第一篇:《人工智能》教学大纲
人工智能原理及其应用
一、说明
(一)课程性质
随着信息社会和知识经济时代的来临,信息和知识已成为人们的一个热门话题。然而,在这个话题的背后还蕴含着另外一个更深层的问题——智能。一般来说,信息是由数据来表达的客观事物,知识是信息经过智能性加工后的产物,智能是用来对信息和知识进行加工的加工器。在信息社会,人类面对的信息将非常庞大,仅靠人脑表现出来的自然智能是远远不够的,必须开发那种由机器实现的人工智能。
《人工智能导论》是计算机科学与技术专业本科生的一门限选课程。
(二)教学目的
使学生掌握人工智能的基本原理、方法及研究应用领域。了解人工智能中常用的知识表示技术,启发式搜索策略,了解原理以及非确定性推理技术。通过对典型专家系统的分析、解剖、进一步深入掌握人工智能的主要技术,去解决人工智能的一些实际问题。增强学生的逻辑思维与实验能力,为人今后处理各门学科的智能奠定基础。
(三)教学内容
人工智能的基本原理和方法,人工智能的三个重要研究领域(机器学习、神经网络学习和自然语言理解),人工智能的两个重要应用领域(专家系统和智能决策支持系统)。
(四)教学时数
36学时
(五)教学方式
课堂讲授和上机实验相结合。
二、本文
第1章 人工智能概述
教学要点
讨论人工智能的定义、形成过程、研究内容、研究方法、技术特点、应用领域、学派之争及发展趋势。教学时数
3学时 教学内容
1.1 人工智能及其研究目标(0.5学时)
了解人工智能的定义及其研究目标。
1.2 人工智能的产生与发展(0.5学时)
了解人工智能产生与发展的四个阶段。
1.3 人工智能研究的基本内容及其特点(0.5学时)
了解人工智能研究的基本内容及特点。
1.4 人工智能的研究和应用领域(0.5学时)
了解人工智能研究和应用领域。
1.5 人工智能研究的不同学派及其争论(0.5学时)
了解三大学派及其理论的争论和研究方法的争论。1.6 人工智能的近期发展分析
(0.5学时)
了解更新的理论框架研究,更好的技术集成研究,更成熟的应用方法研究。(0.5学时)考核要求
了解人工智能研究的基本内容和应用领域。
第2章
知识表示
教学要点
知识表示的基本概念和各种确定性知识表示方法。教学时数
6学时 教学内容
2.1 知识与知识表示概念
(0.5学时)
了解知识表示的概念和表示形式; 理解知识的定义。
2.2 一阶谓词逻辑表示法
(0.5学时)
理解一阶谓词逻辑表示的逻辑基础; 掌握谓词逻辑表示方法及其应用。2.3 产生式表示法(0.5学时)
了解产生式系统的基本过程、控制策略及其类型和特点; 掌握产生式表示的基本方法、基本结构。2.4 语义网络表示法(1学时)
理解语义网络的基本概念;
会应用语义网络表示事实和进行推理。2.5 框架表示法(2学时)
了解框架系统的问题求解过程和框架表示法的特点; 掌握框架结构和实例框架; 理解框架理论。2.6 脚本表示法
掌握脚本的结构及其推理。(0.5学时)2.7 过程表示法(0.5学时)
了解过程表示的特性;
掌握过程表示的问题求解过程; 理解表示知识的方法。
2.8 面向对象表示法
(0.5学时)
了解面向对象的特征;
理解面向对象的基本概念; 掌握知识的面向对象表示。考核要求
掌握逻辑词谓表示法及其应用,会用框架去描述一些具体问题,能用脚本来描述特定范围内的一些事件的发生顺序。
第3章 确定性推理
教学要点
推理的基本概念及归结、演绎等确定性推理方法。教学时数
5学时 教学内容
3.1 推理的基本概念(0.5学时)
了解正向推理、逆向推理、混合推理及其推理的冲突消解策略; 掌握推理的方法、推理的控制策略; 理解推理的概念。
3.2 推理的逻辑基础(1学时)
掌握谓词公式的各种特性和置换与合一的过程。3.3 自然演绎推理(0.5学时)
了解自然演绎推理的概念及其三段论推理规则。3.4 归结演绎推理(2学时)
掌握子句集及其化简,鲁宾逊归结原理;
会应用谓词逻辑归结证明问题,会用归结演绎推理的归结策略证明问题,会用归结反演求取问题的答案。
3.5 基于规则的演绎推理(1学时)
会应用规则正向演绎推理和规则逆向演绎推理。3.6 规则演绎推理的剪枝策略(0.5学时)
了解剪枝策略的基本思想。考核要求
理解确定性推理的思维过程,会应用谓词逻辑归结去求证问题,会应用规则正向演绎推理和规则逆向演绎推理。
