第一篇:数学分析 曲面积分
《数学分析》教案
第二十二章 曲面积分
教学目的:1.理解第一、二型曲面积分的有关概念,并掌握其计算方法,同时明确它们的联系;2.掌握高斯公式与斯托克斯公式;3.理解有关场的概念,掌握梯度场、散度场、旋度场、管理场与有势场的性质及应用。
教学重点难点:本章的重点是曲面积分的概念、计算;难点是第二型曲面积分。教学时数:18学时
§ 1 第一型曲面积分
一.第一型面积分的定义:
1.几何体的质量: 已知密度函数 , 分析平面区域、空间几何体的质量定义及计算 2.曲面的质量:
3.第一型面积分的定义: 定义及记法., 面积分
.4.第一型面积分的性质:
二.第一型面积分的计算:
1.第一型曲面积分的计算: Th22.2 设有光滑曲面 续函数,则
.为 上的连.例4 计算积分, 其中 是球面
被平面
所截的顶部.P281
《数学分析》教案
D
上的连续函数, 以 的上侧为正侧(即), 则有
.证 P 类似地, 对光滑曲面
D., 在其前侧上的积分
对光滑曲面 D , 在其右侧上的积分
.计算积分 ,时, 通常分开来计算三个积分
,.为此, 分别把曲面 投影到YZ平面, ZX平面和XY平面上化为二重积分进行计算.投影域的侧由曲面 的定向决定.例1 计算积分,其中 是球面
在
部分取外侧.P287 例2 计算积分,为球面
取外侧.《数学分析》教案
对积分则有
:
;, 分别用
和
记上半球面和下半球面的外侧,:
.因此, =
+ =
.综上, =
§ 3 Gauss公式和Stokes 公式
.一.Gauss公式:
Th22.6 设空间区域V由分片光滑的双侧封闭曲面 围成.若函数
在V
上连续, 且有连续的一阶偏导数 , 则
, 其中 取外侧.称上述公式为Gauss公式或Остроградский―Gauss公式.《数学分析》教案
解
.由Gauss公式.例2 计算积分,其中 是边
.P291 长为的正方体V的表面取外侧.V : 解 应用Gauss公式 , 有
.例1 计算积分
在平面,为锥面
下方的部分,取外法线方向.解 设 为圆
取上侧 , 则
构成由其所围锥体 V的表面外侧 , 由Gauss公式 , 有 =
而
锥体V的体积
;
《数学分析》教案
二.Stokes公式:
空间双侧曲面的正侧与其边界闭合曲线L正向的匹配关系: 右手螺旋法则, 即当人站在曲面的正侧上, 沿边界曲线L行走时, 若曲面在左侧, 则把人的前进方向定为L的正向.1.Stokes定理:
Th22.7 设光滑曲面 的边界L是按段光滑的连续曲线.若函数、导数 , 则
和
在(连同L)上连续 ,且有一阶连续的偏
.其中 的侧与L的方向按右手法则确定.称该公式为Stokes公式.证 先证式.具体证明参阅P292.Stokes公式也记为.例5 计算积分 , 其中 L为平面
与各坐标平面的交线, 方向为: 从平面的上方往下看为逆时针方向.P294
第二篇:数学分析 重积分
《数学分析》教案
第二十一章 重积分
教学目的:1.理解并掌握二重积分的有关概念及可积条件,进而会计算二重积分;2.理解三重积分的概念,掌握三重积分的计算方法,并能应用其解决有关 的数学、物理方面的计算问题;
教学重点难点:本章的重点是重积分的计算和格林公式;难点是化重积分为累次积分。
教学时数:22学时
§ 1 二重积分概念
一.矩形域上的二重积分 : 从曲顶柱体的体积引入.用直线网分割.定义 二重积分.例1 用定义计算二重积分
.用直线网
分割该正方形 , 在每个正方形上取其右上顶点为介点.解
.二.可积条件 : D
.大和与小和.Th 1 ,.《数学分析》教案
性质6
.性质7 中值定理.Th 若区域D 的边界是由有限条连续曲线()组成 , 例3 去掉积分
在D上连续 , 则
在D上可积.或
中的绝对值.§ 2 二重积分的计算
二.化二重积分为累次积分:
1.矩形域
上的二重积分:
用“ 体积为幂在势上的积分”推导公式.2.简单域上的二重积分: 简推公式, 一般结果]P219Th9.例1 ,.解法一 P221例3 解法二 为三角形, 三个顶点为 ,.例2 ,.P221例2.例3 求底半径为 的两直交圆柱所围立体的体积.P222例4.《数学分析》教案
解法一(直接计算积分)曲线AB的方程为
.方向为自然方向的反向.因此
.解法二(用Green公式)补上线段BO和OA(O为坐标原点), 成闭路.设所围
区域为D, 注意到 D为反向, 以及, 有
.例2 计算积分 I =, 其中L为任一不包含原点的闭区域D的边界(方向任意)P227例2 解 导数)..(和
在D上有连续的偏,.于是, I =.二.曲线积分与路线无关性:
《数学分析》教案
;.例6 验证式 P231例4
是恰当微分, 并求其原函数.§ 4 二重积分的变量变换:(4时)
1.二重积分的变量变换公式: 设变换 的Jacobi , 则
, 其中 是在该变换的逆变换
下平面上的区域 在
平面上的象.由条件
一般先引出变换
.而 , 这里的逆变换是存在的., 由此求出变换
.例1 ,.P235 例1.註
当被积函数形如 区域为直线型时, 可试用线性变换 , 积分.《数学分析》教案
极坐标变换: ,.广义极坐标变换: ,.例4.P240例3.例5(Viviani问题)求球体 被圆柱面
所割下立体的体积.P240例4.例6 应用二重积分求广义积分
.P241例5.例7 求橢球体
四.积分换序: 例8 连续.对积分的体积.P241例6.换序..例9 连续.对积分
换序..例10 计算积分
..§ 5 三重积分简介
《数学分析》教案
例2 , :.解.法一(内二外一), 其中 为椭圆域 , 即椭圆域, 其面积为.因此
.同理得 ,.因此.法二(内一外二)上下对称,为 的偶函数,1
《数学分析》教案
Th 21.13 P247.1.柱坐标: P248.例4 ,:
.P248例3 2.球坐标: P249.P 250例4.§ 6 重积分的应用
一、曲面的面积
设曲面方程为
.有连续的一阶偏导数.推导曲面面积公式 , 或.例1 P253例1`.3-
第三篇:曲线、曲面积分方法小结
求曲线、曲面积分的方法与技巧
一.曲线积分的计算方法与技巧
计算曲线积分一般采用的方法有:利用变量参数化将曲线积分转化为求定积分、利用格林公式将曲线积分转化为二重积分、利用斯托克斯公式将空间曲线积分转化为曲面积分、利用积分与路径无关的条件通过改变积分路径进行计算、利用全微分公式通过求原函数进行计算等方法。
例一.计算曲线积分ydxxdy,其中L是圆x2y22x(y0)上从原点
LO(0,0)到A(2,0)的一段弧。
本题以下采用多种方法进行计算。
1xxx,L由OA,x由02,dydx.解1:OA的方程为222xxy2xx,2[2xxydxxdy2x(1x)2xx202L0]dx
x2xx220x(1x)2xx2dx2x(1x)2xx20dx
24400.分析:解1是利用变量参数化将所求曲线积分转化为求定积分进行计算的,选用的参变量为x.因所求的积分为第二类曲线积分,曲线是有方向的,在这种解法中应注意参变量积分限的选定,应选用对应曲线起点的参数的起始值作为定积分的下限。
解2:在弧OA上取B(1,1)点,yyy,L由OB,y由01,dxOB的方程为dy.221yx11y,yyy,L由BA,y由10,dxBA的方程为dy.221yx11y,ydxxdy(L01y21y211y)dy(120y21y211y2)dy
210y21y2dy2101ydy2021y21y2dy2y1y210210y21y2dy
2(110)0.分析:解2是选用参变量为y,利用变量参数化直接计算所求曲线积分的,在方法类型上与解1相同。不同的是以y为参数时,路径L不能用一个方程表示,因此原曲线积分需分成两部分进行计算,在每一部分的计算中都需选用在该部分中参数的起始值作为定积分的下限。
