如图一。

U1A3123U2A12Com74HC00D74HC00DU5SEVEN_SEG_COM_KABCDEFGU3AV1 32Hz 5V141INA1INB21CLR31QA1QB1QC1QD5677126U413DADBDCDD5OAOBOCODOE1211109151474HC390D43~ELOF~BIOG~LTVCC5V4511BD将十进制计数器转换为六进制的连接方法

(二)十进制电路

由74HC390、7400、数码管与4511组成,电路如图二。

第 6

U4A3126U4B4574HC00D74HC00DComU3SEVEN_SEG_COM_KU1AV1 60Hz 5V141INA1INB21CLR31QA1QB1QC1QD5677126U213DADBDCDD5OAOBOCODOE12111091514ABCDEFGVCC5V74HC390D43~ELOF~BIOG~LT4511BD十进制接法测试仿真电路

(三)六十进制电路

由两个数码管、两4511、一个74HC390与一个7400芯片组成,电路如图三。

(四)双六十进制电路

由2个六十进制连接而成,把分个位的输入信号与秒十位的Qc相连,使其产生进位,电路图如图四。

第 7

ComComSEVEN_SEG_COM_KU1B6453U1A12U4SEVEN_SEG_COM_KU7U11BABCDEFG64513DADBDCDD5OAOBOCODOE~ELOF~BI~LTOG1211109151421CLR141INA1INB3U10A12ABCDEFG74HC00D74HC00DU3B15122INA2INB142CLR132QA2QB2QC2QD11109U2712674HC00D74HC00DU8A31QA1QB1QC1QD5677126U913DADBDCDD5OAOBOCODOE12111091514VCC5V74HC390D43U1C891011U1D12134511BD74HC390DComVCCU643~ELOF~BI~LTOG5VSEVEN_SEG_COM_K74HC00D74HC00DABCDEFG84511BDComU15C91011U16DSEVEN_SEG_COM_K1213U14U3A131INA1INB21CLR1QA1QB1QC1QD5677126U513DADBDCDD5OAOBOCODOE1211109151474HC00D74HC00DU12B15122INA2INB142CLR132QA2QB2QC2QD111097126U13DADBDCDD5OAOBOCODOEABCDEFG***14V1 100kHz 5V474HC390D43~ELOF~BI~LTOGVCC74HC390D5V43~ELOF~BI~LTOG4511BD4511BD

(五)时间计数电路

由1个十二进制电路、2个六十进制电路组成,因上面已有一个双六十电路,只要把它与十二进制电路相连即可,详细电路见图五。

ComComComComComComU1SEVEN_SEG_COM_KU2SEVEN_SEG_COM_KU4SEVEN_SEG_COM_KU3SEVEN_SEG_COM_KU5SEVEN_SEG_COM_KU6SEVEN_SEG_COM_KABCDEFGABCDEFGABCDEFGVCCVCCABCDEFGABCDEFGABCDEFG5V***45VVCCVCC***49***45V***3121110***01514145V9VCCOG995V99OAOBODOAOBODOAOBODOEOEOCOCOCOFOFOEOGOAOBODOAOBODOAOBODOEOEOCOCOCOFOFOEOGOG~LT~LT~EL~EL~BI~BI~ELDADCDDDADCDDDADC~LT~LT~LTDBDB~EL~EL~EL~BI~BIDADCDDDADCDDDADCDBDB3DBDD~BI5V73DBDD4511BD54511BD******12643U23CU25A74HC00D***8U21A74HC00D13111038U20C74HC00D3U19A74HC00D131110974HC00D9356356772QB1QD2QD2QD1QB1QC2QB2QC2QB2QC1QB1QA2QA2QA1QA1QC1QD2QA2QC2QD61QB2INA1CLR2CLR2CLR1INA1INB2INA2INB2INA2INB1INA1INA1INB74HC00D161CLR74HC390D6151INB74HC00D111CLRU26B74HC390D74HC390N1174HC390N74HC390DU20B1574HC00D1262INB74HC00D74HC00D***242V1 1000Hz 5V时,分,秒计时电路图

(六)校正电路

由74CH51D、74HC00D与电阻组成,校正电路有分校正和时校正两部分,电路如图六。

第 8

142CLRU13AU16B1QA1QC1QDU24DU22BU14AU17BU20DU15AU18B74HC390N43~BI~LT4511BDOGU7U8OFU10VCC4511BDOGU9U114511BDOFU124511BD1010921921254***254

