第一篇:六年级数学教学案例与反思
“分数除以整数”教学案例与反思
教学片段简介如下:(案例)
探索分数除以整数的计算方法:
1.情境:出示一根不到1米的绳子,用米尺量一下,让学生观察大约是多少,然后对折。
师:同学们,你们能根据老师刚才的操作提一个数学问题吗?
教师板书题目:把6/7米长的绳子平均分成2份,每份是多少?
师:那么,该怎样列式呢?学生口答,教师板书:6/7÷2
师:这一题可以怎样计算呢?好,下面先请同学们独立思考,然后四人小组合作探索计算方法。
要求:时间10分钟,最起码用两种以上方法来计算,想出3种以上方法的小组长请写到黑板上来。
2.四人小组活动。几分钟后,有小组长上黑板写了好多算式,大致有以下几种:
①因为3/7×2=6/7所以6/7÷2=3/7,②6/7÷2=6/7×1/2,③6/7÷2=(6÷2)/7
④6/7-3/7=3/7,⑤6/7×2=3/7,⑥6/7÷2=(6/7×7)÷(2×7)=6÷14=3/7
3.师:同学们真会动脑筋,想出了这么多种方法,有的方法很有创造性,那么你们能证明你们的结果正确吗?这些算式的列式理由又是什么呢?
全班交流:
生1:老师结果是“3/7”是正确的,同学们看我量给你们看(学生操作着)。
生2:我们组认为根据除法的意义第①种做法是正确的。
生3:我们组认为第⑥种做法是正确的它是根据商不变规律得出的。
生4:我们组认为第⑤种做法不正确,而第④种做法是可以理解的,不过很难想到。
……
这时下面好多学生举手,要求回答。
师:你们看黑板上写得最多的是第②③两种方法,谁能说说理由?
生5:“6/7÷2”就是把6/7米平均分成2份每一份是多少,也就是求6/7米的1/2是多少,所以6/7÷2=6/7×1/2。
生6:例题就是把6个1/7平均分成2份,每一份有3个1/7,所以6/7÷2=(6÷2)/7
师:同学们讲得非常好,请同学计算以下的习题。
4.4/7÷2 6/7÷3 8/9÷4 3/8÷2做一做,并说说计算时用的是上面的哪一种方法?(同学们都用了上面的第③种方法,并认为这种方法比较简便)
这时有一位学生举手提出问题:中间一道3/8÷2的分子3不能被除数2整除,不能用上面的第③种方法计算。
请同学们评议。
5.师:3/8÷2可以怎样计算呢?同桌讨论用哪一种方法计算合适。师板书:3/8÷2=3/8×1/2=3/16,然后比较两种方法的优缺点。
(反思)
对分数除以整数的计算方法的教学,不再是重结果,轻过程而是从组教材,激发学生参与学习,有以下几个想法: 1.计算关注的不应仅仅是计算。
教学时围绕例题6/7÷2重点展开探索,提供自主学习的机会,给学生充分思考的空间和时间,允许并鼓励他们有不同算法,尊重他们的想法,哪怕是不合理的,甚至是错误的,让他们在相互交流、碰撞、讨论中,进一步明确算理。重点探究后,并不急于得出计算法则,而是继续让学生做一做,仍允许他们选用自己认为合适的方法。并通过“3/8÷2”一题,分子不能被除数2整除,让学生在不断的尝试、探索中感悟到:这时应采用“分数除以整数(零除外),等于分数乘以这个整数的倒数”。虽然整节课都没有刻意追求得出所谓形式上的计算法则,但学生所说的不就是算理算法的核心吗?这样的计算教学,学生获得的将不仅仅是计算法则、计算方法。2.提倡算法的多样化,促进学生个性发展。
算法多样化是《标准》中的一个重要思想,是指尊重学生的独立思考,鼓励学生探索不同的方法,并不是让学生掌握多种方法。对同一个计算问题,常常会出现不同的计算方法,这正是学生具有不同个性的体现。教师鼓励学生用已有的经验思维、动手、操作、寻求解决问题的途径,课堂气氛宽松活跃。《生活中的比》教学案例及反思
一、案例的背景与主题
《数学课程标准》对小学数学教材编写的一个重要建议是“应力求从学生熟悉的生活情境与童话世界出发,选择学生身边的、感兴趣的事物,提出有关的数学问题,以激发学生的兴趣与动机,使学生初步感受数学与日常生活的密切联系。”
二、案例描述:
(一)在情境中发现问题
1.师:同学们,在第29届奥运会上,谁给你留下深刻的印象?他(她)为什么让你如此难忘?
生:拳击48公斤级金牌:邹市明
生:中国选手陈燮霞以抓举95公斤、挺举117公斤,总成绩212公斤夺得金牌。这也是中国代表团在北京奥运会上获得的首枚金牌。同时,陈燮霞还打破奥运会女子48公斤级挺举纪录。生:志愿者,她们为奥运会默默无闻地工作着。…
2.师:志愿者是奥运会的形象大使,所以“志愿者的微笑是北京最好的名片”。
(课件出示:志愿者图片)我们每个人都可以尽自己的微薄之力表达我们的拳拳奥运心,你知道怎样做才是一名称职的奥运小志愿者吗? 3.师:我们的好朋友淘气也为自己拍下这样一张志愿者的微笑照,我们一同看看吧!(课件出示:淘气照片情境图)4.观察哪几张照片与图A比较像? 生:图A、图B、图D比较像。
5.导入:为什么有的像?有的不像?我们一起来研究。
[设计意图:创设学生熟悉的第29届奥运会的生活情境,提出数学问题,让学生明确学习内容,并产生探索新知欲望,体验生活与数学的联系。]
(二)在探索中解决问题 活动一:
1.我们把照片放在方格上来看一看,这些长方形的长与宽之间有什么关系?(出示方格图)2.小组合作完成表一 长方形 长 宽 长是宽的几倍 宽是长的几分之几 反思
在课标的引领下,我在上校级研讨课时,确定了《生活中的比》一课作为研讨的内容,教学中采用“自主探究、合作学习”的学习方式,借助“图形放大缩小”“速度与生活中配甘蔗汁”等情境,设计各种问题让学生在活动中思考,讨论、合作探究,使学生在丰富的学习背景中逐步体会比的意义和价值,培养学生应用所学知识解决实际问题的能力,体验生活中有数学,生活中数学的价值。
比的基本性质教学案例与反思
教学目的
1、根据除法中的商不变性质,利用知识的迁移规律,使学生理解比 的基本性质。
2、通过学生的自主探讨,掌握化简比的方法并会化简比.
3、初步渗透事物是普遍联系和互相转化的辩证唯物主义观点. 教学重点:理解并掌握比的基本性质。
教学难点:应用比的基本性质把比化成最简单的整数比。
教学过程
一、复习引入
1、复习比和分数、除法之间的关系,孕伏新知比分数除法 比 分数 除法 5:7()()()7/8()()()8 ÷10 10:15()()
2、提问:比和除法,比和分数之间有那些联系?
3、出示三个分数:3/4、6/8、9/12.问:(1)这三个分数相等吗?为什么?(2)可写成比的形式分别是什么?(3)这三个比相等吗?为什么?(3 :4=6 :8=9 :12(4)这三个比是怎样变化的?有什么规律?(5)回忆:除法有什么性质?分数有什么性质?他们的内容是什 么? 引导学生根据商不变的性质和分数的基本性质,猜想:比有什么 性质?小组交流。
二、推导比的性质 指名回答小组交流的结果.引导学生用语言表述:比的前项和后 项同时乘上或者同时除以同一个数(0 除外),比值不变.
三、学习化简比:
1、说明:利用商不变的规律可以进行除法的简算;根据分数的 基本性质,可以进行分数的约分、通分。同样,应用比的基本性质,可以把比化成最简单的整数比。
2、讨论.你怎样理解“最简单的整数比”这个概念? 学生充分讨论后,指名回答,形成共识:最简单的整数比必须是一个 比,它的前项和后项必须是整数,而且前后项应该是互质数.