解3:OA的参数方程为x1cos,ysin,L由OBA,由0,dxsind,dycosd.ydxxdy[sin(1cos)cos]d20L0[coscos2]d
1(sinsin2)00.2解4:OA的极坐标方程为r2cos,因此参数方程为
xrcos2cos2,dyrsin2sincos,L由OBA,由dx4sincosd,dy2(cos2sin2)d.22222[8sincos4cos(cossin)]dydxxdy020,L213142[3cos24cos4]d4(34)0.022422 分析:解3和解4仍然是通过采用变量参数化直接计算的。可见一条曲线的参数方程不是唯一的,采用不同的参数,转化所得的定积分是不同的,但都需用对应曲线起点的参数的起始值作为定积分的下限。
解5:添加辅助线段AO,利用格林公式求解。因Py,Qx,QP110,于是 xyLAOydxxdy0dxdy,D而AOydxxdy0dx0, 2 故得ydxxdyLLAOAO0.分析:在利用格林公式P(x,y)dxQ(x,y)dy(LDQP)dxdy将所求曲线xy积分转化为二重积分计算时,当所求曲线积分的路径非封闭曲线时,需添加辅助曲线,采用“补路封闭法”进行计算再减去补路上的积分,但P,Q必须在补路后的封闭曲线所围的区域内有一阶连续偏导数。L是D的正向边界曲线。解5中添加了辅助线段AO,使曲线LAO为正向封闭曲线。
解6:由于Py,Qx,QP1,于是此积分与路径无关,故 xy(2,0)(0,0)ydxxdyLOAydxxdyydxxdy0dx0.02
QP,xy分析:由于P,Q在闭区域D上应具有一阶连续偏导数,且在D内因此所求积分只与积分路径的起点和终点有关,因此可改变在L上的积分为在OA上积分,注意O点对应L的起点。一般选用与坐标轴平行的折线段作为新的积分路径,可使原积分得到简化。
解7:由全微分公式ydxxdyd(xy),ydxxdyL(2,0)(0,0)d(xy)xy(2,0)(0,0)0.分析:此解根据被积表达式的特征,用凑全微分法直接求出。例二.计算曲线积分(zy)dx(xz)dy(xy)dz,其中C是曲线
Cx2y21,从z轴正向往z轴负向看C的方向是顺时针的。xyz2,解1:设表示平面xyz2上以曲线L为边界的曲面,其中的正侧与L的正向一致,即是下侧曲面,在xoy面上的投影区域Dxy:x2y21.由斯托克斯公式
dydzdzdxdxdy(zy)dx(xz)dy(xy)dz xyzCzyxzxy 2dxdy2dxdy2.Dxy解2:利用两类曲面积分间的联系,所求曲线积分了可用斯托克斯公式的另一形式求得出
coscoscos(zy)dx(xz)dy(xy)dzdS xyzCzyxzxy(002cos)dS,而平面:xyz2的法向量向下,故取n{1,1,1},cos于是上式13,23dS23x2y211(1)21dxdy2.分析:以上解1和解2都是利用斯托克斯公式将空间曲线积分转化为曲面积
dydzdzdxdxdy分计算的。在利用斯托克斯公式PdxQdyRdz计算时
xyzLPQR首先应验证函数P,Q,R在曲面连同边界L上具有一阶连续的偏导数,且L的正向与的侧符合右手规则。在计算空间曲线积分时,此法也是常用的。
解3:将积分曲线用参数方程表示,将此曲线积分化为定积分。设xcos,ysin,则z2xy2cossin,从20.C(zy)dx(xz)dy(xy)dz
[(2cos)(sin)(2cos2sin)cos
20(cossin)(sincos)]d
[2(sincos)2cos2cos2]d
02[2sin1cos2]d2.02x2y2z2R2,例三.计算(xy2z)ds,其中为曲线xyz0.22(1)(2)4 解1:由于当积分变量x,y,z轮换位置时,曲线方程不变,而且第一类曲线积分与弧的方向无关,故有
1R2222xdsydszds3(xyz)ds3ds.222由曲线是球面x2y2z2R2上的大圆周曲线,其长为2R.故
(x2y2)ds224R2RR3.33由于关于原点对称,由被积函数为奇函数,得 zds0.于是
4322(xy2z)dsR.3解2:利用在上,x2y2z2R2,原式(x2y2z2z22z)dsR2dsz2ds2zds
R2再由对称性可得zds,于是 2R(同解1)
32R242R20R3.上式R2R332分析:以上解1解2利用对称性,简化了计算。在第一类曲线积分的计算中,当积分变量在曲线方程中具有轮换对称性(即变量轮换位置,曲线方程不变)时,采用此法进行计算常常是有效的。
例四.求(x1)2ydxxdyy21上在上半平面内从,其中L为椭圆曲线229xyLA(2,0)B(4,0)的弧。
解:添加辅助线 l为x2y22的顺时针方向的上半圆周以及有向线段AC,DB,其中是足够小的正数,使曲线x2y22包含在椭圆曲线(x1)2y21内。由于 9xyx2y2(2,)(2)22222xxyyxy(xy)由格林公式,有LAClDB0.5 设ysin,xcos,有
lydxxdy2sin22cos2d,222xy0
再由ACydxxdyydxxdy0,0.于是 2222xyxyDBLydxxdyydxxdy.2222xylxy分析:利用格林公式求解第二类曲线积分往往是有效的,但必须要考虑被积函数和所考虑的区域是不是满足格林公式的条件。由于本题中在(0,0)点附近Pyx 无定义,于是采用在椭圆内部(0,0)附近挖去一个小圆,,Qx2y2x2y2使被积函数在相应的区域上满足格林公式条件。这种采用挖去一个小圆的方法是常用的,当然在内部挖去一个小椭圆也是可行的。同时在用格林公式时,也必须注意边界曲线取正向。
例五.求八分之一的球面x2y2z2R2,x0,y0,z0的边界曲线的重心,设曲线的密度1.解:设边界曲线L在三个坐标面内的弧段分别为L1,L2,L3,则L的质量为
mdsds3LL2R3R.42设边界曲线L的重心为(x,y,z),则
x11xds{xds0dsxds} mmLL1L2L322Rxxdsx1()2dx mL1m0R2x22RR2R22xdxRxm0mR2x2R0
2R22R24R.3mR32由对称性可知xyz4R.3 6 分析:这是一个第一类曲线积分的应用题。在计算上要注意将曲线L分成三个部分:L1:y0,0xR,zR2x2,L2:z0,0xR,yR2x2,L3:x0,0yR,zR2y2.另一方面由曲线关于坐标系的对称性,利用可xyz简化计算。
二.曲面积分的计算方法与技巧
计算曲面积分一般采用的方法有:利用“一投,二代,三换”的法则,将第一类曲面积分转化为求二重积分、利用“一投,二代,三定号”的法则将第二类曲面积分转化为求二重积分,利用高斯公式将闭曲面上的积分转化为该曲面所围区域上的三重积分等。
例六.计算曲面积分zdS,其中为锥面zx2y2在柱体x2y22x内
的部分。
解:在xOy平面上的投影区域为D:x2y22x,曲面的方程为
zx2y2,(x,y)D.222x2y2dxdy.因此 zdSx2y21(zx)(zy)dxdyDD对区域D作极坐标变换域D:xrcos,则该变换将区域D变成(r,)坐标系中的区
ysin,2(r,)2,0r2cos,因此
2cosDx2y2dxdy2d20832r2dr2cos3d.329分析:以上解是按“一投,二代,三换”的法则,将所给的第一类曲面积分化为二重积分计算的。“一投”是指将积分曲面投向使投影面积不为零的坐标面。“二代”是指将的方程先化为投影面上两个变量的显函数,再将这显函数代入被积表达式。“三换”是指将dS换成投影面上用直角坐标系中面积元素表示的曲面面积元素,即dS1(yyz2z)()2dxdy,或dS1()2()2dzdx,xzxy或dS1(x2x2y)()dxdz.上解中的投影区域在xOy平面上,因此用代换xz7 dS1(z2z)()2dxdy,由于投影区域是圆域,故变换成极坐标计算。xy例七.设半径为R的球面的球心在定球面x2y2z2a2(a0)上,问R为何值时,球面在定球面内部的那部分的面积最大?