IO1VCC正常输入信号5V校正信号R1IO2U2C9108小时校正电路J110Mohm74HC00D注意:分校时时,不会进位到小时。U11111213910U2DKey = A12R210MohmIO313U2A8123时计数器IO574HC00D1123674HC00D正常输入信号校正信号R3U3A10Mohm12U2B456分计数器IO6IO44574HC00D74HC51D3J274HC00DKey = B分钟校正电路分校正时锁定小时信号输入R410MohmU3B456图中采用基本RS触发器构成开关消抖动电路,其中与非门选用74HC00;对J1和J2,因为校正信号与0相与为0,而开关的另一端接高电平,正常输入信号可以顺利通过与或门,故校时电路处于正常计时状态,当开关打向上时,情况正好与上述相反,这时电路处于校时状态。74HC00D数字钟设计-校时电路部分

(七)晶体振荡电路

由晶体与2个30pF电容、1个4060、一个10兆的电阻组成,芯片3脚输出2Hz的方波信号,电路如图七。

(八)整点报时电路

由74HC30D和蜂鸣器组成,当时间在59:50到59:59时,蜂鸣报时,电路如图八。

第 9

说明:当时间在59分50秒到59分59秒期间时 分十位、分个 位和秒十位均保持不变,分别为5,9和5;因此,可以将分计数器十位的Qc和QA,个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。IO1分计数器十位的Qc和QAIO2U11VCCIO35VVCCX182345V分计数器个位的QD和QAIO456114V_0.5WIO512秒计数器十位的QC和QAIO674HC30D数字钟设计-整点报时电路部分

六、总接线元件布局简图

整个数字钟由时间计数电路、晶体振荡电路、校正电路、整点报时电路组成。

其中以校正电路代替时间计数电路中的时、分、秒之间的进位,当校时电路处于正常输入信号时,时间计数电路正常计时,但当分校正时,其不会产生向时进位,而分与时的校位是分开的,而校正电路也是一个独立的电路。

电路的信号输入由晶振电路产生,并输入各电路。简图如图九。

七、芯片连接总图

因仿真与实际元件上的差异,所以在原有的简图的基础上,又按实际布局画了这张按实际芯片布局的接线图,如图十。

八、总结

1. 实验过程中遇到的问题及解决方法

① 面包板测试

测试面包板各触点是否接通。

② 七段显示器与七段译码器的测量

第 10

把显示器与CD4511相连,第一次接时,数码管完全没有显示数字,检查后发现是数码管未接地而造成的,接地后发现还是无法正确显示数字,用万用表检测后,发现是因芯片引脚有些接触不良而造成的,所以确认芯片是否接触良好是非常重要的一件事。

③ 时间计数电路的连接与测试

六进制、十进制都没有什么大的问题,只是芯片引脚的老问题,只要重新插过芯片就可以解决了。但在六十进制时,按图接线后发现,显示器上的数字总是100进制的,而不是六十进制,检测后发现无论是线路的连通还是芯片的接触都没有问题。最后,在重对连线时发现是线路接错引脚造成的,改过之后,显示就正常了。

④ 校正电路

因上面程因引脚接错而造成错误,所以校正电路是完全按照仿真图所连的,在测试时,开始进行时校时时,没有出现问题,但当进行到分校时时,发现计数电路的秒电路开始乱跳出错。因此,电路一定是有地方出错了,在反复对照后,发现是因为在接入校正电路时忘了把秒十位和分个位之间的连线拿掉而造成的,因此,在接线时一定要注意把不要的多余的线拿掉。

第 11

第五篇:课程设计_数字电子钟设计报告

数字电子钟设计报告

数字电子钟设计报告

目 录

1.实验目的………………………………………………………………………2 2.实验题目描述和要求 …………………………………………………………2 3.设计报告内容…………………………………………………………………2 3.1实验名称………………………………………………………………………2 3.2实验目的………………………………………………………………………2 3.3实验器材及主要器件…………………………………………………………2 3.4数字电子钟基本原理…………………………………………………………3 3.5数字电子钟单元电路设计、参数计算和器件选择…………………………3-8 3.6数字电子钟电路图……………………………………………………………9 3.7数字电子钟的组装与调试……………………………………………………9 4.实验结论………………………………………………………………………9 5.实验心得………………………………………………………………………10

参考文献 …………………………………………………………………………10

数字电子钟设计报告

一 简述

数字电子钟是一种用数字显示秒,分,时,日的计时装置,与传统的机械相比,它具有走时准确,显示直观,无机械传动装置等优点,因而得到了广泛的应用:小到人们日常生活中的电子手表,大到车站,码头,机场等公共场所的大型数显电子钟。