3、请个别学生举一个最简单的整数比。
4、学习例 1:把下面各比化成最简单的整数比。(强调化成最简 单的整数比—互质)(1)问:怎样把一个整数化成最简单的整数比? 14:21 54:18(2)引导学生总结整数比的化简方法:用比的前后项分别除以它 们的最大公约数,使比的前后项是互质数。
5、学习例 2:化简下列各比:(1)、问:这两题比的前项、后项是什么样的数?怎么把分数比 化成最简单的整数比呢? 1/6:2/9 3/5:5/8(2)、引导学生小结分数比的化简方法:比的前项后项分别乘以 它们分母的最小公倍数,就化简成最简整数比。
6、学习例 3:化简下列各比(1)这两题比的前项、后项是什么样的数?怎么把小数比化成最简 单的整数比呢? 1.25:2 2.7:18(2)由学生小结小数比的化简方法: 先将小数化成整数,再化简成 最简单的整数比。师生共同总结化简比的方法:先要利用比的基本性 质,把不是整数比的化成整数比,再把比的前项后项同时除以它们的 最大公约数,就得到最简单的整数比。
7、练习:化简比:60:24 5/8:7/24 5/4:0.75(三、)练习:
1、填空(1)、4:5 的前项扩大 2 倍,要使比值不变,比的后项应该。(2)、如果 3:2 的后项变成 15,要使比值不变,比的前项应该为。(3)、如果 7:8 的前项增加 14,要使比值不变,比的后项应该。
2、判断:(1)、1/2:1/4 化简后是 2。-----()(2)、比的前项和后项同时乘以或除以相同的数,比值不变。-----()(3)、两个数的比值是 1/3,这两个数同时扩大 5 倍,它们的比值是 1/3。-----()(4)、把“1 小时:45 分钟”化简后是“1:45”。-()
3、鞋厂生产的皮鞋,十月份生产的双数与九月份生产的双数的比 是 5:4。十月份生产了 2000 双,九月份生产了多少双?
4、提高题 我国国旗法规定,国旗的长与宽的比是 3:2。现在有一张长是 27 厘 米,宽是 12 厘米的长方形纸,你能按规定制作一面最大的国旗吗?
(四)、小结:比的基本性质是什么?它是根据什么的来的?利用比 的基本性质可以干什么?化简比的方法是什么?
(五)、作业:练习十七的10、11、教学反思: 比的基本性质这一课,我充分利用学生的已有知识,从把握新旧 知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这 一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些 知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜 想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课 的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出 比的基本性质。整节课无处不体现了学生是学习的主人,无时不渗透 着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还 是对化简比的方法的总结,都留下了学生成功的脚印。同时采用讲练 结合、说议感悟、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和 探索精神。学生学的轻松,教师教的愉快!在学生大胆猜想得出比的 基本性质是比的前项和后项同时扩大或缩小相同的倍数 0 除外),比 值不变时,我给予学生充分的肯定,但没有在学生的验证时让学生比 较同时乘以或除以相同的数(0 除外)和同时扩大或缩小相同的倍数(0 除外)的微小区别造成学生一定的概念上的混淆。注重练习题的 设计,使学生积极主动的学习。练习题的设计应强调数学教学中培养 学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些 学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。例如:当学生得出“比的基本性质”这一规律时,我 马上出示:尝试:(1)、4:5 的前项扩大 2 倍,要使比值不变,比的后项应该()(2)、如果 3:2 的后项变成 15,要使比值不变,比的前项应该为()这两题,如果学生会完成了,这个基本性质也理解了。再如:我出示 的四道例题,把学生在化简过程中将会出现的错误全部呈现了出来,学生第一印象的掌握,有助于今后的练习。俗话说:“兴趣是最好的老师。”小学生对数学的迷恋往往是从兴 趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的 兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应 用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从 激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增 强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做支撑,后面的新课学习就积极主动。总之,本课我着力体现“以学生发展为本”的教学理念,充分发挥 学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,在以后 教学中力求让学生在知识点和概念上表述更准确。
比的应用教学案例与反思
教学目标:
1、使学生理解按比例分配的意义。
2、掌握按比例分配应用题的特征及解题方法。
3、培养学生应用所学知识解决实际问题的能力。
二、教学重点:掌握按比例分配应用题的特征及解题 方法。
三、教学难点:按比例分配应用题的实际应用。
四、教学过程:
一、复习有关知识,为学习新知作准备。我班有男生 38 人,女生 36 人。你能根据这两条信息,用比的知识和分数的知识来说一句话吗? 如:男生人数和女生人数的比是 38∶36 男生人数是全班人数的 38/74 女生人数和男生人数的比是 36∶38 女生人数是全班人数的 36/74 等等。
二、创设情境,提出课题。
(一)师: 大家看,这是刘老师对我们家那栋楼 2 楼居民在 9 月份用电情况的调查,统计如下: 二楼的二户居民合用一个电表,九月份应付电费 36 元。调查情况如下:住户 张家 李家 分电表数 30 30(千瓦时)应付电费()()师:现在请你们帮助算一算,每户应分摊多少钱比较合理?谁愿意说说你的想 法? 师:其实,在日常生活中,像这样平均分的事例还有很多,我们也经常遇到。
(二)师:再看刘老师对三楼住户的统计。三楼的二户居民合用一个电表,九月份应付电费 42 元。调查情况如下:住户 胡家 王家 分电表数 45 25(千瓦时)应付电费()()师:现在再请你帮帮忙,看一看每户居民应怎样分摊电费比较合理?同桌交流 一下? 生汇报。(应按用电量的多少来分。)
(三)揭示按比例分配的意义。
三、探究新知。
(一)学习例 1。(1)这道题是一道分配问题的应用题,想一想:分什么?按什么分?求的是什么?(2)看到“3∶2 分别送给小红和小明两位同学”这句话,你想到了哪些倍数关系?(3)探究解答方法。(4)交流。(可能会出现不同的解法)a、用分数解答。3+2=5 20×3/5=12(本)20×2/5=8(本)b、归一的方法解答。20÷(3+2)=4(本)4×3=12(本)4×2=8(本)(5)讨论:怎样检验解答结果是否正确。a、把小明和小红各得书的本数相加,看是不是等于书的总数。b、把小明和小红各得书的本数写成比的形式,看化简后是不是等于 3∶2。
(二)练习:做一做第一题。学生独立完成后,师问:这道题分配的是什么?按什么进行分配? 师生评议。
(三)回到准备题。师: 我们首先计算二楼用户每家应付多少钱时是平均分,因为它们用电量相同,按 1∶ 1 分配的,所以它是按比例分配的应用题的一种特殊情况,现在你们会计算三楼用户居民应 付多少电费了吗?独立完成此题。
三、课堂总结。(1)今天这节课,你学到了什么知识?这种应用题有什么特点?解答这种应用题的步 骤是什么?(2)师:一般用分数的方法,先求出总份数,再看各部分量占总数量的几分之几,接 着可以求出各部分量。当然可用归一的方法,先求出一份是多少,再求出几份是多少。
四、延伸与拓展。一个长方形周长是 84 分米,长与宽的比是 5∶2,这个长方形的面积是多少?