解:不妨设的球心为(0,0,a),那么的方程为x2y2(za)2R2,它
2222xyza,与定球面的交线为2即 222xy(za)R,2R2(4a2R2)2xy,24a 2zaR.2a设含在定球面内部的上那部分球面1在xOy面上的投影区域为D,那么R2(4a2R2)D:xy,且这部分球面的方程为
4a222zaR2x2y2,(x,y)D.则1的面积为
22SdS1(zx)(zy)dxdyR1DDdxdyRxy2222
R20dR4a2R22a0rdrRr222R(Rr)2R4a2R22a0
2R22aR.2a2aR在[0,2a]上的最大值。2a以下只需求函数S(R)2R24a4a3R2,且S()40.由问)0,得唯一驻点R由令S(R)2(2R332a题的实际意义知S(R)在R322a.274a4a处取得最大值。即R时,1的面积最大,为33分析:本题是第一类曲面积分的应用题,在计算中关键是利用了球面的对称性,和确定了含在定球面内部的上那部分球面1在xOy面上的投影区域D。在此基础上,按上题分析中的“一投,二代,三换”的法则即可解得结果。
例八.计算曲面积分(2xz)dydzzdxdy,其中S为有向曲面
Szx2y2(0z1), 其法向量与z轴正向的夹角为锐角。解1:设Dyz,Dxy分别表示S在yoz平面,xoy平面上的投影区域,则,(2xz)dydzzdxdy
SDyz2222(xy)dxdy(2zyz)(dydz)(2zyz)dydzDyzDxy4zy2dydz(x2y2)dxdy.DyzDxy其中zy2dydzdyDyz111y2412zydz(1y2)3dy
302令ysint,Dyz4431zydydz2cos4tdt,30342242又 (x2y2)dxdydr2rdrDxy00212,所以 (2xz)dydzzdxdy4S4.22分析:计算第二类曲面积分,若是组合型,常按“一投,二代,三定号”法则将各单一型化为二重积分这里的“一投”是指将积分曲面投向单一型中已指定的坐标面。“二代”是指将的方程先化为投影面上两个变量的显函数,再将这显函数代入被积表达式。“三定号”是指依曲面的定侧向量,决定二重积分前的“+”,“-”符号,当的定侧向量指向坐标面的上(右,前)方时,二重积分前面取“+”,反之取“-”。
解2:利用dSdydzdzdxdxdy化组合型为单一型.coscoscos(2xz)dydzzdxdy[(2xz)SScosz]dxdy.coscos2x, 因S的法向量与z轴正向的夹角为锐角,取n{2x,2y,1},故有
cos于是 原式[(2xz)(2x)z]dxdy
S因为x2y2122222[4x2x(xy)(xy)]dxdy.x2y21222x(xy)dxdy0,所以 上式x2y2120222[4x(xy)]dxdy
4d(4r2cos2r2)rdr012.分析:计算第二类曲面积分,若是组合型,也可利用公式dSdydzdzdxdxdy,先化组合型为统一的单一型,再按“一投,二代,coscoscos三定号”法则将单一型化为为二重积分求得。
解3:以S1表示法向量指向z轴负向的有向平面z1(x2y21),D为S1在xoy平面上的投影区域,则
(2xz)dydzzdxdy(dxdy).S1D设表示由S和S1所围成的空间区域,则由高斯公式得
SS1(2xz)dydzzdxdy(21)dv
3drdr2dz6(rr3)dr
00r02111r2r4136[]0.2423因此 (2xz)dydzzdxdy().22S分析:利用高斯公式PdydzQdzdxRdxdy(PQR)dxdydz,xyz可将曲面积分化为三重积分求得。但必需满足P,Q,R在闭区域上有一阶连续的偏导数,是边界曲面的外侧。本题中的曲面S不是封闭曲面,故添加了S1,使SS1为封闭曲面,并使SS1的侧符合高斯公式对边界曲面的要求。
例九:计算曲面积分Ix(8y1)dydz2(1y2)dzdx4yzdxdy,其中是由
zy1,1y3,曲线绕y轴旋转一周而成的曲面,其法向量与y轴正向的x0夹角恒大于.2x2z22,解:设1:表示y3上与y轴正向同侧的曲面,由和1所围y3立体记为.由高斯公式得
1x(8y1)dydz2(1y2)dzdx4yzdxdydxdydz,因此Idxdydzx(8y1)dydz2(1y2)dzdx4yzdxdy.1由于在xOz面上的投影区域为D:x2z22.注意到1在xOz面,yOz面上的投影不构成区域,且在1上y3,从而:x2z21y3,(x,y)D,I(2x2z2)dxdz16dxdz18dxdz(x2z2)dxdz
DDDD36234.分析:是旋转曲面yx2z21,1y3且指向外侧,在上补上曲面x2z22,1:指向与y轴正向相同,那么由高斯公式就可将原式化成三重积分y3和1上的曲面积分进行计算。
例十.设空间区域由曲面za2x2y2与平面z0围成,其中a为正常数。记表面的外侧为S,的体积为V,证明
2222xyzdydzxyzdzdxz(1xyz)dxdyV.S证明:设P(x,y,z)x2yz2, Q(x,y,z)xy2z2, R(x,y,z)z(1xyz),则
PRQ2xyz2,12xyz.2xyz2,xzy由高斯公式知
xS2yz2dydzxy2z2dzdxz(1xyz)dxdy
(2xyz22xyz212xyz)dvdv2xyzdv
V2xyzdv.xyzdv[xya222a2x2y20xyzdz]dxdy2xy2a2xy(a2x2y2)dxdy2 2020da0r3sincos(a2r2)2dr,2由于sincosd0,则xyzdv0,因此
2222xyzdydzxyzdzdxz(1xyz)dxdyV.S分析:由于求证的是给定的曲面积分等于某个区域的体积值,而高斯公式给出了曲面积分与该曲面包含的区域上的某个三重积分间的关系,考虑到体积值可用相应的三重积分表示,故选用高斯公式进行证明。
第四篇:曲线积分与曲面积分重点总结+例题
高等数学教案
曲线积分与曲面积分
第十章
曲线积分与曲面积分
【教学目标与要求】
1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。2.掌握计算两类曲线积分的方法。
3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数。4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。
【教学重点】
1.两类曲线积分的计算方法; 2.格林公式及其应用;
3.第一类曲面积分的计算方法;
【教学难点】
1.两类曲线积分的关系及第一类曲面积分的关系; 2.对坐标的曲线积分与对坐标的曲面积分的计算; 3.应用格林公式计算对坐标的曲线积分; 6.两类曲线积分的计算方法;
7.格林公式及其应用格林公式计算对坐标的曲线积分;
【参考书】
[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社.[2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社
§11.1 对弧长的曲线积分
一、对弧长的曲线积分的概念与性质
曲线形构件的质量
设一曲线形构件所占的位置在xOy面内的一段曲线弧L上 已知曲线形构件在点(x y)处的线密度为(x y) 求曲线形构件的质量
把曲线分成n小段 s1 s2 sn(si也表示弧长)
任取(i i)si 得第i小段质量的近似值(i i)si
高等数学课程建设组
高等数学教案
曲线积分与曲面积分
整个物质曲线的质量近似为M(i,i)si
