第一篇:光伏厂参观实践报告
物理与电子工程学院认识实践报告
此次我们在老师的带领下进行了阿特斯光伏厂的参观实习,虽然时间很短,但是让我阿特斯光伏厂的工程概况、怎样生产有了更加深入的了解和认识,这是和在课本上学到的有决然的差异。
我们参观的阿特斯光伏厂,它生产太阳能光板。光伏发电实际上是太阳能的发电。太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。光伏发电是利用半导体界面的光生伏特效应从而将光能直接转变为电能的一种技术。光伏发电的特点 优点: ① 无枯竭危险;
② 安全可靠,无噪声,无污染排放外,绝对干净(无公害); ③ 不受资源分布地域的限制,可利用建筑屋面的优势; ④ 无需消耗燃料和架设输电线路即可就地发电供电; ⑤ 能源质量高; ⑥建设周期短,获取能源花费的时间短。缺点: ① 照射的能量分布密度小,即要占用巨大面积; ② 获得的能源同四季、昼夜及阴晴等气象条件有关。
③ 成本较高。石林太阳能电站利用石漠化土地,很好地避免了土地资源浪费。
太阳能发电是很有利用价值的一种发电模式,一方面不会污染环境和不会带来许多像传统那些发电产生有害气体或者资源需求、利用不可再生资源一样的问题;另一方面充分利用了不能利用的土地,提供了相当大的电能。此次参观给予我很多方面的知识,与水电站、火电站的发电特点、方式相比,这个光伏发电相当简单,用晶体硅组件接收的太阳能所产生的直流电源通过一个逆变升压器将直流电逆变成交流电并升高电压,然后就可以给以供用。这一种发电方式,既是现代技术的进步和新能源的创新,也是补充了其他发电模式的一个技术上和供电方面的空缺。
一、光伏发电行业介绍
太阳能能源是来自地球外部天体的能源人类所需能量的绝大部分都直接或间接地来自太阳。太阳能的利用有被动式利用和光电转换两类方式。
自地球外部天体的能源人类所需能量的绝大部分都直接或间接地来自太阳。太阳能的利用有被动式利用和光电转换两类方式。
光伏发电是指利用半导体材料制成的太阳能电池在吸收太阳光后产生光伏效应,将光能转化为电能的过程。
光热发电技术,又称聚光光热发电,是一种利用阵列反射镜将太阳光能聚集起来产生高温热能,加热工作介质,驱动汽轮发电机发电的方式。根据聚热方式的不同通常可分为抛物面槽式、碟式和塔式。西班牙、以色列、德国都建有多个太阳能光热发电站,积累了一定的商业化运行经验。目前全球最大的太阳能发电站,位于美国加州的布莱斯太阳能发电项目就选用了太阳能光热发电技术。该项目由德国Solar Millennium和雪佛龙公司旗下的Chevron Energy Solutions共同开发,4组250WM(兆瓦)的独立发电单元构成了了高达1000MW的设计发电量。项目总造价预计将超过60亿美元,其中第一组发电单元将于2013年投入运行。
无独有偶,i美股2010年10月底查询美国加州政府公布的相关信息时发现,该州近期批准的大型太阳能项目全部使用的是太阳能光热发电技术。当然,不可否认的是,在这四项常见的太阳能技术中,光伏发电技术的发展、应用及产业规模都是首屈一指的。所有在美国上市的中国太阳能企业也都从事的是光伏发电产品的制造。以至于很多人将太阳能技术就简单地理解为光伏发电技术。
光伏发电技术因为其商业化程度高、产业规模大、上市公司多成为了太阳能技术的一个典型代表,倍受市场关注。以光热发电技术为例,虽然采用该技术的太阳能发电站占地面积广,并不适合在城市内应用,但它规模成本低廉,光照不足时还可以通过储热发电以实现供电的持续稳定,特别适合在强光照的荒漠地区进行大规模并网发电。我国的内蒙古、新疆、甘肃,欧洲的西班牙,还有非洲和澳大利亚都有许多光照充分的荒漠、戈壁地区,特别适合应用光热发电技术。
2013中国光伏产业发展报告
回顾2012 ——市场 2012年底,全球光伏新增装机容量达到31GW,相对于2011年的27.9GW增长11%,累计装机量达到98.5GW的历史新高。从近几年来较大幅度的增长率波动来看,光伏应用市场还处于政策驱动模式的主导下。但鉴于装机规模已接近100GW和全球的宏观经济形势,SEMI认为今后几年全球光伏应用难现前几年的爆发式增长。