第4章 不确定与非单调推理
教学要点
不确定性推理的有关概念及各种不确定性的表示和推理方法。教学时数
4学时 教学内容
4.1 不确定性推理的基本概念(0.5学时)
了解不确定推理的基本问题; 理解不确定推理的含义。
4.2 不确定性推理的概率论基础(0.5学时)
了解全概率公式与Bayes公式;
理解样本空间与随机事件,事件的概率。
4.3 确定性理论(0.5学时)
理解可信度的概念,C-F模型; 掌握带加权因子的可信度推理。
4.4 主观Bayes方法(0.5学时)
了解组合不确定性计算;
掌握知识不确定性表示,证据不确定性表示,结论不确定性的合成。4.5 证据理论(1学时)
掌握D-S理论的形式描述,证据理论的推理模型,推理实例。4.6 可能性理论和模糊推理(0.5学时)掌握模糊知识表示,模糊概念的匹配,模糊推理。4.7 非单调推理(0.5学时)
了解非单调推理的概念及起具有代表性的理论。考核要求
理解不确定性推理的含义、非单调推理的概念、确定性理论,掌握主观Bayes方法,能用D-S理论从不同角度刻划命题的不确定性,能在模糊集的基础上,实现对模糊命题和模糊知识的表示。
第5章 搜索策略
教学要点
搜索的基本概念和状态空间、与或树的各种搜索算法。教学时数
6学时 教学内容
5.1 搜索的基本概念(1学时)
了解搜索的含义;
掌握状态空间法,问题归约。
5.2 状态空间的盲目搜索(2学时)
了解一般图搜索过程;
掌握广度优先搜索,深度优先搜索,代价树搜索。5.3 状态空间的启发式搜索(0.5学时)
了解A算法;
理解启发性信息和估价函数。
5.4 与/或树的盲目搜索(0.5学时)
了解与/或树的一般搜索;
掌握与/或树的的广度优先搜索,与/或树的深度优先搜索。5.5 与/或树的启发式搜索(0.5学时)
了解与/或树的启发式搜索过程; 理解解树的代价与希望。
5.6 博弈树的启发式搜索(0.5学时)
了解极大极小过程,α-β剪枝。考核要求
了解搜索概念,博弈树的启发式搜索;掌握状态空间的盲目搜索和与/或树的盲目搜索。
第6章 机器学习
教学要点
机器学习的基本概念和各种符号学习方法。教学时数
4学时 教学内容
6.1 机器学习的基本概念(0.5学时)
了解机器学习的发展过程,学习系统,机器学习的分类; 理解学习和机器学习的概念。
6.2 机械式学习(0.5学时)
了解机械学习的过程及其设计要考虑的三个问题。6.3 指导式学习(0.5学时)
了解指导式学习的学习过程。
6.4 归纳学习(0.5学时)
了解归纳学习的类型。
6.5 基于类比的学习(0.5学时)
了解属性类比学习、转换类比学习; 理解类比学习的概念。
6.6 基于解释的学习(0.5学时)
了解解释学习的空间描述及学习模型; 理解解释学习的概念;
掌握解释学习的基本原理及基本过程。考核要求
了解机器学习的概念,机械式学习,指导式学习,归纳学习;掌握基于解释学习的基本原理及其基本过程。
第7章 神经网络及连接学习
教学要点
人工神经网络的概念和各种连接学习方法。教学时数
2学时 教学内容
7.1 人工神经网络概述(0.5学时)
了解人工神经元及人工神经网络人工神经网络的发展过程,人工神经网络的局限性; 理解生物神经元及脑神经系统的结构及特征。
7.2 人工神经网络的互连结构及其学习机理(0.5学时)
了解人工神经网络学习和记忆的心理学基础; 理解人工神经网络的互连结构; 掌握人工神经网络的学习算法。
7.3 感知器模型及其学习(0.5学时)
了解有关感知器XOR问题求解的讨论; 理解感知器模型,感知器学习。
7.4 误差反向传播网络及其学习(0.25学时)
理解B-P网络结构;
掌握B-P网络学习的传播公式,B-P网络的学习算法。7.5 Hopfield网络及其学习
(0.25学时)
了解Hopfield模型的稳定性
理解Hopfield网络的结构; 掌握Hopfield网络的学习算法。考核要求
了解人工神经网络及其结构和学习机理;理解感知器、B-P网络、Hopfield网络及其B-P网络;掌握Hopfield网络的算法。
第8章 自然语言理解
教学要点
自然语言理解的基本概念和分析方法。教学时数
2学时 教学内容
8.1 语言及其理解的基本概念(0.25学时)