五、作业。第 54 页第 1、2、6 题。“比的应用”教学反思:
“比的应用”一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在 教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种 现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。本节课有如 下特点:
一、密切联系生活实际,创设学习情境。授课开始,我紧密联系学生的生活实际,提出一个问题:我班男生 38 人,女生 36 人,你能根据这两条信息,用比的知识和分数的知识说一句话吗?充分尊重学生的思维方式 和自主选择权,培养学生独立的个性和见解,接着,我又创设了两个教学情境,要同学们帮 居民算一算每户应付多少钱比较合理。学生从情境一中很快能发现,由于两家用电量相同,因此电费应平均分摊;学生从情境二中,想到了电费不能平均分摊,因为用电量不同,谁用 电量多,谁就应多出钱;有的用到了以前所学的归一法,先求出一度电要多少钱,再分别求 出每家应付多少钱。这样,从学生熟悉的事情出发,激发了学生主动参与的积极性,让学生 感受到数学就在身边,数学知识来源于生活,又服务于生活,从而对数学产生亲切感,提高 了学习兴趣,培养了他们解决生活问题的能力。
二、创造性地使用了教材。根据本节课内容,我看了书中的例题,例题中涉及的内容,我觉得脱离了学生的 生活实际。因此,我把例 1 改编成把 20 本故事书按 3∶2 分给两位同学,求两位同学各分得 多少本?使学生真正感受到生活中到处有数学,并且培养了学生联系生活实际、运用数学知 识解决问题的意识和能力,充分体现了数学的应用价值,从而激励他们更好地学好数学。
三、注重算法多样,发展了学生的求异思维。鼓励学生用多种方法解决问题,培养学生思维的灵活性和多样性,发展了学生 求异思维。本节课不足之处: 1)鼓励算法多样,不要忘记教给学生一般的优化的计算方法。在一个班级体中,几十个学生的数学思维水平是参差不齐的。为了使大多数学 生通过学习达到义务教育所要求的标准,使大多数学生掌握一般的较优的计算方法,由此,教师在鼓励用多种方法解题时,应有侧重。2)这堂课上,我觉得给学生自主探索的时间和空间太少,虽然老师在学法上对学 生进行了有效的指导,但是要真正让学生学得主动,学得快乐,还需要教师从观念上真正改 变过来,少牵,多引。3)本节课在改变传统的应用题教学方法上进行了大胆尝试,并在情境和例题的选 择与使用等方面取得了一定的突破,但还有许多的问题需要进一步研究。如: “如何处理应 用题的实践性、应用性,”在引导探索的过程中,如何在落实知识技能目标的基础上拓展发 展性领域的目标等。
《百分数的认识》教学案例与反思
《百分数的认识》是一节概念课,概念课的教学是小学数学教学中的重要部分。由于它的抽象性和小学生思维的形象性是一对矛盾,使它在教学中成为一个焦点和难点。因此,如何引导学生学习数学概念,将枯燥的数学概念生活化、生动化、情景化。使学生乐于接受、易于接受,这便成为我们要探讨的课题。通过这段时间的思考和这节课的体会,我认为主要体现在以下三个方面。
一、从学生感兴趣的事情入手,调动学生学习的兴趣。组织学生讨论三位老师参加定点投篮比赛,要把最厉害的选手推荐出去。在比一比谁投中的次数占投篮总次数最高的过程中引出了百分数。此时,学生已在隐约中感悟到百分数是表示一个数是另一个数的百分之几的数,初步感悟了百分数的含义。
二、密切联系生活,理解百分数的意义。
百分数是日常生产和生活中使用频率很高的知识,学生虽未正式认识百分数,但对百分数却并非一无所知。所以课堂中搜集到生活中常见的百分数,选取典型的例子,让学生说一说这个百分数所表示的意思。有酒瓶上的百分数,考试分数统计表中的百分数,有生活中饮料销售量的百分数。而这里百分数的搜集,老师注意到搜集比100%小的,也有比100%大的百分数,这样就比较全面。也使学生体会到数学就在我们身边,数学生活化的原理,又从生活中提炼出数学知识,得到百分数的概念。
三、解决问题内化百分数的概念。初步形成的概念,巩固程度较差,容易混淆概念。这说明一个事实,概念的初步形成,并不等于牢固的掌握和真正的理解了,这是需要适时的内化。
这时我通过多种形式的训练使学生对概念的掌握深入一层,先安排了一个观察正方形中的阴影部分的面积和空白部分面积,说出由面积联想到的分数和百分数,再安排几道判断题,通过让学生辨一辩,说一说的环节,在辨析的过程中巩固了百分数的概念。
接着让学生选择合适的百分数填空,应用百分数表示本节课自己对自己在课中的表现的满意度。使得学生感到学习概念的最终目的是为了应用概念解决生活中的问题,学习才有意义,学习的兴趣才浓厚。
反思
概念的教学时,不存在一种适合所有概念的教学的固定模式或方法。因此,老师应在课程中大胆实践,不断创新,丰富概念教学的方法和策略。
《百分数的应用》教学案例与反思
【案例背景分析】
本节课的教学内实际还是求一个数是另一个数的百分之几的问题,只是有一个条件题目没有直接给出,通过这类应用题的学习可以加深学生对百分数意义的理解,提高用百分数解决实际问题的能力,教材通过创设一个“水结冰”的情境,让学生在活动中小组合作,交流、探索,培养学生的创新意识和探索能力,同时自主归纳、完善自己的数学知识架构。
【主题】让学生自主建构数学知识体系。
在六年级上学期,学生已经学习了分数应用题,百分数的意义和百分数的简单应用,能较熟练地分析和解决分数乘除法应用题,能正确地判断题里的单位“1”的量,所以对于解答本节课的内容,学生是有充分的知识和能力上的储备了。所以这节课我不是照本宣科地上,而是让学生在知识的横向对比和纵向对比中,理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解,建构自己的数学知识体系。
【细节】 教学内容: 知识与能力目标:
加深理解百分数的意义,理解“增加百分之几”和“减少百分之几”的意义,进一步拓宽“比较”的内涵,提高学生能够运用百分数的数学知识解决实际问题的能力。过程与方法目标:
深入理解“比较”的内涵,通过计算实际问题:增加百分之几和减少百分之几,理解“增加百分之几”和“减少百分之几”的意义,培养学生运用数学知识解决实际问题的能力。
情感与态度目标:
在具体情境中,紧密联系生活实际,使学生感受数学与生活实际的联系,让学生体会到生活中有数学,数学中有生活。
教学重点和难点:
理解“增加百分之几”和“减少百分之几”的意义,并解决实际问题。
教具和学具准备: 小黑板,卡纸。教学过程:
一、课前谈话
师:让学生自我介绍,并说出自己的身高是多少厘米?
二、创设情境,导入新课
1.师:刚才同学们都作了自我介绍,问:甲同学高吗?乙同学矮吗?(板书:高(矮))能这样说吗?(指出:高矮不能单独存在)那说明高矮是要在“比较”中得出来的。那比较是几种事物进行比较?(板书:甲、乙)介绍六年级12岁的同学,男生一般平均身高149厘米,女生一般平均身高是151厘米。你比平均身高高多少厘米?矮多少厘米?那除了比较高矮外,还能比较什么?归纳出:多(少)2.师:我们再看比较的结果,它是具体量吗?要比较出结果是具体量,应怎么比较?(大数-小数=相差数)
3.师:那比较的结果还有没有别的表示形式呢?我们先来做几道练习:
①甲数是5,乙数是4,甲数是乙数的百分之几? ②甲数是5,乙数是4,乙数是甲数的百分之几?
4.师;从上面两题可以知道,它们也表示两种量进行比较,比较的结果是不是具体量?(板书:表示两数量的倍数关系)直接根据百分数的意义用除法来解决问题。
5.师:我们现在对比较的知识是不是有更多的了解了?还想不想更进一步学习有关比较的知识?板书课题:百分数的应用
(一)三、创设情境,探索新知
(一)创设问题情境,在提问中回顾与反思。
1.师:同学们,在炎热的天气里人们常常用冰块来消暑降温。你们制作过冰块吗?水结成冰之后体积发生了什么变化?(水结成冰,体积会增加)
2.出示:盒子中有45厘米 的水,结成冰后,冰的体积约为50厘米。
3.师:你能根据这两个条件提出有关“比较”的数学问题吗? 生:冰的体积比水多多少厘米 ?水的体积是冰的体积的几分之几?水的体积是冰的体积的百分之几?冰的体积是水的体积的几分之几?冰的体积是水的体积的百分之几?也有个别会提出:冰的体积比原来水的体积约增加百分之几?
4.师:哪些问题是我们学过的?你能不能很快就列出算式,请和你的同桌说一说。
5.在思考中提升:50-45=5(厘米),45÷50=,45÷50=90%,50÷45=,50÷45≈111%这几种列式的异同。具体量不变,倍数关系是根据标准变化的。
(设计意图:利用情境所提供的数学信息,复习旧知的同时,引发学生思考,让学生明白在解决百分数应用题时,不仅要弄清“谁和谁比”,要弄清“以谁为标准”。)
(二)在解决“增加百分之几”问题中理解数学关系,寻求解决问题的方法。
1.师:今天我们重点解决“冰的体积比原来水的体积约增加百分之几”这个问题,一起读题,你觉得哪句话最难理解?