i1n
令max{s1 s2 sn}0 则整个物质曲线的质量为
Mlim(i,i)si
0i1n
这种和的极限在研究其它问题时也会遇到
定义
设函数f(x y)定义在可求长度的曲线L上 并且有界,将L任意分成n个弧段 s1 s2 sn 并用si表示第i段的弧长 在每一弧段si上任取一点(i i) 作和f(i,i)si 令max{s1 s2 sn} 如果当0时 这和的极限总存在 则称此i1n极限为函数f(x y)在曲线弧L上对弧长的 曲线积分或第一类曲线积分 记作
Lf(x,y)ds 即
n
limf(i,i)si
Lf(x,y)ds0i1其中f(x y)叫做被积函数 L 叫做积分弧段
曲线积分的存在性 当f(x y)在光滑曲线弧L上连续时 对弧长的曲线积分Lf(x,y)ds是存在的
以后我们总假定f(x y)在L上是连续的
根据对弧长的曲线积分的定义曲线形构件的质量就是曲线积分中(x y)为线密度
对弧长的曲线积分的推广
L(x,y)ds的值 其
limf(i,i,i)si
f(x,y,z)ds0i1n
如果L(或)是分段光滑的 则规定函数在L(或)上的曲线积分等于函数在光滑的各段上的曲线积分的和 例如设L可分成两段光滑曲线弧L1及L2 则规定
LL12f(x,y)dsf(x,y)dsf(x,y)ds
L1L
2闭曲线积分 如果L是闭曲线 那么函数f(x y)在闭曲线L上对弧长的曲线积分记作
Lf(x,y)ds
高等数学课程建设组
高等数学教案
曲线积分与曲面积分
对弧长的曲线积分的性质
性质1 设c1、c2为常数 则
L[c1f(x,y)c2g(x,y)]dsc1Lf(x,y)dsc2Lg(x,y)ds
性质2 若积分弧段L可分成两段光滑曲线弧L1和L2 则
Lf(x,y)dsLf(x,y)dsL1f(x,y)ds
2性质3设在L上f(x y)g(x y) 则
特别地 有
|Lf(x,y)dsLg(x,y)ds
Lf(x,y)ds|L|f(x,y)|ds
二、对弧长的曲线积分的计算法
根据对弧长的曲线积分的定义 如果曲线形构件L的线密度为f(x y) 则曲线形构件L的质量为 Lf(x,y)ds
x(t) y(t)(t)
另一方面 若曲线L的参数方程为 则质量元素为
f(x,y)dsf[(t), (t)]曲线的质量为
即
2(t)2(t)dt
f[(t), (t)]2(t)2(t)dt
f(x,y)dsf[(t), (t)]2(t)2(t)dt
L
定理 设f(x y)在曲线弧L上有定义且连续 L的参数方程为 x(t) y(t)(t)
其中(t)、(t)在[ ]上具有一阶连续导数 且2(t)2(t)0 则曲线积分在 且
应注意的问题 定积分的下限一定要小于上限
高等数学课程建设组
Lf(x,y)ds存Lf(x,y)dsf[(t),(t)]2(t)2(t)dt(<)
高等数学教案
曲线积分与曲面积分
讨论
(1)若曲线L的方程为y(x)(axb) 则提示
L的参数方程为xx y(x)(axb)
Lf(x,y)ds? Lf(x,y)dsf[x,(x)]12(x)dx
ab
(2)若曲线L的方程为x(y)(cyd) 则提示
L的参数方程为x(y) yy(cyd)
Lf(x,y)ds? Lf(x,y)dsf[(y),y]2(y)1dy
cd
(3)若曲的方程为x(t) y(t) z(t)(t)
则f(x,y,z)ds?
提示 f(x,y,z)dsf[(t),(t),(t)]2(t)2(t)2(t)dt
例1 计算Lyds 其中L是抛物线yx2上点O(0 0)与点B(1 1)之间的一段弧
解 曲线的方程为yx2(0x1) 因此
L11ydsx21(x2)2dxx14x2dx1(551)
001
2例2 计算半径为R、中心角为2的圆弧L对于它的对称轴的转动惯量I(设线密度为1)
解 取坐标系如图所示 则ILy2ds
曲线L的参数方程为
xRcos yRsin(<)
于是
ILy2dsR2sin2(Rsin)2(Rcos)2d
R3sin2dR(sin cos) 3
例3 计算曲线积分(x2y2z2)ds 其中为螺旋线xacost、yasint、zkt上相应于t从0到达2的一段弧
解 在曲线上有x2y2z2(a cos t)2(a sin t)2(k t)2a2k 2t 2 并且
ds(asint)2(acost)2k2dta2k2dt
高等数学课程建设组
高等数学教案
曲线积分与曲面积分
于是
22z2)ds2(xy0(a2k2t2)a2k2dt
23a2k2(3a242k2)
小结
用曲线积分解决问题的步骤
(1)建立曲线积分
(2)写出曲线的参数方程(或直角坐标方程) 确定参数的变化范围
(3)将曲线积分化为定积分
(4)计算定积分
教学方式及教学过程中应注意的问题
在教学过程中要注意曲线积分解决问题的步骤,要结合实例,反复讲解。
师生活动设计
1.已知椭圆L:x2y21周长为a,求(2xy3x24y243)ds。L2.设C是由极坐标系下曲线ra,0及4所围成区域的边界,Iex2y2ds
C讲课提纲、板书设计
作业 P190: 3(1)(3)(5)(7)
高等数学课程建设组
求高等数学教案
曲线积分与曲面积分
§11 对坐标的曲线积分
一、对坐标的曲线积分的概念与性质
变力沿曲线所作的功
设一个质点在xOy面内在变力F(x y)P(x y)iQ(x y)j的作用下从点A沿光滑曲线弧L移动到点B 试求变力F(x y)所作的功
用曲线L上的点AA0 A1 A2 An1 AnB把L分成n个小弧段
设Ak(xk yk) 有向线段AkAk1的长度为sk 它与x轴的夹角为k 则
AkAk1{cosk,sink}sk(k0 1 2 n1)
显然 变力F(x y)沿有向小弧段Ak Ak1所作的功可以近似为
F(xk,yk)AkAk1[P(xk,yk)coskQ(xk,yk)sink]sk 于是 变力F(x y)所作的功
W从而
W[P(x,y)cosQ(x,y)sin]ds
L这里(x y) {cos sin}是曲线L在点(x y)处的与曲线方向一致的单位切向量
把L分成n个小弧段 L1
L2
Ln变力在Li上所作的功近似为
F(i i)siP(i i)xiQ(i i)yi
变力在L上所作的功近似为
n1F(xk,yk)AkAk1k1n1[P(xk,yk)coskQ(xk,yk)sink]sk
k1[P(i,i)xiQ(i,i)yi]
i1nn
变力在L上所作的功的精确值
Wlim 0[P(i,i)xiQ(i,i)yi]
i1高等数学课程建设组 高等数学教案
曲线积分与曲面积分
其中是各小弧段长度的最大值
提示
用si{xiyi}表示从Li的起点到其终点的的向量 用si表示si的模
对坐标的曲线积分的定义
定义 设函数f(x y)在有向光滑曲线L上有界 把L分成n个有向小弧段L1
L2
Ln 小弧段Li的起点为(xi1 yi1) 终点为(xi yi) xixixi1 yiyiyi1(i )为Li上任意一点 为各小弧段长度的最大值
如果极限lim0f(i,i)xi总存在 则称此极限为函数f(x y)在有向曲线L上对坐标i1nx的曲线积分 记作
limf(i,i)xi Lf(x,y)dx 即Lf(x,y)dx0i1n
设L为xOy面上一条光滑有向曲线 {cos sin}是与曲线方向一致的单位切向量 函数P(x y)、Q(x y)在L上有定义
如果下列二式右端的积分存在 我们就定义
LP(x,y)dxLP(x,y)cosds
LQ(x,y)dyLQ(x,y)sinds