了解自然语言与自然语言理解,自然语言理解的研究任务,自然语言理解的发展,自然语言理解的层次。
8.2 语法规则的表示方法(0.25学时)
掌握句子结构的表示,上下文无关文法,变换文法。8.3 语法分析(0.5学时)
掌握自顶向下与自底向上分析; 理解扩充转移网络分析。
8.4 语义的分析(0.5学时)
理解语义文法; 掌握格文法。
8.5 自然语言的生成(0.25学时)
了解自然语言生成的概念及生成步骤。
8.6 自然语言理解系统的层次模型(0.25学时)
了解语言理解的层次模型。考核要求
了解自然语言理解的概念,会用语法分析和语义的分析,了解自然语言理解系统的层次模型。
第9章 专家系统
教学要点
专家系统是人工智能的一个重要应用领域,它目前正在从集中、封闭模式向分布、开放模式发展。教学时数
3学时 教学内容
9.1 专家系统的基本概念(0.5学时)
了解专家系统的概念、分类及特点。
9.2 专家系统的基本结构(0.5学时)
了解用户界面;
理解知识库、数据库、推理机、解释机构、知识获取机构。9.3 知识获取(0.5学时)
了解知识获取方法的分类; 理解知识获取的任务;
掌握非自动知识获取,自动知识获取。
9.4 专家系统的开发与评价(0.5学时)
了解专家系统的开发条件,生命期概念,专家系统开发过程的各个阶段。9.5 专家系统开发工具与环境(0.5学时)
了解程专家系统的开发工具与开发环境。9.6 专家系统的进一步发展
(0.5学时)
了解新一代专家系统。考核要求
了解专家系统的概念、基本结构及其开发工具与环境;掌握非自动知识获取和自动知识获取。
第10章 智能决策支持系统
教学要点
智能决策支持系统是人工智能的另一重要应用领域,它是目前迅速兴起的网络商务中的一项重要技术,有着广阔的应用前景 教学时数
2学时 教学内容
10.1 智能决策支持系统的基本概念(0.5学时)
了解智能决策支持系统;
理解决策与决策过程,决策支持系统。
10.2 决策支持新技术(1学时)
理解数据仓库、数据开发及其它们的结合。
10.3 智能决策支持系统的基本结构
(0.5学时)
掌握智能决策支持系统的基本结构。考核要求
了解智能决策支持系统及其新技术,知道智能决策支持系统的结构及新结构体系;理解决策与决策过程,决策支持系统;智能决策支持系统的基本结构。
三、参考书目
1、王万森,《人工智能原理及其应用》,电子工业出版社,2000年9月第一版。
2、林尧瑞、马少平,《人工智能导论》,清华大学出版社,1989年5月第一版。
3、陈世福、陈兆乾等编,《人工智能与知识工程》,南大出版社,1997年12月第一版。
4、何华灿,《人工智能导论》,西北工业大学出版社,1988。
5、陈汝铃,《人工智能》,科学出版社,1989。
第二篇:2014新版人工智能教学大纲
404131422《人工智能》
英文课名: Artificial Intelligence 学 时:32 学 分:2 先修课程:数据结构,编译原理,离散数学 适用专业:计算机科学与技术专业,软件工程专业
一、总论
(一)课程性质:
本课程是计算机科学与技术专业本科,软件工程专业本科的专业选修课
(二)开课目的与任务:
目的:使学生掌握人工智能的基本概念、基本原理、知识表示、推理机制和求解技术,以及相关研究领域的技术方法。启发学生对人工智能的兴趣,培养知识创新和技术创新能力,为今后在相关领域的研究打下坚实的基础。
任务:
1.了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。
2.掌握状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。
3.掌握盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、A*算法等.了解博弈树搜索、遗传算法和模拟退火算法的基本方法。
4.掌握消解原理、规则演绎系统和产生式系统的技术。
(三)课程教学重点、难点、手段等有关说明:
课程的重点:
1、状态空间法、问题归约法和谓词逻辑法知识表示方法。
2、盲目搜索和启发式搜索的基本原理和算法。
3、规则演绎系统和产生式系统。
课程的难点:
1、语义网络法,面向对象的知识表示方法。
2、代价搜索、启发式搜索、有序搜索、A*算法。