2.学生用自己的方式理解“增加百分之几”的意思。3.四人小组交流自己的理解。
4.全班汇报,由口头理解的不清晰,引出线段草图。5.对比书中的线段图,引导学生思考“增加了……”这个省略号背后所隐含的意义,从而得出两种不同的理解。
(设计意图:尊重学生学习的方式,让学生选择自己喜欢的方式来理解“增加百分之几”的意思,并根据学生思维和学习的特点,突显画线段草图的必要性。利用线段图帮助学生理解“增加百分之几”的意思,使学生抽象的思维直观形象化,利于孩子分析数量,明确解题思路。)
6.列式计算,并说出算式所表示的意义。
先算增加了多少立方厘米。也可以先算冰的体积是原来水的体积的百分之几
(50-45)÷45 50÷45≈111% =5÷45 111%-100%=11% ≈11% 答:冰的体积比原来水的体积约增加了11%。
7.小结两种解题思路和反馈。(注意:约等号的使用)(设计意图:让学生列出算式后结合线段图说出算式所表达的意思,目的是数形结合,帮助学生建立线段图与算式之间的联系,从而使学生更明晰解题的思路。)
(三)在辨析中解决“减少百分之几”的问题,提高学生解决实际问题的能力。
1.师:增加百分之几是不是也可以说减少了百分之几? 2.抛出问题,激化矛盾。
师:认为不用算的同学举手,为什么不用算?说说你的理由。认为要算的同学也来说说你的理由。
3.列式计算,比一比谁的动作最快。
师:小结:通过解决刚才的两个问题,对于要求一个数比另一个数多(或少)百分之几,你有什么要说的吗?或者是有什么要提醒大家注意的地方?
(设计意图:通过问题矛盾的激化,从而让学生进一步明确解决百分数应用题的关键是要弄清楚以“谁为标准”,谁是这个标准的百分之几。)
四、多层练习,巩固深化。1.试一试
师:同学们,在我们的生活中百分数的应用相当广泛,我们来做课本32页中的试一试。
电饭煲原价200元,现价160元,电饭煲的价格降低了百分之几?(百分号前保留一位小数)
2.选一选:光明村今年每百户拥有彩电121通顺,比去年增加66台,今年比去年增长了百分之几?
(1)(121-66)÷121(2)66÷121(3)66÷(121-66)
3.课本第33页第5题。
(设计意图:让学生在提问中进一步巩固“增加百分之几”和“减少百分之几”的问题的解题思路,并体会到百分数在生活中的应用价值。)
五、课堂总结:请学生谈谈学习了本节课的收获是什么? 【反思】
解决问题首先需要学生具有数学的眼光,能识别存在于日常生活、自然现象与其他学科中的数量关系,并把它们提炼出来,运用所学的知识对其进行分析,然后综合应用所学的知识与技能加以解决,同时在解决问题的过程中,把新旧知识进行梳理,形成自己的知识体系。而本节课主要从三个对比中让学生建构自己的数学知识脉络。
一、比较的方式和结果有两种,一是比较出具体的多少,另一种是比较出两种数量的倍数关系。
二、理解“增加百分之几”和“减少百分之几”的异同。
三、两种不同的解决问题的思路:第一种,(50-45)÷45,这是先求出冰的体积比水的体积增加的数量,再求出增加的部分是水的体积的百分之几;第二种,50÷45≈111%,111%-100%=11%,先求出冰的体积是水的体积的百分之几,再求增加的部分是水的体积的百分之几。
另外,本节课有一个亮点是让学生自己提出有关比较的数学问题,学生提的问题学生自己去找答案,让学生自主发挥,充分调动了学生的主观能动性。
因此,在教学中紧密联系实际,创设让学生提出问题解决问题的情境,数学教学要体现教与学的交融,重视教法与学法的互化,组织学生进行一些创造性的数学活动,培养学生的创新能力,注重让学生通过小组合作交流和讨论来发现问题,解决问题。
《解决问题的策略》教学案例及反思
《解决问题的策略》中的替换策略,包括倍数关系的等量替换和相差关系的等量替换。教学的重点是让学生充分理解替换策略的意义:把两种量替换成一种量,从而顺利的解决问题。难点是学生不易理解相差关系的等量替换,以及在解决问题时,不知道该用什么方法来替换。基于以上理解,我认为在教学中应建立模型,运用模型帮助学生解决这类问题。
一、小学数学建模思想的形成
1.创设情境,感知数学建模思想。
在教学中,先出示例题,让学生分析题中的数量关系,得出:6个小杯和1个大杯一共是720毫升;一个大杯的容量相当于3个小杯的容量。在此基础上,出示例题图,引导学生用画图初步感知:解决这个问题就需要根据大杯容量与小杯容量之间的关系,进行一定的等量替换。
接着,我向学生提出这样一个问题:如果这样的大杯和小杯有很多个,那么能用这种画图方法解决吗? 答案是肯定的。我们只要抓住把两种量替换成一种量就可以了。
在这个教学过程中,学生通过寻找数量关系以及观察主题图,得出:解决这个问题需要把两种杯子换成一种杯子(即替换)。然后引导学生根据主题图画出示意图,即把直观图形抽象成几何图形,在抽象概括的基础上,学生逐步理解替换的策略。
学生把直观图形抽象成几何图形的过程,其实是把生活中的原型上升为数学模式的过程。在这一过程中,学生初步感知了数学中的建模思想。最后提出的问题更让学生进一步思考:是不是解决替换这类问题,都可以采用这种画图的模式来解决。2.自主探究,体验数学建模思想。
有了对问题的思考,学生就会主动探究:该画怎样的图形模式才能解决这类问题。这就要求学生抓住替换策略的本质:两种量替换成一种量。在此基础上,引导学生建立数学模型。
学生对问题进行了思考和探究,其实就是对解决这类问题作了一个模型假设。模型假设能帮助学生梳理思路,提取原有的知识并形成较为完整的知识体系。通过教师的引导,学生针对问题中的条件和问题之间的本质关系,作出合理、简化的假设。学生通过假设的数学模型,能够清楚地抓住事物的本质关系,从而进一步解决问题。
在这个过程中,学生由最初抽象的几何图形,到现在的数学表达式,恰恰体验了数学模型的形成过程。在这个过程中,不仅培养了学生的建模意识,更为学生探究另一种数学模型增添不少兴趣。
学生在以上问题的解决过程中,运用建立数学模型的方法,逐步理解并掌握了倍数关系的等量替换。接下来,我把题目中的条件换了一下:1个大杯的容量比小杯多160毫升。引导学生思考,能不能用刚才建立的数学模型来解决?通过交流,学生明白了解决这个问题同样要把两种量替换成一种量,只不过替换过程中,总量发生了变化。基于以上分析,引导学生建立了数学模型。
学生根据建立的数学模型,比较容易理解相差关系的等量替换。接下来,再让学生比较(1)和(2)两种数学模型的联系与区别。通过比较,学生都能清楚地认识到:倍数关系的等量替换和相差关系的等量替换都是把两种量变成一种量,不同的是倍数关系的等量替换,其总量不变;而相差关系的等量替换,其总量发生了变化。再进一步引导学生发现,总量的变化也有规律可言。比如说,1个大杯换1个小杯,容量肯定减少,那么总量就会减少;而1个小杯换1个大杯,容量肯定增加,那么总量也会增加。这样,学生不仅能充分理解替换策略的意义,还能明确的判断出该用什么方法来解决。
在这个教学过程中,学生能根据倍数关系等量替换的数学模型,建立相差关系等量替换的数学模型。不仅让学生很好地掌握了重点,更突破了教学中的难点,那么,解决这类替换问题也就迎刃而解了。在模型(2)建立过程中,学生充分体验了数学模型的形成过程。
二、小学数学建模思想的应用
学生已经形成了解决替换问题的数学模型,接下来,就要用这个方法去解决实际问题。我出示了以下两道题目:
(1)2个同样的大盒和5个同样的小盒装满球,正好是100个。每个大盒比每个小盒多装8个,每个小盒和每个大盒各装多少个?(2)小红买了3枝铅笔和1枝钢笔共10.8元,一枝钢笔的单价是一枝铅笔的6倍,求钢笔和铅笔的单价。
接下来,我让同学们讨论怎样去解决这类问题。经过短暂的讨论,学生们都已经有了正确的答案。他们能够正确解决这两道题目,说明他们对倍数关系的等量替换和相差关系的等量替换能正确区分开来。这都归功于他们建立了这两种替换的数学模型。
从上述两种模型上能清楚地看到,倍数关系的等量替换其总量没有发生变化,而相差关系的等量替换其总量已发生变化,而且总量的变化是有规律的。通过这一点,学生很快就能判断出第1题是相差关系的等量替换,第二题则是倍数关系的等量替换。接下来就可以用相应的数学模型去解决这两道题目。
在运用模型解决这类题目时,学生可以发现:题目中装得多的、价格贵的,我们可以把他们看作“大”的,而题目中装得少的、价格便宜的,我们可以把他们看作“小”的,这样,同学们运用这两个数学模型就更加得心应手了。反思
小学数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在这一过程中,学生易于形成实事求是的态度以及进行质疑和独立思考的习惯。因此,我们在教学过程中,应注重学生建模思想的形成与运用,注重为学生的终身学习、可持续发展奠定基础。
《圆柱和圆锥的认识》案例分析与反思
教学片断:
师:刚才我们用观察、画图、测量、交流等方法认识了圆柱的特征,它有上下两个完全相同的圆,周围有一个曲面,上下两地面之间的距离是它的高。你能用这些方法研究出圆锥的特征吗?