前者称为函数P(x y)在有向曲线L上对坐标x的曲线积分 后者称为函数Q(x y)在有向曲线L上对坐标y的曲线积分 对坐标的曲线积分也叫第二类曲线积分
定义的推广
设为空间内一条光滑有向曲线 {cos cos cos}是曲线在点(x y z)处的与曲线方向一致的单位切向量 函数P(x y z)、Q(x y z)、R(x y z)在上有定义 我们定义(假如各式右端的积分存在)
P(x,y,z)dxP(x,y,z)cosds
Q(x,y,z)dyQ(x,y,z)cosds R(x,y,z)dzR(x,y,z)cosds
nnlimf(i,i,i)xi f(x,y,z)dylimf(i,i,i)yi
Lf(x,y,z)dxL00i1i1高等数学课程建设组
高等数学教案
曲线积分与曲面积分
limf(i,i,i)zi Lf(x,y,z)dz0i1对坐标的曲线积分的简写形式
nLP(x,y)dxLQ(x,y)dyLP(x,y)dxQ(x,y)dy
P(x,y,z)dxQ(x,y,z)dyR(x,y,z)dz
P(x,y,z)dxQ(x,y,z)dyR(x,y,z)dz
对坐标的曲线积分的性质
(1)如果把L分成L1和L2 则
LPdxQdyLPdxQdyLPdxQdy
2(2)设L是有向曲线弧 L是与L方向相反的有向曲线弧 则
LP(x,y)dxQ(x,y)dLP(x,y)dxQ(x,y)dy
两类曲线积分之间的关系
设{cosi sini}为与si同向的单位向量 我们注意到{xi yi}si 所以 xicosisi yisinisi
limf(i,i)xi Lf(x,y)dx0i1n
lim0f(i,i)cosisiLf(x,y)cosds
i1nn
limf(i,i)yi Lf(x,y)dy0ilim0f(i,i)sinisiLf(x,y)sinds
i1n即
LPdxQdyL[PcosQsin]ds
LAdrLAtds
高等数学课程建设组 或
高等数学教案
曲线积分与曲面积分
其中A{P Q} t{cos sin}为有向曲线弧L上点(x y)处单位切向量 drtds{dx dy}
类似地有
或
PdxQdyRdz[PcosQcosRcos]ds
AdrAtdsAtds
其中A{P Q R} T{cos cos cos}为有向曲线弧上点(x y z)处单们切向量 drTds {dx dy dz } A t为向量A在向量t上的投影
二、对坐标的曲线积分的计算
定理 设P(x y)、Q(x y)是定义在光滑有向曲线L x(t) y(t) 上的连续函数 当参数t单调地由变到时 点M(x y)从L的起点A沿L运动到终点B 则
LLP(x,y)dxP[(t),(t)](t)dt
Q(x,y)dyQ[(t),(t)](t)dt
讨论
提示
LP(x,y)dxQ(x,y)dy?
LP(x,y)dxQ(x,y)dy{P[(t),(t)](t)Q[(t),(t)](t)}dt
定理 若P(x y)是定义在光滑有向曲线 L
x(t) y(t)(t)上的连续函数 L的方向与t的增加方向一致 则
LP(x,y)dxP[(t),(t)](t)dt
简要证明 不妨设 对应于t点与曲线L的方向一致的切向量为{(t) (t)}
所以
cos(t)
22(t)(t)从而
LP(x,y)dxLP(x,y)cosds
P[(t),(t)](t)2(t)2(t)dt
2(t)2(t)高等数学课程建设组
高等数学教案
曲线积分与曲面积分
应注意的问题 P[(t),(t)](t)dt
下限a对应于L的起点 上限 对应于L的终点 不一定小于
讨论
若空间曲线由参数方程xt) y =(t) z(t)给出 那么曲线积分
如何计算?提示
P(x,y,z)dxQ(x,y,z)dyR(x,y,z)dz?
P(x,y,z)dxQ(x,y,z)dyR(x,y,z)dz
{P[(t),(t),(t)](t)Q[(t),(t),(t)](t)R[(t),(t),(t)](t)}dt 其中对应于的起点 对应于的终点
例题
例1计算Lxydx 其中L为抛物线yx上从点A(1 1)到点B(1 1)的一段弧
2例2 计算Ly2dx
(1)L为按逆时针方向绕行的上半圆周x2+y2=a2
(2)从点A(a 0)沿x轴到点B(a
0)的直线段
例3 计算L2xydxx2dy(1)抛物线yx2上从O(0 0)到B(1 1)的一段弧(2)抛物线xy2上从O(0 0)到B(1 1)的一段弧(3)从O(0 0)到A(1 0) 再到R(1 1)的有向折线OAB
例4 计算x3dx3zy2dyx2ydz 其中是从点A(3 2 1)到点B(0 0 0)的直线段AB
例5 设一个质点在M(x y)处受到力F的作用 F的大小与M到原点O的距离成正比 F
x2y21的方向恒指向原点
此质点由点A(a 0)沿椭圆2按逆时针方向移动到点B(0 b) 2ab求力F所作的功W
小结
1.第二类曲线积分的定义;
高等数学课程建设组
高等数学教案
曲线积分与曲面积分
2.第二类曲线积分的计算方法。
教学方式及教学过程中应注意的问题
在教学过程中要注意第二类曲线积分的定义和计算方法,要结合实例,反复讲解。
师生活动设计
1.已知为折线ABCOA,计算Idxdyydz
讲课提纲、板书设计 作业 P200: 3(1)(3)(5)(7),4
§113 格林公式及其应用
一、格林公式
单连通与复连通区域
设D为平面区域 如果D内任一闭曲线所围的部分都属于D
则称D为平面单连通区域 否则称为复连通区域
对平面区域D的边界曲线L 我们规定L的正向如下 当观察者沿L的这个方向行走时 D内在他近处的那一部分总在他的左边
区域D的边界曲线L的方向
定理1设闭区域D由分段光滑的曲线L围成 函数P(x y)及Q(x y)在D上具有一阶连续偏导数 则有
(DQP)dxdyPdxQdy
Lxy其中L是D的取正向的边界曲线
简要证明 仅就D即是X-型的又是Y-型的区域情形进行证明
设D{(x y)|1(x)y2(x) axb} 因为
P连续 所以由二重积分的计算法有 yPdxdyb{2(x)P(x,y)dy}dxb{P[x,(x)]P[x,(x)]}dx
21ya1(x)yaD另一方面 由对坐标的曲线积分的性质及计算法有
PdxPdxPdxP[x,1(x)]dxP[x,2(x)]dx
LL1L2abba
{P[x,1(x)]P[x,2(x)]}dx
高等数学课程建设组
ab高等数学教案
曲线积分与曲面积分
因此
PdxdyPdx
yLD
设D{(x y)|1(y)x2(y) cyd} 类似地可证
QxdxdyLQdx
D由于D即是X-型的又是Y-型的 所以以上两式同时成立 两式合并即得
QPdxdyPdxQdy
LxyD
应注意的问题
对复连通区域D 格林公式右端应包括沿区域D的全部边界的曲线积分 且边界的方向对区域D来说都是正向
设区域D的边界曲线为L 取Py Qx 则由格林公式得
21xdyydx dxdyxdyydx 或AdxdyLL2DD
例1 椭圆xa cos yb sin 所围成图形的面积A
分析
只要QPQ1 就有(P)dxdydxdyA
xyxyDD
例2 设L是任意一条分段光滑的闭曲线 证明
L2xydxx2dy0
eydxdy 其中D是以O(0 0) A(1 1) B(0 1)为顶点的三角形闭区域
D
2例3 计算
分析 要使QPy22e 只需P0 Qxey
xy
例4 计算xdyydxLx2y2 其中L为一条无重点、分段光滑且不经过原点的连续闭曲线
L的方向为逆时针方向
高等数学课程建设组
高等数学教案
曲线积分与曲面积分
yQy2x2Px2
2解 令P2 Q2 则当xy0时 有