3、专家系统和机器学习。
教学手段及教学方法: 采用课堂讲授,课后自学,课堂讨论等教学手段和方法。
1、课堂讲授
在课堂上对人工智能的基本概念、原理和方法进行必要的讲授,并详细讲授每章的重点、难点内容;讲授中注意理论联系实际,通过必要的案例展示、讨论,启迪学生的思维,加深学生对有关概念、理论等内容的理解,并采用多媒体辅助教学,加大课堂授课的知识含量。
2、课后自学
为了培养学生整理归纳,综合分析和处理问题的能力,每章都安排一部分内容,课上教师只给出自学提纲,不作详细讲解,课后学生自学。
3、课堂讨论
课堂讨论的目的是活跃学习气氛,开拓思路。需认真组织,安排重点发言,充分调动每一名同学的学习积极性,做好总结。
4、习题课
习题课以典型例题分析为主,并适当安排开阔思路及综合性的练习及讨论。
5、课外作业
课外作业的内容选择基于对基本理论的理解和巩固,培养综合计算和分析、判断能力以及使用人工智能方法用于给定的问题,并能够选择适当的实现方法的能力。
二、课程内容及其学时分配、教学要求
(一)课程内容及学时分配:
章次 1 2 3 4 5 总计
(二)教学要求:
课程的教学要求大体上分为三个层次:了解、理解和认识。
1、了解是能正确判别有关概念和方法;
2、理解是能正确表达有关概念和方法的含义;
3、认识是在理解的基础上加以灵活应用。
三、实验
无
四、课程设计
无
五、教材及主要参考书 教材: 人工智能 丁世飞著 清华大学出版社 2010.12 主要参考书:
1、《人工智能:一种现代的方法(第3版)》Stuart J.Russell, Peter Norvig 著 清华大学出版社 2014.5
2、《人工智能(第2版)》贲可荣,张彦铎著 清华大学出版社 2013.3
课程内容 绪论 知识表示 搜索策略 确定性推理 机器学习
学时分配 4学时 8学时 8学时 6学时 6学时 32学时
3、《人工智能基础教程(第二版)》 朱福喜著 清华大学出版社 2011.5
4、《人工智能及其应用(第4版)》蔡自兴,徐光祐 著 清华大学出版社 2014.6
5、《人工智能原理及其应用(第3版)》 王万森 著 电子工业出版社 2012.9
六、考核办法
因为是考查课,所以采用平时+考试的方式进行考核。平时占50分,包括考勤、随堂小考、提问及课后思考设计题目等的完成状况;最后笔试试卷占50分,范围涵盖所有讲授及自学的内容。
第三篇:《人工智能》详细教学大纲[定稿]
……………………………… ………………………………………………………………装……订……线……………………………………………………………………………………………………………
《人工智能》教学大纲
课程名称:人工智能 英语名称:Artificial Intelligence 课程代码:130234 课程性质:专业必修 学分学时数: 5/80 适用专业:计算机应用技术
修(制)订人: 修(制)订日期:2009年2月 审核人: 审核日期: 审定人: 审定日期:
一、课程的性质和目的
(一)课程性质
人工智能是计算机科学理论基础研究的重要组成部分,人工智能课程是计算机科学技术专业的专业拓展选修课。通过本课程的学习使学生了解人工智能的提出、几种智能观、重要研究领域,掌握人工智能求解方法的特点。掌握人工智能的基本概念、基本方法,会用知识表示方法、推理方法和机器学习等方法求解简单问题等。
(二)课程目的
1、基本理论要求:
课程介绍人工智能的主要思想和基本技术、方法以及有关问题的入门知识。要求学生了解人工智能的主要思想和方法。
2、基本技能要求:
学生在较坚实打好的人工智能数学基础(数理逻辑、概率论、模糊理论、数值分析)上,能够利用这些数学手段对确定性和不确定性的知识完成推理;在理解Herbrand域概念和Horn子句的基础上,应用Robinson归结原理进行定理证明;应掌握问题求解(GPS)的状态空间法,能应用几种主要的盲目搜索和启发式搜索算法(宽度优先、深度优先、有代价的搜索、A算法、A*算法、博弈数的极大—极小法、α―β剪枝技术)完成问题求解;并能熟悉几种重要的不确定推理方法,如确定因子法、主观Bayes方法、D—S证据理论等,利用数值分析中常用方法进行正确计算。
3、职业素质要求:结合实战,初步理解和掌握人工智能的相关技术。