数字电子钟的电路组成框图如图所示

由图可见,数字电子钟有以下几部分构成:石英晶体振荡器和分频器组成的秒脉冲发生器;校时电路;六十进制秒,分计数器及24进制计时计数器;以及秒分时的译码显示部分等。

1.实验目的

※掌握组合逻辑电路、时序逻辑电路及数字逻辑电路系统的设计、安装、测试方法;

※进一步巩固所学的理论知识,提高运用所学知识分析和解决实际问题的能力; ※提高电路布局﹑布线及检查和排除故障的能力; ※培养书写综合实验报告的能力。

2.实验题目描述和要求

(1)设计一个有“时”、“分”、“秒”(24小时59分59秒)显示,且有校时功能的电子钟; 数字电子钟设计报告

(2)用中小规模集成电路组成电子钟,并在实验箱上进行组装、调试;(3)画出框图和逻辑电路图,写出设计、实验总结报告;

(4)选做:整点报时。在59分51秒、53秒、55秒、57秒输出500Hz音频信号,在59分59秒时输出1000Hz信号,音频持续1s,在1000Hz音频结束时刻为整点。3.设计报告内容 3.1实验名称 数字电子钟 3.2实验目的

·掌握数字电子钟的设计、组装与调试方法; ·熟悉集成电路的使用方法。3.3实验器材及主要器件(1)cc40192(6片)(2)cc4011(6片)(3)74LS2O(2片)(4)共阴七段显示器(6片)(5)电阻、电容、导线等(若干)

数字电子钟设计报告

3.4数字电子钟基本原理

数字电子钟的逻辑框图如图3-4所示。它由555集成芯片构成的振荡电路、分频器、计数器、显示器和校时电路组成。555集成芯片构成的振荡电路产生的信号经过分频器作为秒脉冲,秒脉冲送入计数器,计数结果通过“时”、“分”、“秒”译码器显示时间。

3-4

3.5数字电子钟单元电路设计、参数计算和器件选择

(一)计数器

秒脉冲信号经过6级计数器,分别得到“秒”个位、十位、“分”个位、十位以及“时”个位、十位的计时。“秒”“分”计数器为六十进制,小时为二十四进制。(1)六十进制计数

由分频器来的秒脉冲信号,首先送到“秒”计数器进行累加计数,秒计数器应完成一分钟之内秒数目的累加,并达到60秒时产生一个进位信号,所以,选用两片cc40192和一片cc4011组成六十进制计数器,来实现六十进制计数。其中,“秒”十位是六进制,“秒”个位是十进制。如图3-4-3-1所示。数字电子钟设计报告

图3-4-3-1所示(60进制计数构造)

(2)二十四进制计数

“12翻1”小时计数器是按照“01——02——03——„„——22——23——00——01——02——„„”规律计数的,这与日常生活中的计时规律相同。在此实验中,它是由两片cc40192和一片cc4011构造成的同步二十四计数器,利用异步清零端实现起从23——00的翻转,其中“24”为过渡状态不显示。其中,“时”十位是3进制,“时”个位是十进制。如图3-4-3-2所示.5 数字电子钟设计报告

如图3-4-3-2所示.(二)显示器

本系统用七段发光二极管来显示译码器输出的数字,显示器有两种:共阳极显示器或共阴极显示器。74LS48译码器对应的显示器是共阴极显示器。

(三)校时电路

当数字钟走时出现误差时,需要校正时间。校时电路实现对“时”“分”“秒”的校准。在电路中设有正常计时和校对位置。本实验实现“时”“分”的校对。对校时的要求是,在小时校正时不影响分和秒的正常计数;在分校正时不影响秒和小时的正常计数。需要注意的时,校时电路是由与非门构成的组合逻辑电路,开关S1或S2为“0”或“1”时,可能会产生抖动,为防止这一情况的发生我在原本接校时脉冲的端口接到了实验装置的“单次脉冲”端口,这样既时限内了防抖动,又可以利用手动操作来完成校时。

数字电子钟设计报告

校时电路图

(四)整点报时电路

数字钟整点报时是最基本的功能之一。实验要求的是在离整点差10秒时,每隔一秒鸣叫一次,每次持续时间为一秒,共响5次,前4次为低音500Hz,最后一声为高音1000Hz。整点报时电路如图6所示。

整点报时电路主要由控制门电路和音响电路两部分组成。

1、控制门电路部分:

由11个与非门组成。图中与非门的输入信号Q4、Q3、Q2、Q1、分别表示“分十位”、“分个位”、“秒十位”、“秒个位”的状态,下标中的D、C、B、A分别表示组成计数器的四个触发器的状态。

由上图可以看出: Y1=QC4*QA4*QD3*QA3 Y2=Y1*QC2*QA 2

(即QC4QA4=101)、分个位为9(即QD3QA3=1001)、秒十 以上二式表示当分十位为5位为5(即QC2QA2=101)时,即59分50秒时发出控制信号。

根据设计要求,数字钟电路要求在59分51秒、53秒、55秒、59秒时各鸣叫一次。

当计数器达到59分50秒时,分、秒计数器的状态为:

QD4QC4QB4QA4=0101(分十位)QD3QC3QB3QA3=1001(分个位)QD2QC2QB2QA2=0101(秒十位)QD1QC1QB1QA1=0000(秒个位)

前四声计数器状态发生在59分51秒至59分58秒之间。因此,只有秒个位的状态发生变化,而其他计数器的状态无需变化,所以可保持不变。数字电子钟设计报告

此时 QC4=QA4=QD3=QA3=QC2=QA2=1不变,将它们相与即得Y2。

而51秒、53秒、55秒、57,59秒时的秒计数器个位状态分别为

QD1QC1QB1QA1=0001(51秒)QD1QC1QB1QA1=0011(53秒)QD1QC1QB1QA1=0101(55秒)QD1QC1QB1QA1=0111(57秒)

并根据需要,前四声为低,则接如500Hz的脉冲信号。最后一声的各计数器状态分别如下:

QD4QC4QB4QA4=0000(分十位)QD3QC3QB3QA3=0000(分个位)QD2QC2QB2QA2=0000(秒十位)QD1QC1QB1QA1=0000(秒个位)

即只须将分进位信号和1KHz的脉冲信号接入即可。如图4-2-4所示

如图4-2-4所示(图中报警器用指示灯来表示)

数字电子钟设计报告

3.6数字电子钟电路图

3.7数字电子钟的组装与调试

由图中所示的数字中系统组成框图按照信号的流向分级安装,逐级级联。这里的每一级是指组成数字中的各个功能电路。

级联时如果出现时序配合不同步,或剑锋脉冲干扰,引起的逻辑混乱,可以增加多级逻辑门来延时。如果显示字符变化很快,模糊不清,可能是由于电源电流的跳变引起的,可在集成电路器件的电源端Vcc加退藕滤波电容。通常用几十微法的大电容与0.01μF的小电容相并联。4.实验结论

通过运用数字集成电路设计的24小时制的数字电子时钟,经过试验,成功实现了一下基本功能:

1.能准确计时,以数字形式显示时、分、秒的时间。

2.能实现整点报时的功能,并分别在51秒、53秒、55秒、57秒、59秒实现了“四短一长”的报时效果。

3.能定时控制,且能惊醒校正时间(通过开关调时、分)。数字电子钟设计报告.实验心得

通过这次数字电子钟的课程设计,我们才把学到的东西与实践相结合。从中对我们学的知识有了更进一步的理解,而且更进一步地熟悉了芯片的结构及掌握了各芯片的工作原理和其具体的使用方法。也锻炼了自己独立思考问题的能力和通过查看相关资料来解决问题的习惯。虽然这只是一次简单的课程设计,但通过这次课程设计我们了解了课程设计的一般步骤,和设计中应注意的问题。设计本身并不是有很重要的意义,而是同学们对待问题时的态度和处理事情的能力。各个芯片能够完成什么样的功能,使用芯片时应该注意那些要点。同一个电路可以用那些芯片实现,各个芯片实现同一个功能的区别。

另外,我还渐渐熟悉了mutisim这个仿真软件的各个功能,让我体会到了期中的乐趣,还在电脑制作文档的过程中,使我对办公软件有了更进一步的了解和掌握。

参考文献

1.现代数字电路与逻辑设计 清华大学出版社 北京交通大学出版社.2.模拟电子技术(修订版)清华大学出版社 北京交通大学出版社 3.模拟电子技术教程 电子工业出版社

5.朱定华主编.电子电路测试与实验.北京:清华大学出版社,2004.10

下载数字电子技术课程设计报告 - +华侨大学元顺IC设计中心+[本站推荐]word格式文档
下载数字电子技术课程设计报告 - +华侨大学元顺IC设计中心+[本站推荐].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