学生拿出学具圆锥,小组自主探索,教师巡视指导。师:你能和圆柱比较着说说圆锥有哪些特征吗? 生:和圆柱比,圆锥有一个面是圆形。师:圆锥和圆柱一样底面都是圆。(板书)生:上面有一个尖顶。
师:圆柱上面是尖顶吗,你们能解释对圆锥这个尖顶的理解吗? 生:我觉得上面的圆缩小、缩小,直到一个尖尖的点就是圆锥的尖顶了
师:大家想象一下……(稍作等待)。的确可以想象成圆柱的上底面不断收缩直到成为一个点。这个尖顶叫做圆锥的顶点。(板书)
师:还有什么特征? 生:侧面是一个三角形
师(出示教具):仔细观察,再摸一摸,是吗? 生:不是,看的时候像三角形,实际上也是一个曲面。师:说得好,远远观察时像一个三角形,用手摸一下是弯曲的面。板书:曲面。
师:圆柱有高,圆锥有高吗? 生:有!(齐声)
师:谁能解释什么是圆锥的高?可以借助圆锥或直观图来说明。生:(边指边说)这里(顶点)到下面的线段。师:是这样的线段吗?(在直观图中任意画一条)生:不是,要垂直。
师:对,高一定是一条垂直的线段,也叫距离。刚好是顶点到哪里的距离?谁来指一指,说一说
生:圆锥顶点到圆心的距离 师:这就是圆锥的高。反思:
圆锥的认识和圆柱的认识在研究内容上有其相似之处。认识圆柱后我及时地引导学生进行回顾,通过引言:“刚才我们用观察、画图、测量、交流等方法认识了圆柱的特征,它有上下两个完全相同的圆,周围有一个曲面,上下两地面之间的距离是它的高。你能用这些方法研究出圆锥的特征吗?”,引导学生用刚才的学法自主探索圆锥的特征,通过交流学生明白了对于圆锥是从面(个数和特征)、直观图、高等几个方面进行研究的。特别是通过学法的比较、交流,实现自主迁移,自主建构圆锥和圆柱的特征。学习的积极性得到有效地激发,为后续关于圆柱和圆锥的学习打下坚实的基础。
教学的过程也充分体现了教师是组织者、引导者与合作者。在学生自主探索和交流的过程中,教师没有过多的横加干预,而是因势利导,顺其自然,“引”着学生自主发现圆锥的特征。特别是在认识高的过程中,通过思辨引导学生把高的含义说准确,这也意味着学生对圆锥的高的真正理解。
圆柱体表面积》教学案例与反思
教学案例: 师:看下面三张硬纸皮(实物演示①),并让学生分别计算它们的面积.(单位:厘米)图(略)
师:再看演示②(展示三张硬纸皮组合成圆柱体茶叶桶的过程)师:谁能根据这个演示很快地说出这个圆柱体茶叶桶侧面的面积和两个底面的面积之和是多少?
生:在立体图形和平面图形的互相转化的过程中,面积总和不变.师:(展示茶叶桶)现在要让你们计算这样一个茶叶桶的侧面的面积和两个底面的面积之和,该怎么办?
生:把茶叶桶展开成一个长方形铁皮和两张圆形铁皮,通过测量圆形铁皮的直径以及长方形铁皮的长和宽,再分别计算它们的面积,然后求出三张铁皮的面积之和.师:可茶叶桶不能展开,茶叶桶的侧面是个曲面,怎么计算它的面积呢?(小组可以讨论)
生1:我用一根铁丝绕茶叶桶的底面一周,量出细铁丝的长度,就能知道围成侧面的长方形的长,再量茶叶桶的高,就知道围成侧面的长方形的宽,这样就能计算侧面的面积.(请学生观看生1演示实验)
生2:用一张纸围住茶叶桶的侧面(刚好围满)然后展开成一个长方形、长方形纸张的面积就是茶叶桶侧面的面积.(请学生观看生2做演示实验)
生3:因为沿着高把圆柱的侧面展开可以得到一个长方形,这个长方形的长等于圆柱底面周长,宽等于圆柱的高,所以只要量出茶叶桶底面直径和高,计算底面周长,用底面周长乘高就能得知茶叶桶的侧面积.(学生测量茶叶桶的底面直径是10 cm,高18cm)
师:同学们发现的办法可真多!(板书:s侧=ch)
师:(学生计算了茶叶桶侧面和两个底面的面积之和后)请同学们结合手中的学具看书学习,圆柱的侧面积加上两个底面的面积叫做圆柱的什么?
生(齐答):表面积!(师板书s表=s侧+2s底)
师:请同学们根据上面的计算方法计算自己带来的圆柱体茶叶桶的表面积.(略)
教学反思
上面的教学中,学生学得主动积极,思维灵活多样,获得了自主学习成功的体验.一、树立“用教材教,而不是教教材”的新教育理念,创造性地使用教材.在本课教学中,教师没有机械使用课本的例题,而是灵活地处理教材,创造性地使用教材.因为小学生的思维特点是:“从以具体形象思维为主要形式逐步过渡到以抽象逻辑思维为主要形式,但是这种抽象逻辑思维在很大程度上仍然是直接与感性经验相联系的,仍然具有很大成份的具体形象;”教师遵循小学生的认知规律,充分利用方便易取的实物(如茶叶桶等)作为直观教具和学具,及时为学生提供丰富、直观的感知材料,学生看得见、摸得着,易于操作,有助于学生由具体形象思维进入抽象逻辑思维,课堂教学省时高效,充分体现了“用教材教,而不是教教材”的新理念.二、数学教育首先应该关注学生的发展.新课标在目标体系中首先列出的是发展性领域的目标,首先关注的是每一个学生在情感态度、思维能力等多方面的进步和发展.在上述教学过程中,教师创造了一个有利于学生生动活泼、主动发展的教育环境,提供给学生充分发展的时间和空间.不难看到,教师只提出“如何计算茶叶桶的表面积”这个问题,引导学生进行探索性实践活动,在探索过程中学生发现了圆柱的侧面是个曲面,要计算侧面的面积需要把曲面图形转化成平面图形,把其侧面展开成长方形,但茶叶桶的侧面不能展开,怎么办呢?学生围绕这个关键性问题,通过实验操作、独立思考、与人合作讨论交流和比较探索等,发现了计算圆柱侧面积的几种方法,最终发现了圆柱体侧面积和表面积的计算方法.在学生的学习过程中,教师精心创设各种问题情景,诱发学生不断发现问题、提出问题,学生在自主探索中一步一步走向成功.经历了由感性认识上升到理性认识的过程.在这里,教师是学生学习的组织者、引导者、合作者,而并非是知识的灌输者,学生真正成为学习的主人,成为课堂教学的主体.解题思路是由学生逐步自主探索出来的,解题规律是学生发现、总结出来的.学生的观察能力、思维能力、空间观念、情趣等方面在探究过程中而获得充分的发展.三、数学教育必须关注学生学习数学的过程.新课程标准的一个显著特点是,指出了过程性目标.新课程标准强调现代数学教学应致力于关注学生已有的生活经验和知识背景,关注学生的自主探索和合作交流,关注学生数学情感和情绪体验,让学生亲历做数学的过程.本课教师运用了化归的方法导入新课,由平面图形变成立体图形,由组合图形面积计算到表面积的计算,学生在解题的思维过程中化静为动,化动为静,形成一定的认知策略,学到数学思想方法,培养了学生的初步空间观念.四、重视问题意识的形成和培养,突出问题解决.问题解决是数学教育的核心,要重视学生问题意识的形成和培养.教师注意引导学生把生活问题转化成数学问题来解决,学生发现必须先解决的问题是侧面积的计算,最后要解决的问题是表面积的计算,其中关键性的问题是侧面积的计算.整个学习过程完全是学生不断发现问题、分析问题和解决问题的过程.学生在学习中体会到数学的趣味和应用价值,体验到数学魅力,增强学生的数学应用意识,激发学生学习数学的兴趣.“圆柱的体积”教学案例及反思
新课程观强调:教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。在实际教学中,如何落实这一理念?本人结合“圆柱的体积”一课谈谈自己的实践与思考。
[片段一] 师生共同探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(苏教版第12册P8):一根圆柱形钢材,底面积是20平方厘米,高是1.5米,它的体积是多少?