x(x2y2)2yxy2xy2记L 所围成的闭区域为D 当(0 0)D时 由格林公式得
xdyydxLx2y20
当(0 0)D时 在D内取一圆周l x2y2r 2(r>0) 由L及l围成了一个复连通区域D 1 应用格林公式得
xdyydxxdyydxLx2y2lx2y20
其中l的方向取逆时针方向
于是
2r2cos2r2sin2xdyydxxdyydxd2 2Lx2y2lx2y20r记L 所围成的闭区域为D
当(0 0)D时 由格林公式得
xdyydxQP(Lx2y2xy)dxdy0
DyQy2x2Px22分析 这里P2 Q2 当xy0时 有
x(x2y2)2yxy2xy2
二、平面上曲线积分与路径无关的条件
曲线积分与路径无关
设G是一个开区域 P(x y)、Q(x y)在区域G内具有一阶连续偏导数 如果对于G内任意指定的两个点A、B以及G内从点A到点B的任意两条曲线L
1、L 2 等式
LPdxQdyLPdxQdy
12恒成立 就说曲线积分
设曲线积分的曲线 则有
LPdxQdy在G内与路径无关 否则说与路径有关
1和LPdxQdy在G内与路径无关 L
L 2是G内任意两条从点A到点BLPdxQdyLPdxQdy
12高等数学课程建设组 高等数学教案
曲线积分与曲面积分
因为
LPdxQdyLPdxQdyLPdxQdyLPdxQdy0
121
2LPdxQdyL12PdxQdy0L1(L2)PdxQdy0
所以有以下结论
曲线积分LPdxQdy在G内与路径无关相当于沿G内任意
LPdxQdy等于零 闭曲线C的曲线积分
定理2 设开区域G是一个单连通域 函数P(x y)及Q(x y)在G内具有一阶连续偏导数 则曲线积分LPdxQdy在G内与路径无关(或沿G内任意闭曲线的曲线积分为零)
PQ yx的充分必要条件是等式
在G内恒成立
充分性易证
若PQ 则QP0 由格林公式 对任意闭曲线L 有
yxxy
QPPdxQdydxdy0
LxyD
必要性
假设存在一点M0G 使QPQP0 不妨设>0 则由的连续性 存在xyxyQP 于是沿邻域U(M0, )边界l 的xy2M0的一个 邻域U(M0, ) 使在此邻域内有闭曲线积分
PdxQdylU(M0,)(QP)dxdy20
xy2高等数学课程建设组
高等数学教案
曲线积分与曲面积分
这与闭曲线积分为零相矛盾 因此在G内 应注意的问题
QP0
xy
定理要求 区域G是单连通区域 且函数P(x y)及Q(x y)在G内具有一阶连续偏导数
如果这两个条件之一不能满足 那么定理的结论不能保证成立
破坏函数P、Q及PQ、连续性的点称为奇点
yx
例5 计算L2xydxx2dy 其中L为抛物线yx2上从O(0 0)到B(1 1)的一段弧
解 因为PQ2x在整个xOy面内都成立
yx所以在整个xOy面内 积分
L2xydxx2dy与路径无关
L2xydxx2dyOA2xydxx2dyAB2xydxx2dy
12dy1 01讨论
设L为一条无重点、分段光滑且不经过原点的连续闭曲线 L的方向为逆时针方向 问xdyydxLx2y20是否一定成立?
yx在点(0 0)不连续
Q和x2y2x2y2提示 这里PQy2x2P因为当xy0时 所以如果(0 0)不在L所围成的区域内 则结论x(x2y2)2y22成立 而当(0 0)在L所围成的区域内时 结论未必成立三、二元函数的全微分求积
曲线积分在G内与路径无关 表明曲线积分的值只与起点从点(x0 y0)与终点(x y)有关
如果
(x,y)LPdxQdy与路径无关 则把它记为(x0,y0)PdxQdy
高等数学课程建设组
高等数学教案
曲线积分与曲面积分
(x,y)
即 L0PdxQdy(x0,y0)PdxQdy
若起点(x0 y0)为G内的一定点 终点(x y)为G内的动点 则
u(x y)(x,y)PdxQdy
0(x,y)为G内的的函数
二元函数u(x y)的全微分为du(x y)ux(x y)dxuy(x y)dy
表达式P(x y)dx+Q(x y)dy与函数的全微分有相同的结构 但它未必就是某个函数的全微分 那么在什么条件下表达式P(x y)dx+Q(x y)dy是某个二元函数u(x y)的全微分呢?当这样的二元函数存在时怎样求出这个二元函数呢?
定理3 设开区域G是一个单连通域 函数P(x y)及Q(x y)在G内具有一阶连续偏导数 则P(x y)dxQ(x y)dy 在G内为某一函数u(x y)的全微分的充分必要条件是等式
PQ yx在G内恒成立
简要证明
必要性 假设存在某一函数u(x y) 使得duP(x y)dxQ(x y)dy
则有 P(u)2u Q(u)2u 因为2uP、2uQ连续
yyxxyxxyyxxyyyxx22Quu
即P所以
yxxyyx
充分性 因为在G内PQ 所以积分P(x,y)dxQ(x,y)dy在G内与路径无关
Lyx在G内从点(x0 y0)到点(x y)的曲线积分可表示为 u(x y)因为
u(x y)
所以
y(x,y)P(x,y)dxQ(x,y)dy
00(x,y)(x,y)P(x,y)dxQ(x,y)dy
00(x,y)yQ(x0,y)dyxP(x,y)dx
00xuyQ(x,y)dyxP(x,y)dxP(x,y) 0xxy0xx0高等数学课程建设组
高等数学教案
曲线积分与曲面积分
类似地有数的全微分 uQ(x,y) 从而du P(x y)dxQ(x y)dy 即P(x y)dxQ(x y)dy是某一函y
求原函数的公式
u(x,y)
u(x,y)
u(x,y)
例6 验证数
解 这里P(x,y)P(x,y)dxQ(x,y)dy
00(x,y)xx0P(x,y0)dxQ(x,y)dy
y0x0yyQ(x0,y)dyxP(x,y)dx
0yxdyydx在右半平面(x>0)内是某个函数的全微分 并求出一个这样的函x2y2yx
Q
x2y2x2y
2因为P、Q在右半平面内具有一阶连续偏导数 且有
Qy2x2P
x(x2y2)2y所以在右半平面内 xdyydx是某个函数的全微分
22xy
取积分路线为从A(1 0)到B(x 0)再到C(x y)的折线 则所求函数为
u(x,y)(1, 0)(x,y)yxdyxdyydxy0
arctan0x2y2x2y2x问 为什么(x0 y0)不取(0 0)?
例7 验证 在整个xOy面内 xy2dxx2ydy是某个函数的全微分 并求出一个这样的函数
解
这里Pxy2 Qx2y
因为P、Q在整个xOy面内具有一阶连续偏导数 且有
Q2xyP
xy高等数学课程建设组
高等数学教案
曲线积分与曲面积分
所以在整个xOy面内 xy2dxx2ydy是某个函数的全微分
取积分路线为从O(0 0)到A(x 0)再到B(x y)的折线 则所求函数为
u(x,y)(x,y)yy(0, 0)xydxxydy00x222ydyx20x2y2ydy
2思考与练习
1在单连通区域G内 如果P(x y)和Q(x y)具有一阶连续偏导数 且恒有
QP 那么 xy(1)在G内的曲线积分LP(x,y)dxQ(x,y)dy是否与路径无关? LP(x,y)dxQ(x,y)dy是否为零?
QP xy(2)在G内的闭曲线积分(3)在G内P(x y)dxQ(x y)dy是否是某一函数u(x y)的全微分?
2在区域G内除M0点外 如果P(x y)和Q(x y)具有一阶连续偏导数 且恒有G1是G内不含M0的单连通区域 那么(1)在G 1内的曲线积分LP(x,y)dxQ(x,y)dy是否与路径无关? LP(x,y)dxQ(x,y)dy是否为零?(2)在G 1内的闭曲线积分(3)在G 1内P(x y)dxQ(x y)dy是否是某一函数u(x y)的全微分?