二、教学内容、重(难)点、教学要求及学时分配 第一章:人工智能概述(2学时)
1、讲授内容:(1)人工智能的概念
(2)人工智能的研究途径和方法(3)人工智能的分之领域(4)人工智能的基本技术(5)人工智能的发展概况
2、教学要求:
了解:研究途径和方法、人工智能的分之领域、基本技术和发展概况。理解:人工智能的基本概念、基本技术
掌握:人工智能的发展概况,人工智能研究的课题种类
3、教学重点:人工智能概念
4、难点:人工智能的研究途径和方法
第二章:基于谓词逻辑的机器推理(2学时)
1、讲授内容:(1)一阶谓词逻辑(2)归结演绎推理
(3)应用归结原理求取问题答案(4)归结策略
(5)Horn子句归结与逻辑程序(6)非归结演绎推理
2、教学要求:
了解:一阶谓词逻辑的基本概念
理解:应用归结远力求取问题答案的方法和Horm自居归结于逻辑程序的方法以及非归结演绎原理的方法和途径
掌握:归结演绎推理
3、教学重点:归结演绎推理
4、难点:Horn子句归结与逻辑程序
第三章:图搜索技术(5学时)
1、讲授内容:(1)状态图搜索(2)状态图问题求解(3)与或图搜索(4)与或图问题求解(5)博弈树搜索
2、教学要求:
了解:常用的图搜索技术 理解:与或图搜索问题的原理 掌握:与或图的启发式搜索算法AO
3、教学重点:与或图的启发式搜索算法AO
4、难点:与或图搜索
第四章:产生式系统(2学时)
1、讲授内容:(1)产生式规则(2)产生式系统
(3)产生式系统与图搜索(4)产生式系统的应用
2、教学要求: 了解:产生式
理解:谓词逻辑归结原理 掌握:Herbrand定理
3、教学重点:谓词逻辑归结原理
4、难点:Herbrand定理
第五章:知识表示(2学时)
1、讲授内容:(1)知识及其表示(2)框架(3)语义网络
(4)面向对象知识表示
2、教学要求: 了解:知识表示的概述 理解:几种知识表示方式 掌握:产生式表示 语义网络表示
3、教学重点:产生式表示 语义网络表示
4、难点:框架表示
第六章:不确定性推理方法(6学时)
1、讲授内容:
(1)不确定性及其类型(2)不确定性知识的表示(3)不确定性推理的一般模式(4)确定性理论(5)证据理论(6)模糊推理
2、教学要求:
了解:不确定性推理方法的概述 理解:论证理论 模糊推理 掌握:论证理论
3、教学重点:论证理论 模糊推理
4、难点:证据理论(D-Stheory)第七章:专家系统(4学时)
1、讲授内容:(1)专家系统的概念(2)专家系统的结构(3)专家系统的应用与发展(4)专家系统设计与实现(5)专家系统开发与环境(6)新一代专家系统研究
2、教学要求:
了解:专家系统的概述、专家系统的组成结构与发展 理解:专家系统的设计与实现 掌握:专家系统的开发与使用
3、教学重点:专家系统的设计与实现
4、难点:新一代专家系统概述
第八章:机器学习(10学时)
1、讲授内容:(1)符号学习(2)神经网络学习
2、教学要求: 了解:机器学习的概述 理解:符号学习
掌握:常用的机器学习的方式
3、教学重点:神经网络学习
4、难点:遗传算法
三、各教学环节的基本要求
(一)课堂讲授
1、教学方法
(1)注重理论指导的作用,积极探究达到最佳视觉效果的典型做法。同时贯彻理论和实践相结合的原则,给学生出一定量的思考,并要求学生完成一定量的作业,以提高学生的理论水平,培养学生的动手能力和创新精神。
(2)把握课程的重难点,及时总结深化所学内容,并针对重难点布置适当的综合练习。以便达到良好的教学效果。
2、教学手段
(1)采用理论讲解、操作示范等多种方式,充分利用多媒体等现代化教学手段,整体优化教学过程和教学内容,调动学生学习积极性,进行启发式的教学。
(2)注重学生动手能力的培养,积极鼓励和引导学生对所学的知识、技能加以拓宽、深化。
3、教学辅助资料
CAI课件
(二)作业、答疑和质疑
1、作业
2、答疑和质疑
(三)考核方式
1、考核方式:考试
2、成绩评定:期末考试70%,平时成绩30%
四、与其他课程的联系与分工
本课是计算机及相关专业学生的专业选修课,选修本课须有比较全面的计算机知识。先行课程:《离散数学》、《高等数学》、《概率论》、《线性代数》、《C语言程序设计》、《数据结构》
五、建议教材及教学参考书
(一)建议教材