由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答:
1.5米=150厘米 20×1150=3000(立方厘米)
师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现:
①20平方厘米=0.002平方米 0.002×11.5=0.003(立方米)
②20平方厘米=0.2平方分米 1.5米=15分米 0.2×115=3(立方分米)
师:为什么会出现三种结果?
经讨论,学生才明白:从不同的角度去考虑问题,将得到不同的结果。
[片断二] 巩固与应用阶段,我将教材练习二中的一个填表题(表1)进行了加工组合呈现给学生这样一个表格(表2)。
学生填表后,师:观察前两组数据,你想说什么? 学生独立思考后再小组交流,最后汇报。
生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。
生2:两个圆柱的高相等,底面积越大,体积就越大。师:观察后两组数据,你想说什么?
有了前面的基础,学生很容易说出了后两组的关系。
学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元“比例”的教学作了提前孕伏。
[片段三] 教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?
学生动手测量自备的圆柱形茶杯的有关数据并计算它的体积。
师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。
[教学反思] 精心研究教材是用好教材的基础
教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。
1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。
2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。
落实课标理念是用好教材的关键
能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。关注人是新课程的核心理念。我们的数学教学不能再以学科为中心,而应以学生为出发点和归宿。教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能符合新理念。前两个片段就突破了“学科中心”和“知识中心”,走向了“学生中心”。[片断三]在教材关注学生的基础上向深层发展——不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源——水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。
学生获得发展是用好教材的标准
有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质——“一切为了每一位学生的发展”。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,“以本为本”,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。
第二篇:六年级数学教学反思:《估算》教学案例与反思
六年级数学教学反思:《估算》教学案例与反思
学内容 北师大版数学第四册第50-51页
教学目标
1、借助实际情景学习估算的一般方法,逐步养成良好的估算意识,提高估算能力。
2、在“买东西”的活动中,经历估算的应用,交流各自的估算策略,比较各自的估算结果,体验数学与生活的密切联系。
教材分析
《数学课程标准》指出:“估算在日常生活与数学学习中有着十分广泛的应用,培养学生的估算意识,发展学生的估算能力,让学生拥有良好的数感,具有重要的价值。”本课教学前学生已有了估算方面的生活体验,这为学生发展估算意识提供了基础。因此,设计本课时力求切入学生的经验世界,把“身边的数学”引入课堂,在教学目标定位上,除了让学生掌握估算的解题方法外,还要让学生在购物实践中体会估算的价值。不同的人估算的策略不同,估算的结果也不完全一致。课堂的主流活动应该让学生面临具体的生活情景交流各自的估算策略,比较各自的估算结果,让学生认识到,在具体的情景中,估算的结果可能是一个具体的数值,也可能是一个范围。
学生状况分析
该班学生大部分接受过幼儿教育,他们聪明伶俐,接受能力比较强,生活背景亦农亦城,学生课程资源较为丰富。从学习情感上看,学生的参与欲、表现欲、求知欲、创造欲很强,表现出积极、主动和自信。从学习方式上看,由于教师更多地关注学生想学什么,怎样学爱学,怎样学有效,学生已从依赖状态逐步走向自主、探究、合作学习。课堂上较多地出现平等交往、积极互动、共同发展的生动局面。
教学流程
一、切入生活,激发兴趣
师:小朋友们有自己去买过东西的经历吗?能说说你买过什么东西,大约带多少钱吗?(生兴趣盎然,畅谈买东西的经历)
师:小朋友们真了不起,学会自己去买东西,而且初步懂得根据东西的价钱确定所需的钱数, 这里面就运用了数学知识——估算(板书课题:估算)这节课老师就带大家一起去“逛商场”,学估算、用估算好吗?
(出示例图:手表295元,洗衣机3015元,自行车698元,电饭锅302元,摩托车8295元。)
二、创设情境,探索估算
师:王老师喜欢上洗衣机和电饭锅,想买下这两样东西,请你当参谋,老师大概需要带多少钱?
学生进行估计时思维活跃,兴趣盎然。大部分学生都把3015元估算为3000元,把302元估算为300元,于是得出大概带3300元。
李东洋站起来说:“不行, 这样估算的话, 那带的钱就不够了, 估计3300元不合适。”(一石激起千层浪, 同学们七嘴八舌说开了, 有赞成的, 也有反对的。)生1:“我反对,因为估计3300元比实际少了,带的钱少了东西就买不成。我认为应把3015元看作3020元,302元看作300元,这样3320元就够了。”
师:喔,我明白了,你的意思是,在购物估算时,要注意往大的整数靠,使估算的结果比实际付出大一些,才能买到东西。大家还有不同的看法吗?
生2:“老师,我认为,3300元是不够买,但是, 我们买东西不都可以讲价吗, 我想3300元是够的。”
生3:我同意3300元够买,你就对老板实话实说:“我只带3300元,卖不卖随你”,然后装着要走,老板一急,不就卖给你了嘛。(生笑)
生4:(不以为然)如果是在超市,不能讲价怎么办?
生3:(补充说)可以让老板送货上门再给钱也不迟啊。
生5:“我赞成,既然是估计,结果只要求接近准确数值,数大一些或小一些没关系。”
[点评:当数学问题与儿童生活情景紧密联系在一起时,孩子思维的火花就会撞击出来,课堂生命的活力就会焕发出来。]
大家各抒己见,畅所欲言,教师相机质疑:“对于„出现购物问题时,怎样估算更合理‟这一问题,同学们都敢于发表各自的见解,估算方法多种多样。看来,生活中常常要用到估算,想不想把估算的知识学得更扎实?”(生:想。)那就把第50页“试一试”的四道题目做一做。(出示“试一试”题目,学生埋头试做)
让学生在黑板上展示各自的估算策略:
305 + 198 → 300 + 200 ≈ 500 7990-1995 → 8000-2000 ≈ 6000 305 + 198 → 310 + 200 ≈ 510 7990-1995 →7900-2000 ≈ 5900 305 + 198 → 300 + 190 ≈ 490 7990-1995 → 7900-1900 ≈ 6000 305 + 198 → 30个10 + 19个10 = 49个10 + 10 ≈ 500 师:看了这些不同的
估算方法,你发现了什么?
生:我发现这几题的相同点都是先把前两个数进行估计再算出得数,不同点是估计的数有些不同,结果也就不同了。
师:你的眼睛真亮,发现了近似数的取法会直接影响到估算的结果,那么大家认为近似数应怎么取合适呢?
[点评:教师能从学生的学习需要出发,提出一个指向学习策略的问题,促进学生深层次的思考。]
生1:老师,我认为可以同时去掉最高位或第二位后面的尾数。(师让其例举印证)
生2:我认为尽量接近原来的数,这样结果就比较接近准确值。
(师也让其例举印证,该生发现自己的说法不够严密。)
生3:老师我懂得一种“四舍五入”法,尾数小于4的就去掉为0,大于4的就进1。生4:取整
十、整百、整千数计算比较简便。
师:同学们的学习很有收获,想出了多种方法来估算,尽管方法不同,但老师发现大家在估算时使用了同一个基本的数学思想,想想是什么?