光伏市场的中心也正从欧洲的德国、意大利、法国、西班牙向中国、美国和日本等新兴市场转移。德国光伏进入稳定发展阶段,连续三年维持在7.5GW左右,意大利、西班牙等国深受经济危机的影响,2012年光伏装机量大幅减少。以中国、美国和日本为代表的新兴市场成为新的增长点,2012年三国装机合计占全球的31%。
——技术
技术的提升始终是产业进步、发展的推动力。在SEMI看来,目前全球光伏市场供过于求的大背景下,技术突破显得尤为迫切。传统光伏技术遇到转换效率的瓶颈,非硅成本下降空间有限,高效电池技术在设计和材料选择上的突破,使非硅成本有较大下降空间;光伏产品转换效率的提升可以直接降低系统平衡成本,组件效率每提高一个百分点,系统平衡成本可下降5到7个百分点。以美国SunPower和日本Panasonic为代表的高效电池组件制造商的光伏产品效率已达到24%,国内的电池组件商也在积极开发高效光伏产品。全球P型、N型单晶电池效率已分别达到18.5%—20%和21%-24%,多晶电池效率达到17%-17.5%。随着高效单晶、多晶技术的不断探索与应用,其成本不断下降,目前高效单晶组件产品的成本已低于传统单晶组件产品,但还高于多晶产品。高效电池技术在全球范围内蓄势待发,这将是下一轮产业扩张时的投资热点。
——“双反”的影响
2012年12月,美国国际贸易委员会终裁中国产光伏电池组件产品的倾销和补贴成立并征收高额的反倾销和反补贴税,导致2012年中国对美光伏组件出口额大幅下降。其中,2012年8月的对美出口额为0.85亿美元,较年初1月份的3.87亿美元下降80%。2012年,中国光伏产品最大的出口对象欧盟和印度也分别对中国产光伏产品展开双反调查,中国也对原产欧洲、美洲和韩国的多晶硅展开双反调查,使全球的光伏产业弥漫着贸易战的硝烟。纵观国际贸易的历史和现状,我们不难发现,目前发生在我们眼前的光伏贸易之争,固然有经济危机背景下的客观因素,更重要的是,世 3 界各主要大国都将光伏视为关系未来国家能源安全的战略性产业来做前瞻性的布局。这从另一个侧面让中国的光伏从业者更理性的对待光伏贸易摩擦的同时,也更坚定了发展产业的信念。
——下游电站的开拓
光伏制造产能在过去几年中快速扩张的同时,制造技术也越来越成熟,生产效率和管理水平都有了较大幅度的提升,光伏产业链从多晶硅原材料、组件到逆变器的生产成本和价格迅速降低。与此同时,通过大规模光伏电站的建设与维护,整个产业界积累了大量宝贵的电站设计、建设和运营管理经验,这也是电站系统价格得以下降的另一个原因。截止到2012年,投资国内大型地面电站的系统价格平均为1.5美元/瓦-1.8美元/瓦,光伏发电的度电成本也随之不断降低。在光照资源丰富地区,2012年大型光伏地面电站发电的度电成本已经接近0.6元/度。这是光伏产业快速发展带给包括中国人民在内的全球各国民众最直接的好处,也让光伏行业对光伏发电逐渐取代传统能源充满信心!总而言之,在前期电站投资、融资,中期建设和后期运营、出售过程中存在很大的不确定因素和风险,如何保障电站投资人的权益、降低电站投资、运营风险,吸引更多的资本进入光伏电站投资领域是个摆在光伏制造商、开发商和保险、金融从业者面前的难题。不过,我们已经欣喜的看到,国内的保险领域已经有人开始探索保险产品在光伏电站开发和运营中的应用。中国2012年的光伏电站投资总额在450亿元左右,到2015年预计达到1000亿元,这无疑是一个巨大的市场,配套的金融和保险服务大有希望争取到自己的市场份额,发挥重要的作用。
——成本控制效果明显,效率提升艰难前行
面对着光伏组件价格的不断下跌,国内的组件商都在积极应对,从成本控制和提升产品转换效率两个方面入手,保证利润的实现或亏损的减小。然而,技术的进步没有原、辅材料成本下降来得那么容易和顺利。
总之前景广阔。