《人工智能及其应用》,蔡自兴,徐光祐。清华大学出版社,2000年5月。
(二)教学参考书
《人工智能(上、下册)》,陆汝钤,北京:科学出版社,1996年。
第四篇:人工智能 2012年研究生课程教学大纲
武汉工程大学2012年《人工智能基础》考研考试
一、命题原则:
1、考察学生对基础知识(包括基本概念、基本内容、基本结论、基本计算)的掌握程度以及运用已掌握的知识分析和解决问题的能力。
2、考试对象为报考我校模式识别与智能系统专业各方向的研究生入学考试考生。
3、难易适度,难中易比例:容易:30%,中等:40%,偏难20%,难:10%。
4、考试知识点覆盖率达80%以上。
二、题型、分值及考试时间:
1、题型包括:填空题、对错题、名词解释、计算题、简答题
2、考试时间:180分钟
3、满分:150分
三、考试内容与要求
第一章绪论
1.1人工智能的定义和发展
1.2人类智能和人工智能
1.3人工智能各学派的认知观
1.4人工智能的研究与应用领域
第二章知识表示方法
2.1状态空间法
2.2问题规约法
2.3谓词逻辑法
2.4语义网络法
2.5框架表示
2.6剧本表示
2.7
第三章
3.1
3.2
3.4
3.5
3.6
3.7过程的表示 搜索推理技术 图搜索策略 盲目搜索 消解原理 规则演绎系统 产生式系统 系统组织技术 3.3启发式搜索
3.8不确定推理
3.9非单调推理
第四章神经计算 模糊计算
4.1 概述
4.2 神经计算
4.3 模糊计算
第五章专家系统
6.1专家系统概述
6.2基于规则的专家系统
6.3基于框架的专家系统
6.4基于模型的专家系统
6.5新型专家系统
6.6专家系统的设计
6.7专家系统开发工具
第六章机器学习
7.1机器学习的定义和发展历史
7.2机器学习的主要策略和基本结构
7.3机械学习
7.4归纳学习
7.5类比学习
7.6解释学习
7.7神经学习
7.8知识发现
第七章自动规划
8.1规划系统的定义与任务
8.2积木世界的机器人规划
8.3STRIPS规划系统
8.4
8.5 具有学习能力的规划系统 分层规划
8.6 基于专家系统的规划
第八章智能控制
12.1 智能控制的发展与定义
12.2 智能控制的结构理论与特点
12.3 智能控制系统
12.4 智能控制的应用领域
第九章人工智能的展望
13.1 人工智能的争论
13.2 人工智能对人类的影响
13.3 对人工智能的展望
四、主要参考书
推荐参考教材:
(1)人工智能及其应用(第三版).蔡自兴,徐光祐主编.清华大学出版社.2003年
(2)人工智能原理及其应用(第2版).王万森 编著.电子工业出版社.2007.1
(3)人工智能(第一版).张彦铎主编.清华大学出版社.2007年
(4)Artificial Intelligence: A New Synthesis.Morgan Kanfmann.N.J.Nilsson主编.机械工业出社.1999
第五篇:人工智能相关材料
应用:
个人助理(智能手机上的语音助理、语音输入、家庭管家和陪护机器人)产品举例:微软小冰、百度度秘、科大讯飞等、Amazon Echo、Google Home等
安防(智能监控、安保机器人)产品举例:商汤科技、格灵深瞳、神州云海
自驾领域(智能汽车、公共交通、快递用车、工业应用)产品举例:Google、Uber、特斯拉、亚马逊、奔驰、京东等
医疗健康(医疗健康的监测诊断、智能医疗设备)产品举例: Enlitic、Intuitive Sirgical、碳云智能、Promontory等
电商零售(仓储物流、智能导购和客服)产品举例:阿里、京东、亚马逊
金融(智能投顾、智能客服、安防监控、金融监管)产品举例:蚂蚁金服、交通银行、大华股份、kensho
教育(智能评测、个性化辅导、儿童陪伴)产品举例:学吧课堂、科大讯飞、云知声
发展方向思路:
(一)人工智能新兴产业