生:我们都在想方法凑整数。
师:对,在估算时,不管是用“去尾法”、“进一法”还是“四舍五入法”,我们都在不知不觉应用了“凑整”的方法,把不是整
十、整百、整千的数当成整
十、整百、整千的数,使估算后的计算结果更简便。
[点评:新课程倡导教师成为“促进者”,其内涵在于通过学法指导培养学生的学习能力。中国有句老话:“授人以鱼,不如授人以渔”。王老师可谓深谙此道,得法于其中。估算的多样化与最优化得到和谐统一。]
三、应用拓展,解决问题
1、独立完成“练一练”第1题六道估算题。
2、应用:“买东西” 电话机290元
玩具车395元
电脑6988元
小提琴216元
电子琴685元 钢琴5698元
①要买下面物品,大概带
多少钱?
物品
估算
电子琴+电脑
小提琴+钢琴
电话机+玩具车
②请用“10000元”为自己的家庭设计一个购物方案
(先独立设计--小组讨论是否合理--全班交流)
3、拓展性作业:调查家庭收入与开支情况,估算出每月收入与支出多少钱?
[点评:教师善于引导学生在生活经验的基础上建构知识,使学生在不知不觉中感悟数学的真谛,学会用数学思想方法去观察和认识周围的世界,从而促进学生的日常思维向科学思维的方式发展,体现“知识的价值存在于知识的运用之中”的教学理念。]
四、师生共同小结
这节课你学会了什么?你认为今天的学习对你的生活有哪些帮助?
教学反思
《估算》一课教学,学生能够全身心投入学习,主动探究、积极合作、乐于发现和创造,其成功做法有三:
1、密切数学与生活的联系
课堂教学切入了学生已有知识和生活经验,设计富有情趣的数学学习活动,让学生有更多的机会从周围熟悉的事物中学习数学,理解数学,体验到应用数学解决生活问题的成功和快乐。
2、满足学生需要,不同学生得到不同发展
由于学生生活背景和思考角度不同,所使用的估算方法必然是多样的。教学中,教师尊重学生的个性特征,允许学生从不同角度认识问题,鼓励学生发表与众不同的见解,让每个学生能根据自己的认知水平和学习能力选择适合自己的认知方式与思维策略进行估算。这样教学既满足了学生多样化的学习需要,又使不同层次的学生得到不同的发展。
3、突出学生主体,关注学生学习过程与方法
课堂始终以“做数学”作为师生互动的基础和纽带,“做数学”成为课堂发展的原动力。教师尽可能地满足学生求知、参与、成功、交流和自尊的需要。学生积极地参与每一个教学环节,情绪高昂,切身感受了学习数学的快乐,品尝了成功的喜悦,案例反思:
这节数学课, 发生了以下几方面可喜的变化:教师讲的少了, 学生的活动多了;师生单向的交流少了, 学生之间、生生之间的互动和合作多了;简单机械的重复劳动少了, 学生探索规律、讨论方法的时间多了;“说数学”时间少了, “做数学”时间多了。教师少教学生反而多学, 让人感到踏实、放心。老师不断创设有意义的问题情景或数学活动,激励学生去“做数学”,从做中学。在做数学中,人人都必须独立思考,都能够自主探究;在做数学中,人人都可能发现问题,产生交流的愿望;在做数学中,人人依据各自的经验建构新的知识,交流各自的估算策略,课堂上闪烁着学生的求异思维和独创精神。听王老师的课,我们得到启示:数学教学,改变“重教轻学”、“重说轻做”的倾向,采用“先学后教”、“先做后说”的教学策略是必要的、有效的。
当然,完美的课是不存在的,这节课也不例外。课堂上,对“弱势群体”关注不够,听不到“学困生”求助的声音,不能不说是一种缺憾
第三篇:六年级数学教学案例
六年级数学:《六年级计算复习课》教学案例(2)
“我们又上当了!”
【精彩回放】“既然大家觉得这张试卷很有意思,那么我们就来研究一下,请把其中的第4题、第5题和第7题做完,时间为6分钟。”......开始交流了,一位矮个男孩首当其冲:“第4题的算式是300-60×4”,其余学生纷纷颔首点头。老师并未急于表态,而是将目光投向另一位眉头紧锁的女孩,他注意到刚才这位女孩曾迟疑地举了一下手。“我觉得应该是60×4”,她吞吞吐吐地回答道。“奇怪!一般来说,我们在解决问题时会有不同的方法,现在怎么会有两个不同的答案呢?”老师一脸惊讶:“这到底是怎么回事?”
渐渐地,举手的人多了:“我们又上当了,问题是‘离甲地多少米?’”
“300-60×4求的是‘离乙地多少米?’”
“求‘离甲地多少米?’实际上是求‘已经行了多少米?’”
“这好比要我们去某个地方,地址都没听清就撒腿便跑,结果南辕北辙。”老师适时点评:“错得好,说得更好!只要我们有收获、有长进,那么刚才的错误就有了价值!”
在交流第5题的感想时,很多学生觉得:“题目太长,理解题意比较费劲。”“是啊,题目的确很长!”老师启发大家:“你们觉得这道题绕来绕去关键在哪?”“小狗在不停地、来回地跑。”学生的回答一针见血。“既然如此,那该怎么解答呢?”老师顺水推舟。“应该用55+65=120(米),1200÷120=10(分),10×240=2400(米),理由是......”听了他的分析,老师点头赞同,随后又问:“还有不同意见吗?”“有!应该再用2400×2=4800(米)”一位瘦瘦的男孩坚定地说。见大家不明所以,他继续补充道:“题目上说‘带着小狗的小明和小兵’,问题是‘小狗一共跑了多少米?’可以理解为求一只小狗跑的路程,也可以理解为求两只小狗跑的路程。”这样的解释出人意料又合乎情理,而且很显然,老师并未预设到这种“生成”,他激动地询问了这位学生的名字,然后大声承认:“我原以为刘梁丰同学错了,所以才让他交流,事实上他是完全正确的,让我们把热烈的掌声送给他!”
【且听且思】也许应该感谢那位眉头紧锁的女孩,是她的迟疑使得课堂在那一刻峰回路转;也许还应感谢那位瘦瘦的男孩,是他的坚定使得课堂在那一刻精彩纷呈......学生们的思考让教学有了生成的空间。但再深入仔细地想想,仅仅有了生成就足够了吗?如果华应龙老师缺少智慧独到的眼光,缺乏“让差错显露出可贵”的思想,那么即便是面对再多的生成也会熟视无睹!试想,若不是华老师的关注细节---发现了女孩的迟疑;若不是习惯于“倾听不同的声音”--给了男孩表达的机会,也许上述这些有价值的生成都将被悄无声息地淹没在我们的声音中,一种以“权威者”的身份妄加评判的声音。
“这题没有答案!”
【精彩回放】第7题的交流非常热烈。第一位学生说:“用4×3.2=12.8(平方米),12.8+2.8=15.6(平方米),15.6×0.4=6.24(千克)。”“错了,错了!”话音刚落,教室里便传来此起彼伏的否定声。老师连忙摆手:“别说‘错了’,说不定有对的道理呢?应该说‘还有不同的想法吗’?”另一位学生回答道:“粉刷墙壁时要把窗户的面积去掉,所以应该用12.8-2.8=10(平方米),10×0.4=4(千克)。”他的分析有条有理,得到了大多数同学的认同。正当大家的观点趋于一致时,又有一位学生举手:“我认为这两个答案都不对。因为要求南墙的粉刷面积必须知道长和高,而题目中并没有告诉我们高是多少,所以这道题目没有答案!”没有答案?大家满脸震惊,而后再次恍然。老师也深有感触地说:“我很佩服这位同学,一是佩服他发现了这个大家容易忽视的环节,二是佩服他能在大家的声音特别高、特别一致时,有勇气站起来表明自己与众不同的观点。这让我想起了一个故事:一条船在茫茫大海上航行,船上装了75头牛、45头羊,问这条船上的船长年龄多大?”学生哄堂大笑。
【且听且思】“这题没有答案!”初闻此言,满心震惊!平心而论,在平时的练习中,我们已习惯于出有答案的题目,学生也已习惯于解有答案的题目。正是因为习惯于这种定式,所以当学生绕了一大圈发现题目本无答案时,才会在震惊中领会出题者的深意。
一颗数学思维的种子,不管我们是有心还是无意,只要播进了学生的心田,它就会以别人难以感知的方式存活、生长起来,而且,它的果实会成倍地膨胀。透过习以为常的现象,我们是否该再次认真思考--何为“数学思想”?何为“有用的数学”?我想这位老师的这堂课已作了绝妙的诠释。让我们为这简约而精彩的复习课叫好!