3 在单连通区域G内 如果P(x y)和Q(x y)具有一阶连续偏 导数 PQ 但QP非常简单 那么 yxxy(1)如何计算G内的闭曲线积分?(2)如何计算G内的非闭曲线积分?(3)计算L(exsiny2y)dx(excosy2)dy 其中L为逆时针方向的
上半圆周(xa)2y2a 2 y0
小结
PdxQdy1.格林公式 L
2.格林公式中的等价条件。QPDxydxdy教学方式及教学过程中应注意的问题
高等数学课程建设组
高等数学教案
曲线积分与曲面积分
在教学过程中要注意格林公式和其中的等价条件,要结合实例,反复讲解。
师生活动设计
讲课提纲、板书设计
作业 P214: 2(1);3;4(3);5(1),(4);6(2),(5)
§11 4 对面积的曲面积分
一、对面积的曲面积分的概念与性质
物质曲面的质量问题 设为面密度非均匀的物质曲面 其面密度为(x y z) 求其质量
把曲面分成n个小块 S1 S2 Sn(Si也代表曲面的面积)求质量的近似值
(i,i,i)Sii1nn((i i i)是Si上任意一点) 取极限求精确值
Mlim(i,i,i)Si(为各小块曲面直径的最大值)
0i
1定义
设曲面是光滑的 函数f(x y z)在上有界 把任意分成n小块 S1 S2 Sn(Si也代表曲面的面积) 在Si上任取一点(i i i) 如果当各小块曲面的直径的最大值0时 极限limf(i,i,i)Si总存在 则称此极限为函数f(x y z)在曲面上对0i1n面积的曲面积分或第一类曲面积分 记作nf(x,y,z)dS 即
limf(i,i,i)Si f(x,y,z)dS0i1其中f(x y z)叫做被积函数 叫做积分曲面
对面积的曲面积分的存在性
高等数学课程建设组
高等数学教案
曲线积分与曲面积分
我们指出当f(x y z)在光滑曲面上连续时对面积的曲面积分是存在的 今后总假定f(x y z)在上连续
根据上述定义面密度为连续函数(x y z)的光滑曲面的质量M可表示为(x y z)在上对面积的曲面积分
Mf(x,y,z)dS
如果是分片光滑的我们规定函数在上对面积的曲面积分等于函数在光滑的
各片曲面上对面积的曲面积分之和 例如设可分成两片光滑曲面1及2(记作12)就规定
12f(x,y,z)dSf(x,y,z)dSf(x,y,z)dS
1
2对面积的曲面积分的性质
(1)设c
1、c 2为常数 则
[c1f(x,y,z)c2g(x,y,z)]dSc1f(x,y,z)dSc2g(x,y,z)dS
(2)若曲面可分成两片光滑曲面1及2 则
f(x,y,z)dSf(x,y,z)dSf(x,y,z)dS
1
2(3)设在曲面上f(x y z)g(x y z) 则
(4)f(x,y,z)dSg(x,y,z)dS
dSA 其中A为曲面的面积
二、对面积的曲面积分的计算
面密度为f(x y z)的物质曲面的质量为Mlimf(i,i,i)Si0i1nf(x,y,z)dS
另一方面 如果由方程zz(x y)给出 在xOy面上的投影区域为D 那么 曲面的面积元素为
2dA1zx(x,y)z2y(x,y)dxdy
质量元素为
高等数学课程建设组
高等数学教案
曲线积分与曲面积分
2f[x,y,z(x,y)]dAf[x,y,z(x,y)]1zx(x,y)z2y(x,y)dxdy
根据元素法 曲面的质量为
My(x,y)dxdy
f[x,y,z(x,y)]1zx2(x,y)z2D因此
y(x,y)dxdy
f(x,y,z)dSf[x,y,z(x,y)]1zx2(x,y)z2D
化曲面积分为二重积分 设曲面由方程zz(x y)给出 在xOy面上的投影区域为Dxy 函数zz(x y)在Dxy上具有连续偏导数 被积函数f(x y z)在上连续 则
y(x,y)dxdy
f(x,y,z)dSf[x,y,z(x,y)]1zx2(x,y)z2Dxy
如果积分曲面的方程为yy(z x) Dzx为在zOx面上的投影区域 则函数f(x y z)在上对面积的曲面积分为
f(x,y,z)dSf[x,y(z,x),z]Dzx221yz(z,x)yx(z,x)dzdx
如果积分曲面的方程为xx(y z) Dyz为在yOz面上的投影区域 则函数f(x y z)在上对面积的曲面积分为
22f(x,y,z)dSf[x(y,z),y,z]1x(y,z)x(y,z)dydz yzDyz
例1 计算曲面积分1dS 其中是球面x2y2z2a2被平面 zzh(0ha)截出的顶部
解 的方程为za2x2y2 Dxy
x2y2a2h2
因为
zxyx zy
222222axyaxyadxdy
222axy高等数学课程建设组 dS1zxz2ydxdy 高等数学教案
曲线积分与曲面积分
所以
1dSaza2x2y2dxdy
Dxy
a提示 02da2h20rdr1ln(a2r2)]a2h22alna
2a[0a2r2h221zxz2y2y2xa1222222
222axyaxyaxy
例2 计算边界曲面
xyzdS 其中是由平面x0 y0 z0及xyz1所围成的四面体的整个
解 整个边界曲面在平面x0、y0、z0及xyz1上的部分依次记为
1、
2、3及4 于是
xyzdSxyzdSxyzdSxyzdSxyzdS
123000xyzdS43xy(1xy)dxdy
1Dxy
3xdx提示 4 z1xy 02101x(1x)3dx3
y(1xy)dy3x06120
dS1z
y3dxdyxzydxd2小结
1.对面积的曲面积分的定义和计算
2.格林公式中的等价条件。
教学方式及教学过程中应注意的问题
在教学过程中要注意利用球面坐标、柱面坐标、对称性、重心公式,简化计算的技巧.,要结合实例,反复讲解。
师生活动设计
课后习题:1,3,7 讲课提纲、板书设计
作业 P218: 4(3);5(2);6(1),(3),(4);8
高等数学课程建设组
第五篇:第十五章 含参变量的积分(数学分析)课件
第十五章
含参变量的积分
教学目的与要求 掌握含参变量的常义积分的定义及分析性质; 能应用含参变量的常义积分的分析性质证明某些理论问题.3 理解含参变量的反常积分的一致收敛的定义; 掌握含参变量的反常积分的一致收敛性的判别法及分析性质; 5 能利用参变量的反常积分的分析性质求函数的导数、积分等; 6 掌握Beta函数和Gamma函数的定义及其相互关系; 7 掌握Beta函数和Gamma函数的性质。
教学重点 应用含参变量的常义积分的分析性质证明某些理论问题; 2 求含参变量的常义积分的极限、导数、积分; 3 含参变量的反常积分的一致收敛的定义; 掌握含参变量的反常积分的一致收敛性的判别法及分析性质; 5 利用参变量的反常积分的分析性质求函数的导数、积分等 6 Beta函数和Gamma函数的性质。
教学难点 应用含参变量的常义积分的分析性质证明某些理论问题; 2 含参变量的反常积分的一致收敛的定义; 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;
§1 含参变量的常义积分
教学目的 掌握含参变量的常义积分的定义及分析性质; 能应用含参变量的常义积分的分析性质证明某些理论问题.教学过程 含参变量的常义积分的定义(P373)含参变量的常义积分的分析性质 2.1 连续性定理P374
Theore1 m若函数f(x,y)在矩形域D[ a , b ] [ c , d ]上连续 , 则函数I(x)f(x,y)dy在[ a , b ]上连续.cdTheorem2 若函数f(x,y)在矩形域D[ a , b ] [ c , d ]上连续, 函数y1(x)和y2(x)在[ a , b ]上连续 , 则函数G(x)
例 1 求下列极限(1)limy2(x)y1(x)f(x,y)dy在[ a , b ]上连续.y011xydx(2)lim2211x1(1)nnn0dx
2.2 积分次序交换定理P375 例2 见教材P375.2.3 积分号下求导定理P375—376
Theore 3 m若函数f(x,y)及其偏导数fx都在矩形域D[ a , b ] [ c , d ]上连续, 则函数I(x)dcf(x,y)dy在[ a , b ]上可导 , 且
dddf(x,y)dyfx(x,y)dy.ccdx