这部分主要任务是进行人工智能前沿技术布局,推动核心技术产业化,并为人工智能产业发展奠定公共基础。本部分涉及核心技术研发与产业化、基础资源公共服务平台两大工程。其中,核心技术研发与产业化工程主要涉及三个方面的技术。一是人工智能基础理论,包括深度学习、类脑智能等。二是人工智能共性技术,包括人工智能领域的芯片、传感器、操作系统、存储系统、高端服务器、关键网络设备、网络安全技术设备、中间件等基础软硬件技术。三是人工智能应用技术,包括基于人工智能的计算机视听觉、生物特征识别、复杂环境识别、新型人机交互、自然语言理解、机器翻译、智能决策控制、网络安全等。基础资源公共服务平台工程主要涉及四个方面的建设内容。一是各种类型人工智能海量训练资源库和标准测试数据集建设,包括文献、语音、图像、视频、地图及行业应用数据等,这些数据集需要面向社会开放,为广大科研机构和企业进行人工智能研究和开发提供服务。二是基础资源服务平台建设,包括满足深度学习计算需求的新型计算集群共享平台、云端智能分析处理平台、算法与技术开放平台、智能系统安全情报共享平台等。三是类脑智能基础服务平台建设,要能够模拟真实脑神经系统的认知信息处理过程。四是产业公共服务平台建设,可以为人工智能创新创业提供相关研发工具、检验评测、安全、标准、知识产权、创业咨询等专业化服务。
(二)重点领域智能应用
这部分主要任务是加快人工智能技术的产业化进程,推动人工智能在家居、汽车、无人系统、安防、制造、教育、环境、交通、商业、健康医疗、网络安全、社会治理等重要领域开展试点,使得人工智能能够在第一时间转化为生产力并惠及民生。本部分以基础较好的智能家居、智能汽车、智能无人系统、智能安防等领域为主。智能家居示范工程主要支持利用健康医疗、智慧娱乐、家庭安全、环境监测、能源管理等应用技术,进行具有人工智能的酒店、办公楼、商场、社区、家庭等建设,提升百姓生活品质。智能汽车研发与产业化工程主要面向自动驾驶和安全驾驶,支持智能汽车芯片和车载智能操作系统、高精度地图及定位、智能感知、智能决策与控制等,支持智能汽车试点。智能无人系统应用工程主要面向无人机、无人船等无人设备,支持与人工智能相关的结构设计、智能材料、自动巡航、远程遥控、图像回传等技术研发,及其在物流、农业、测绘、电力巡线、安全巡逻、应急救援等重要行业领域的创新应用。智能安防推广工程主要面向与百姓安全息息相关的社会治安、工业安全以及火灾、有害气体、地震、疫情等问题,支持利用图像精准识别、生物特征识别、编码识别、智能感知等技术的研发和应用。
(三)智能化终端产品
这部分的主要任务是希望通过合适的终端,实现智能化生产和服务。本部分涉及三大工程。智能终端应用能力提成工程主要是面向具有一定智能计算能力的终端及附属应用,支持其在智能交互、智能翻译等云端协同方面及图像处理、操作系统基础软硬件方面进一步改进。智能可穿戴设备发展工程主要支持轻量级操作系统、低功耗高性能芯片、柔性显示、高密度储能、快速无线充电、虚拟现实和增强现实等关键技术的成果转化与应用。智能机器人研发与应用工程主要支持智能感知、模式识别、智能分析、智能控制等技术在机器人方面的研发和应用,包括生产用智能工业机器人,救灾救援、反恐防暴等特殊领域的智能特种机器人,医疗康复、教育娱乐、家庭服务等领域的智能服务机器人。
(四)标准体系和知识产权
目前人工智能标准领域还处于一片空白状态,关于人工智能的概念仍然没有达成一致意见,人工智能也还没有一个统一的技术体系架构,平台与应用之间的接口五花八门,而且基本上都是私有协议,网络、软硬件、数据、系统、测试评估等方面的研发、应用、服务也无章可循。这直接导致了人工智能领域进入门槛过高,无法形成良性发展的产业生态。因此,建设人工智能领域标准化体系,建立并完善基础共性、互联互通、行业应用、网络安全、隐私保护等技术标准,已经成为摆在眼前的现实问题。当然,标准化工作需要相关各方的积极参与,并积极开展国际合作,才能保证对人工智能产业发展的有效促进,推动标准走出去才能增强国际话语权。另一方面,在我们所处的这个全球经济一体化时代,专利已经成为发展的硬实力,必须要加快重点技术和应用领域的专利布局,同时加强专利合作,提高知识产权成果转化效率,积极防控专利风险,增强标准与专利政策的有效衔接,才能保证我国人工智能产业拥有强大的竞争力并得到持续健康发展。
政策:
2015年5月国务院在《中国制造2025》提出“加快发展智能制造装备和产品”,指出“组织研发具有深度感知、智慧决策、自动执行功能的高档数控机床、工业机器人、增材制造装备等智能制造装备以及智能化生产线,统筹布局和推动智能交通工具、智能工程机械、服务机器人、智能家电、智能照明电器、可穿戴设备等产品研发和产业化。”