第四篇:小学数学教学案例与反思
小学数学教学案例与反思
认识乘法 教学目标:
1、复习相同加数的加法,为学习乘法打基础。
2、结合具体情境让学生体会乘法的意义。
3、了解乘法与加法之间的关系,感受学习乘法的必要性。
4、培养学生的思维能力,让学生感受到数学在我们身边是无处不在。教学重点、难点:
理解乘法算式的意义,沟通相同加数和乘法的内在联系。教学准备:多媒体展台、投影仪、口算卡片。教学过程:
一、复习铺垫
口算训练(教师出示卡片)
7+5+2+1= 5+6+3= 3+2+6+4= 6+4+6+5= 5+5+5+5=
二、创设情境,启发谈话
小朋友们,今天老师带你们到动物园去看一看好吗?你们看,可爱的小熊猫排着整整齐齐的队伍欢迎我们呢,你们喜欢吗?你们看它们多遵守纪律啊!
三、探究新知
1、活动
(一):“数一数”
(1)投影出示“主题图
(一)”,问:小朋友,你们看到这幅熊猫图想提一个怎样的数学问题呢?(生:这里一共有几只小熊猫?)我们一起来数一数,(让学生自由的数数后反馈交流)
生1:我是横着五只五只地数,一共是15只。
(板书:横着数:5+5+5=15)
生2:我是竖着3只3只地数,一共是15只。
(板书:竖着数:3+3+3+3+3=15)
师:真棒,还有别的数的方法吗?(小组合作:和同桌的小朋友一起数)
(2)小结:好,真能干,我们会按顺序数数了。在我们平时的数数中,为了不让遗漏或重复,一般可以竖着数或者横着数比较方便。
2、活动
(二):“比一比”
(1)引导学生观察。比较这两道题和口算题有什么异同,四人小组讨论并说出结果。
(板书:数相同)
(2)齐读:5+5+5=15 3+3+3+3+3=15(学生感到有些难读,相同加数的个数太多)
出示相同加数连加还可以这样读:3个5连加等于15(板书)5个3 连加等于15(板书)
3、活动
(三):数一数
(1)投影出示“主题图
(二)问:这里一共有几个点子?学生自由地数数,让学生说你是怎么数的?
板书:6+6+6+6=24 4+4+4+4+4+4=24(2)让学生读出这个加法算式,并说出表示的意义。(板书:4个6 等于24;6个4 等于24)
(3)一起来数有 几个方格,说一说你可以怎么数,分别列出算式。让学生说出算式所表示的意义。
10+10+10=30 3+3+3+3+3+3+3+3+3+3=30
4、活动
(四):数一数
(1)让学生观察苹果图,根据图意提出问题:一共有几个苹果?(四人小组讨论,列出加法算式),3+3+3+3+3=□
(2)让学生讨论出:6盘呢?10盘?15盘呢?(出示投影片)
(3)说一说并读一读,让学生讨论一下你读写了这些算式有什么感觉吗?
四、巩固应用
1、让学生再举出这样的算式,如:上面的苹果50盘呢?能列出怎样的算式呢?你有什么感觉?(学生自由说)
2、说一说并读一读,让学生讨论一下,这么长的算式写起来很不方便是不是啊,那怎么办呢?
五、课堂小结
我们今天有什么收获,和小朋友交流一下 板书设计:
认识乘法
(一)-----数一数
横着数:5+5+5=15 3个5连加等于15 竖着数:3+3+3+3+3=15 5个3 连加等于15 得数相同
6+6+6+6=24 4个6 等于24 4+4+4+4+4+4=24 6个4 等于24 10+10+10=30 3+3+3+3+3+3+3+3+3+3=30
教学反思:
本节课的教学设计,注重了学生兴趣的培养。
1.在课堂教学中采用了多种教学方法和手段来培养学生良好的学习兴趣。如教学卡片、多媒体的运用以优化课堂教学,充分调动了学生学习的积极性和创造性。
2.在课堂教学中注重了学生学习结果的反馈,并及时给予表扬与鼓励,使学生体验到成功的喜悦。
本节课是通过由一般的加法算式(加数不同的加法算式),过度到有相同加数的特殊的加法算式,并且是说出几个相同加数连加和是多少,在课堂上让学生列出算式如: 6+6+6+6+6=30 5+5+5+5=20 3+3+3+3+3+3+3+3+3+3+3+3+3+3+3=45 之后,让学生会感觉到这样的算式太麻烦了,算式写得这么长很不方便,学生要求能不能用简单一点的算法来进行计算。看来我的这一节课的目的已经达到了,让学生了解乘法与加法之间的关系,感受学习乘法的必要性。由几个相同加数和的简便计算可以用乘法计算。这节课存在的差异,是课前没有充分地估计到学生在课堂上的偶发事件,合作学习效果仍然不十分明显,这是其一。第二是在课堂上出现的关于计算错误的问题仍然十分严重,对于数学教学来说,提高学生的计算正确率,特别是小学一、二年级培养学生的数感,确实是非常重要的。
第五篇:小学数学教学案例与反思
培养学生的思维能力,学会数学地思维,是当前小学数学教学实践的一个重点。低年级的数学教学,要注重逐步培养学生提出问题、解决问题的能力,使学生能主动深入地用数学眼光观察生活,用数学的头脑思考问题,通过动手实践、自主探究、合作交流的方式去解决问题,从而实现数学课堂的生活化、社会化和实用化。这些,在以上教学片断中得到了较好地体现,学生学得积极主动,时时闪烁着创新思维的火花。反思这节课的教学过程,我认为数学的课堂教学要关注学生的学习过程和情感的体验,通过创设问题情境,营造平等、开放、操作、交流的学习氛围,让数学教学成为数学思维活动的教学,才能更好地体现新课程的教育理念。
1、要使数学教学过程成为思维活动的教学,就要为这种活动创造良好的条件。
英国著名数学教育家斯根普在其名著《数学学习心理学》中指出:“逻辑推理所展现的只不过是数学产品,而不能告诉学习者这些结果是如何一步一步被揭开、开展出来的。它只教数学技巧,而不是数学思考”。由此可见,要教会学生思考数学问题,一定要引导其经历结果是如何得到的过程。在这个过程中,靠教师灌输学生只会被动接受,因为思维主要是靠启迪,而不是传授,越是传授的一清二楚,学习者越就不需要思维;只有给学生自主学习的时空,教学生自主学习的方法,才能使学生学会主动创造。在“9加几”的教学中,创设了“观看比赛及给运动员发饮料”的活动情境,这个活动是学生熟悉和感兴趣的,易于消除学生对教学内容的陌生感,激发学生学习的热情和积极性;在教学过程中,教师给了学生很大的自由空间,发挥他们的主体性,激发他们的创造力,让学生在困惑、思考、探究、交流、比较、学习的过程中主动地获取知识,并亲身体会到数学是与生活息息相关、密切相连的。
2、数学教学过程应该具有开放性和自主性的特征,才能诱发学生思维的独立性、深刻性、批判发生和创造性。
《数学课程标准》认为:“由于学生生活背景和思考角度不同,所使用的方法必然是多样的,教师应尊重学生的想法,鼓励学生独立思考,提倡计算方法的多样化”。根据这一基本理念,在“9加几”的教学过程中,我把课堂的主动权充分交给学生,让学生在观察、讨论、交流等活动中去思考计算方法,领悟计算方法的多样化,我只是起到组织者、点拨者的作用。我在教学中允许并鼓励学生采用不同的方法进行计算,不急于评价各种计算方法的优劣,保护学生自主发现的积极性,尊重学生自主选择的计算方法,从而真正做到了关注学生的学习过程和学习感受。在这样的学习过程中,激发了学生不断自主创新意识和开放思维观念,学生在相互影响和激励下,一次又一次地想出了“9加几”的计算方法,他们体会了学数学的乐趣,这对小学一年级的学生来说是一种可贵的体验。