第二篇:光伏厂参观实践报告
物理与电子工程学院认识实践报告
利用太阳光发电是人类梦寐以求的愿望。从二十世纪五十年代太阳能电池的空间应用到如今的太阳能光伏集成建筑,世界光伏产业已经走过了半个世纪的历史。由于太阳能发电具有充分的清洁性、绝对的安全性、资源的相对广泛性和充足性、长寿命以及免维护性等其它常规能源所不具备的优点,光伏能源被认为是二十一世纪最重要的新能源。为了能够更好地了解光伏企业,我校组织了这次的“阿特斯光伏之旅”,让我们走进光伏厂,更好地了解它。
经过厂内领导的深入讲解,我们对“阿特斯光伏厂”,有了更清醒的认识。阿特斯公司全称加拿大太阳能公司(Canadian Solar Inc.),由加籍华人瞿晓铧博士于2001年11月创立于加拿大。阿特斯公司于2006年在美国纳斯达克成功上市,是第一家登陆纳市的中国概念光伏企业(纳斯达克代码:CSIQ)。阿特斯专业从事硅锭、硅片、太阳能电池片和太阳能组件及应用产品的研发、生产和销售,产品主要销往德国、西班牙、意大利、美国、加拿大、韩国、日本、中国等国家。阿特斯光伏组件可以应用于商业、家用和工业的离网、并网太阳能供电系统及光伏发电站等不同领域,同时也为全球客户提供光伏玻璃幕墙及太阳能发电应用产品。公司还专门为特殊市场提供太阳能解决方案,例如:航海业、公共事业和汽车行业。
自2001年以来,阿特斯先后在中国建立了七家独资企业,自2002年投产至今,阿特斯六年实现销售收入增长50倍,2007和2008连续两年荣获德勤高科技、高成长中国50强,2008阿特斯名列前十。阿特斯现有厂房面积已达156000㎡。2008年,组件产能已超过600兆瓦。2008年,阿特斯销售额达7.09亿美元,比2007年增长134%,成为世界光伏产业发展最快的企业。
阿特斯致力于持续的技术创新。2009年阿特斯成功建立省级太阳能电池片工程技术研究中心。该研究中心的主要目标是建立国内领先、国际先进的太阳能电池研发中试线及太阳能电池测试分析中心,研发方向为高效太阳能电池及利用精炼冶金硅制作的低成本新型硅电池,公司总裁瞿晓铧博士亲自担任负责人。阿特斯研发项目上的合作伙伴包括杜邦中国公司、上海交通大学太阳能研究所、荷兰ECN 和加拿大多伦多大学等国际知名公司和院校研究机构。
在注重增加产能和延长产业链条的同时,阿特斯非常注重新产品的研发及太阳能光伏建筑一体化项目的研究和建造。2007年9月,阿特斯洛阳公司利用太阳能光伏玻璃幕墙技术为洛阳中硅高科技有限公司的研发大楼设计建造的光伏建筑一体化示范电站,其光伏幕墙总面积达293.286平方米,该项目集发电、采光、隔热、隔音、安全和装饰功能于一体。这表明阿特斯致力于在中国推广光伏发电技术在民用领域的应用,并将之作为公司未来业务的发展方向之一。
阿特斯公司现有管理团队是一个内外结合的国际化管理团队。核心成员不少是早期出国,在海外有所建树,然后回国建功立业的高级专业人才。公司还拥有许多国内行业专家,同时普通管理员工全部具有大专以上学历。
参观完了阿特斯光伏厂,我忍不住被它雄厚的条件说吸引,想要在其中工作,但是它的要求很严格,所以我现在要努力学习文化知识,争取能够有幸进入这个企业。
随着世界各国对可持续发展战略的普遍接受,以及对石油、煤炭、天然气等对化石能源逐渐耗尽的担心,包括近年来中美等大国频繁出现的能源短缺问题,作为可再生能源当中最具潜力的新能源,光伏能源的重要性和战略性进一步凸显,世界主要国家纷纷出台相关鼓励政策和法律。1999年以来在世界各国尤其是美、日、德等西方发达国家先后发起的大规模国家光伏发展计划和太阳能屋顶计划的刺激和推动下,世界光伏产业以每年30%以上的增长率保持着高速发展,是比IT发展还快的产业。尽管目前世界光伏发电累积装机容量不到世界电力装机总容量的千分之一。但是作为一种可再生的清洁能源,专家预测光伏发电将在二十一世纪前半期超过核电成为最重要的基础能源之一。至于是2030年还是2050年最后几年超过,只是个时间问题。