(即积分和求导次序可换).Theorem4设函数f(x,y)及其偏导数fx都在矩形域D[ a , b ] [ c , d ]上连续, 函数y1(x)和y2(x)定义在[ a , b ], 值域在[ c , d ]上, 且可微 , 则含参积分
G(x)y2(x)y1(x)f(x,y)dy在[ a , b ]上可微 , 且
G(x)1y2(x)y1(x)(x)fx,y1(x)y1(x).fx(x,y)dyfx,y2(x)y2x
2例2
求下列函数的导数(1)F(y)(lnx02y)dx(y0)(2)F(y)ex12xy2dx
例3 计算积分 Iln(1x)01x2dx.例 4 设函数f(x)在点x0的某邻域内连续.验证当|x|充分小时 , 函数
x (x)(xt)n1f(t)dt (n1)!0(n)的n1阶导数存在 , 且 2.4(P376定理15.1.4)例4 求F(y)(x)f(x).sinyxayxdx的导数 by例5 研究函数 F(y)yf(x)其中f(x)是[0,1]上连续且为正的函数。 0x2y2dx 的连续性,1解
令g(x,y)yf(x),则g(x,y)在[0,1][c,d]连续,其中0[c,d]。从而F(y)在22xyy0连续。当y0时,F(0)0
当y0时,记 mminf(x)0,则
x[0,1]F(y) 1yf(x)y1dxmdx marctan 0x2y2 0x2y2y 1若limF(y)存在,则
limF(y)limmarctany0y0y01y2m0F(0)
故F(y)在y0不连续。
或用定积分中值定理,当y0时,[0,1],使
F(y) 1yf(x)ydxf() 0x2y2 0x2y2dx 11xf()arctany若limF(y)存在,则
y001f()arctan
y
limF(y)limf()arctany0y01y2m0
故F(y)在y0不连续。
问题1 上面最后一个式子能否写为
limf()arctany01f()0。y2事实上,是依赖于y的,极限的存在性还难以确定。例6 设f(x)在[a,b]连续,求证 x
y(x)f(t)sink(xt)dt
(其中 a,c[a,b])
k c满足微分方程
ykyf(x)。证
令g(x,t)f(t)sink(xt),则 2gx(x,t)kf(t)cosk(xt),gxx(x,t)k2f(t)sink(xt)
它们都在[a,b][a,b]上连续,则
y(x) x cf(t)cosk(xt)dt
y(x)k x x cf(t)sink(xt)dtf(x)
xyk2yk cf(t)sink(xt)dtf(x)k cf(t)sink(xt)dtf(x)例7
设f(x)为连续函数,hh
F(x)[f(x)d]d
00求F(x)。
解
令xu,则
hhhxhF(x)[f(x)d]dd000xf(u)du
hhF(x)[f(xh)df(x)d]
00在第一项中令xhu,在第二项中令xu,则
x2hxhF(x)[xhf(u)duf(u)du]
xF(x)[f(x2h)2f(xh)f(x)]
问题2 是否有
F(x)[f(x)d]d[f(x)d]d
x0x000例8
利用积分号下求导法求积分
/2hhhhI(a)解
令 f(x,a)0arctan(atanx)dx,|a|1
tanxarctan(atanx)
tanxx0x0,2时,f无定义,但limf(x,a)a,limf(x,a)0,故补充定义
x2
f(0,a)a,f(2,a)0
则f在[0,2][b,b]连续(0b1),从而I(a)在(1,1)连续。1, x(0,), |a|11a2tan2x2fa(x,a)
0, x0,|a|12显然fa(x,0)在x故有
/22点不连续,但fa(x,a)分别在[0,2](1,0)和[0,2](0,1)连续,/2
I(a)令tanxt 0fa(x,a)dx01dx,a(1,0)或a(0,1)221atanx11I(a)dt2222(1t)(1at)1a01 1a21a2t2a2t2a2dt 222(1t)(1at)01a2[]dt,222(1at)2(1|a|)0(1t)a(1,0)或a(0,1)
积分之
I(a)2ln(1a)C1,a(0,1)
I(a)2ln1(a)C2,a(1,0)
因为I(a)在(1,1)连续,故
I(0)limI(a)0limI(a)
a0a0得C1C20,从而得
I(a)2sgnaln(1|a|),|a|1
作业:P378----379 2、3、5、6、8(2)(3)、11
§2 含参变量的反常积分
教学目的 理解含参变量的反常积分的一致收敛的定义; 掌握含参变量的反常积分的一致收敛性的判别法及分析性质; 3 能利用参变量的反常积分的分析性质求函数的导数、积分等;
教学过程 含参变量的反常积分的一致收敛
含参变量的反常积分有两种: 无穷区间上的含参变量的反常积分和无界函数的含参变量的反常积分.定义P379---381 无穷积分af(x,y)dx在区间[c,d]: 一致收敛: 0,A00,AA0,y[c,d]有
Af(x,y)dx;
A0非一致收敛: 00,A0,A0A,y0[c,d]有2 一致收敛性的判别法 2.1(Cauchy收敛原理)P381 2.2(Weierstrass判别法)P382 例1 证明:无穷积分
f(x,y)dx0.1cosxydx在R一致收敛.x2y22.3(Abel判别法和Dirichlet判别法)P382----385 2.4(Dini定理)P385 3 一致收敛积分的分析性质 3.1 连续性定理
3.2 积分次序交换定理 3.3 积分号下求导定理
例 2 利用积分号下求导求积分
In(a)dx,(n为正整数,a0)2n1(xa)0解
因为
11,aa00
(x2a)n1(x2a0)n17 dx而 2收敛,故 In(a)n1(xa)00dx 在aa00一致收敛。2n1(xa)0因为
dx1xarctan |20aa2a0xad故
dadx2xa0dx13/2 ()a22(xa)220d2da2dxdx135/22 ()()a2232220xa0(xa)由数学归纳法易证
dndandxdxn(1)n!22n1xa(xa)00(2n1)!(1)an22n2n12
dx(2n1)!a于是
In(a)2n12(2n)!(xa)02n12
例3 证明(1)e1yx2sinydx关于y[0,)一致收敛;
(2)e1yx2sinydy关于x[0,)不一致收敛。
证
(1)用分段处理的方法。A1,y0,令yxt 得
2|eAyx2sinydx||sinyyeyAt2dt||sinyy|etdt
0siny2|y|
因为 limy0sinyy0,则 0,0,当0y时,有 |eyxsinydx|A2siny2|y|
(1)
又
|eyx2siny|ex,y
22而 e1x2dx收敛,由M判别法,eyxsinydx在y[,)一致收敛,即0,1A01,AA0,有
|eyxsinydx|,y
(2)
A2上式对y0显然成立,结合(1)(2)式,有
yx
2|eAsinydx|,y[0,)
即e1yx2sinydx关于y[0,)一致收敛。
(2)因为x0时,sinydy发散,因此e11)yx2sinydy关于x[0,)不可能一致收敛。
例4 计算积分
a2x2e0(x2a2x2dx。
a(x)2x解 e0(x2)dxe0a(x)22axdxe2ae0dx
令 x2at xtedte0a(x)2xa(12)dxxe0a(x)2xdxe0a(x)2xda x
在第二项积分中令 ay,得 x9 e0a(x)2xadx(ya)2ye0dy
故
e(x2a2x2)dxe2aea(x)2xdxe2a
0
作业:P392—393 202、4(1)(2)、5、8、10、12、15 §3 Euler积分
教学目的 掌握Beta函数和Gamma函数的定义及其相互关系; 2 掌握Beta函数和Gamma函数的性质。
教学过程 Beta函数(第一类Euler积分)
1.1 定义
确定定义域 1.2 Beta函数的性质 P394 2 Gamma函数(第二类Euler积分)2.1 定义
(确定定义域)2.2 Gamma函数的性质 P395 3 Beta函数和Gamma函数的关系 P397 例1 求0xp1dx(p0,q0); pq(1x)例2 证明:
11()241m1mxn(2)xedx()(n0,m1)
0nn(1)exdx4
作业: P404—405
1(1)(3)(7)(8)、3、7、9、10