2015年7月4日国务院在《国务院关于积极推进“互联网+”行动的知道意见》明确提出人工智能作为11个重点布局的领域之一,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用。
2016年1月国务院在《“十三五”国家科技创新规划》提出智能制造和机器人成为“科技创新2030项目”重大工程之一。
2016年3月18日国务院在《国民经济和社会发展第十三个五年规划纲要(草案)》提出人工智能概念进入“十三五”重大工程。
2016年5月18日国家发展改革委、科技部、工业和信息化部、中央网信办在《“互联网+”人工智能三年行动实施方案》明确了要培育发展人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智能化水平、并且政府将在资金、标准体系、知识产权、人才培养、国际合作、组织实施等方面进行保障。
人工智能技术带来的产业影响
当前,人工智能技术对互联网行业产生的影响和变革主要有如下三个方面:
其一,在理论技术层面,人工智能技术为基于互联网和移动互联网等领域的创新应用,提供理论基础。例如,自动定理推理,为网络信息检索、问题求解、远程诊断等问题提供了自动求解方案;自然语言理解,为计算机人类语言理解提供理论和方法;数据挖掘为从数据库中挖掘有意义,提炼出具有必然性、蕴含本质规律的数据提供了规则、聚类等数据处理、建模、评估标准。
其二,在技术应用和创新层面,人工智能技术的发展,为未来ICT等网络技术的发展指引了方向。当前,以智能算法、深度学习、云计算为代表的大规模网络应用已经成为ICT产业的重要发展方向。各大互联网公司在深度学习领域在不断做积极探索,深度学习是机器学习研究中的一个重点关注领域,其研究侧重于建立、模拟人脑进行分析学习的神经网络。在创新方面,深度学习带来了机器学习的新浪潮,推动“大数据+深度模型+数据发现挖掘”时代的来临。人工智能技术与互联网的融合,是两个领域发展到一定阶段,探索创新的必然结果,深度学习为拥有强大计算能力和数据资源的互联网巨头公司带来下一次全面领跑的机会。例如,谷歌、百度在硅谷的研发实验室,在对深度学习、算法升级,对机器学习模仿人脑的智能活动,让机器像人脑一样识别图像、理解自然语言,解析网络内容之间关系做深度探索。百度语音和图像等相关网络产品应用的快速崛起,正是受益于对机器学习等领域的技术突破。
其三,在融合发展层面,人工智能技术的发展促进多种科学与网络技术的深度融合。从国际上看,人工智能技术在美国,欧洲和日本发展迅速,并且带动了多种信息科学领域的发展,信息学、控制学、仿生学、计算机学等领域的技术突破均被运用到人工智能应用中去。从技术发展脉络发展上,人工智能很多技术一直处于创新的前沿,未来会在很大程度上影响信息产业的发展方向。人工智能发展至今涉及到多个研究领域,研究方向包括符号计算、语言识别、模式识别和计算机视觉、机器翻译与机器学习、智能信息检索、问题求解与专家系统、逻辑推理与逻辑证明、自然语言处理等,逐渐成为更为广泛的智能科学学科。
新时期下面对人工智能快速发展对策:
在人工智能技术发展过程中,我们总体上应该贯彻落实创驱动发展战略,立足自主创新的同时,放眼国内国际两个大局技术发展情况,加强跟踪高新技术产业技术的发展态势调整产业结构,统筹全局发展,切实推进由技术革新到推进经济发展方式的转变,实现工业经济产型升级,同步大力支持我国人工智能相关研究和产业化工作。在具体工作上,我们应该采取以下策略:
一是要建立针对相关科研成果的产业追踪机制。针对国际国内相关企业和科研机构正在进行的相关科研活动进行动态追踪,对其科研成果在各行各业的信息化应用进行预研预判,为制定信息化发展相关政策规划提供线索和根据。
二是适时引导和推动人工智能相关产业领域的研发应用。加强对人工智能和人脑科学工业领域应用的深入调研分析,掌握工业机器人、新型计算产品、人工神经网络等的发展和应用现状,坚持应用牵引,整合产学研现有资源,形成一批人工智能关联技术的实验室和技术中心,推动人工智能关联技术在网络、通讯等行业快速发展的应用示范。
三是要加大对人工智能关联技术的资金支持力度,引导人工智能关联技术向通用技术领域的演进和转化。
未来人工智能技术将进一步推动关联技术和新兴科技、新兴产业的深度融合,推动新一轮的信息技术革命,其人工智能技术将成为我国经济结构转型升级的新支点。