目前光伏产品90%左右仍然是以晶硅电池技术为主,光伏产业的持续快速增长使得一直主要依赖半导体工业用硅的头尾料、废料和剩余产能已经不能满足当前光伏市场高速增长的需求,光伏和半导体产业对硅料的竞争需求直接造成几年硅料的供应紧张和价格上涨。在光伏产业巨大前景的鼓舞下,上游多晶硅制造商已经不再犹豫,纷纷制定扩产计划,此外一些专门生产太阳能等级多晶硅的生产技术正在发展起来。预计到2008年后,世界光伏硅料短缺的情况将趋于缓解。
近几年中国的光伏制造能力实现了跨越式的发展,生产规模年均超过100%以上的增长,中国总体上已经成为继日德之后的世界第三大光伏制造国,光伏制造链也已经开始渗透到产业上游。然而中国以西部无电地区应用为主的市场并不足以消化中国制造商不断增加的产能,目前中国光伏产品主要是出口欧洲等国际市场。中国可再生能源法的正式出台,为中国未来光伏并网应用市场的逐步启动起到了保驾护航的作用,未来中国光伏企业应该加紧掌握并网技术和加快新型晶硅和薄膜电池技术的研发创新,推动中国光伏产业向制造强国迈进。
通过一系列的了解,我对我国光伏的前景还是很有信心的,我相信:只要度过这段寒冬期,我国的光伏产业必将走向腾飞,我会努力学习,为我将来打下坚实的基础。未来的时代是能源竞争的时代,是环保先锋的时代,发展新能源已经成为一种不可阻挡的趋势,用绿色、环保、高效的太阳能产品,将会为科技中国添彩、为子孙后代造福。
第三篇:光伏发电站的参观实习报告
xxx公司光伏发电站参观实习
实习时间:2013年12月4日
实习目的:通过参观和参与电厂的实际生产过程,将理论知识与实习相结合。在参观过程中。不断向电厂人员提问学习,了解本专业相关设备的运作过程,增强对变压器,逆变器等设备及其控制系统的认识了解,为在将来的工作打下基础。
实习地点:xxx市xxx区 xxx公司
公司简介:项目建设规模为100MWP,按一次规划分四期建设,一期10MWP,二期30MWP一期工程规模为10MWP,主要设施有:太阳能电池方阵、升压站、综合办公楼。太阳电池方阵由9.7MWP的固定式晶体硅组件+0.1MWP平单轴跟踪式晶体硅组件+0.1MWP斜单轴式跟踪式晶体硅组件+0.1MWP双轴跟踪式晶体硅组件组成。整个电站的升压站和综合楼在一期一次性建成。所谓的跟踪式晶体硅组件就是它会按一定角度跟随太阳转,充分接受和利用太阳能。
光伏发电过程:主要是利用天然洁净的太阳能,所处在的地方是阳光照射面积比较大的近于石漠化的地方,对于太阳能在很大面积上能接收并能得到很大的利用。当太阳光照射到太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的的实质是光子能量转换成电能的过程。电池是收集阳光的基本单位,大量的电池合成在一起构成光伏组件:太阳能光伏电池主要有:晶体硅电池(包括单晶硅Mono-Si、多晶硅Multi-Si)和薄膜电池(包括非晶硅电池、硒化铜铟CIS、碲化镉CdTe)。太阳光经过太阳能电池板转换成直流电,经过汇流箱后,输送到直流配电柜,经过汇流后,输送到逆变器,逆变器把直流电转换成交流电,再输送到35KV变压器,从输入端的300V电压转换成35KV的电压,最后输送到电网。
光伏发电的特点:
优点:
① 无枯竭危险;
② 安全可靠,无噪声,无污染排放外,绝对干净(无公害); ③ 不受资源分布地域的限制,可利用建筑屋面的优势; ④ 无需消耗燃料和架设输电线路即可就地发电供电; ⑤ 能源质量高;
⑥建设周期短,获取能源花费的时间短。
缺点:
① 照射的能量分布密度小,即要占用巨大面积; ② 获得的能源同四季、昼夜及阴晴等气象条件有关。
③ 成本较高。太阳能电站利用石漠化土地,很好地避免了土地资源浪费。
实习过程:实习的当天,我们一大早就按耐不住激动的心情,早早的吃过早饭,在宿舍楼下等待即将去往电厂的车。经过半个小时的路程,我们终于到了国电宁夏新能源开发公司光伏发电站,我们对电厂周边环境做了考察研究,并且拍照留念。
我们进行了电业安全生产工作规程的培训,在培训中,我们很认真的听培训师傅的讲解。在培训完后,加深了对安全工作规程的认识和同事之间的友谊,通过对安全规程的学习,电厂里的严谨和对安全的重视的程度让我们很震惊。具体到每一个节,都有可能会发生安全隐患,然后电厂就制定了很完善的一些考核制度,如罚款和教育等。电厂是安全高危企业,所以电厂安全问题是重中之重,所以电厂把安全问题总是放在第一位的。然后我们去了光伏现场,参观了电厂的构成,设备和控制系统。通过师傅们的详细介绍和耐心讲解,让我们受益匪浅。我们不仅拓展了知识面,而且从现场十级的角度来思考问题,这些对我们将来的工作有很大帮助。师傅们不仅给我们讲解了好多专业知识,而且多次强调了安全问题。让我们在参观学习过程中,多看,多问,不要擅自接触设备。对待工作一定要按程序办事。
太阳能发电是很有利用价值的一种发电模式,一方面不会污染环境和不会带来许多像传统那些发电产生有害气体或者资源需求、利用不可再生资源一样的问题;另一方面充分利用了不能利用的土地,提供了相当大的电能。此次参观给予我很多方面的知识,与水电站、火电站的发电特点、方式相比,这个光伏发电相当简单,用晶体硅组件接收的太阳能所产生的直流电源通过一个逆变升压器将直流电逆变成交流电并升高电压,然后就可以给以供用。这一种发电方式,既是现代技术的进步和新能源的创新,也是补充了其他发电模式的一个技术上和供电方面的空缺。
实习收获:通过在xxx公司光伏发电站的工作和生活,我们体会到了他们先进的管理制度,严谨的工作作风,安全是最重要的一件事,我们要牢记“安全第一,预防为主”,提高安全意识更是我们的必修课,已在我们每个同学心中打上深深的烙印。在学校中取得了不错的成绩并不能说明什么问题,经过实习才发现自己还是很无知,缺少很多知识,理论和实践相差实在是太远了。看来我们要学的东西实在是太多了,不仅要学好理论知识,还要会运用这些理论知识解决工程上的问题。这次实习可以说是将我们对电力系统从理性认识提升到了感性的认识。通过理论联系实际学习并巩固了相关专业知识,为以后的工作打下了基础,也对整个电厂设备的运作和自动控制系统运行有了更加直观的认识。通过对发电厂和变电站的学习和参观,我对电力有了更深入的了解,虽然我们的时间有限,但在今后的学习生活中,我会时刻注重专业知识的学习,将这次的实习所学到的知识运用到以后的实验中,好好珍惜这次实习所学的一切,努力拼搏,掌握更多更全面的知识,为以后的生产实践做好充分的准备。再加上电厂气氛的影响,我们的安全意识有了很大提高,对工作的认真严谨态度有了提高很大的。在这次实习中,我收益颇多,这些都是无形资产,将伴随我一生。相信在未来的工作里,我们会做得更好。
第四篇:光伏材料
光伏材料的发展与未来
摘要:根据对近几年光伏材料的发展和重要性作出分析和研究,并对光伏材料的主要发展方向进行进行研究,指导我们将来在研究中应从事的方向。
光键字:光伏材料 太阳能电池 市场分析
今年,几乎省份都出现了柴油荒现象、汽油价格也是一涨再涨。而且,据估计今年我国电力将严重缺口,而这一切已经限制了国民经济的发展,对人们的生活带来了不便,甚至可以说是已经来后造成在严重威胁。据乐观估计石油还可开采40~100年、煤炭可使用200~500年、铀还可开采65年左右、天然气能满足58年的需求。
人们对安全,清洁,高效能源的需求日益增加。且能源问题日益成为制约国际社会经济发展的瓶颈。为此,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。
我国也不例外,中国已经超过了日本和欧洲成为了太阳电池能第一生产大国,并且形成了国际化、高水平的光伏产业群。这对我们专业的在校大学生来说是个好消息。并且这个专业的就业率还很高。
我国76%的国土光照充沛,光能资源分布较为均匀;与水电、风电、核电等相比,太阳能发电没有任何排放和噪声,应用技术成熟,安全可靠;除大规模并网发电和离网应用外,太阳能还可以通过抽水、超导、蓄电池、制氢等多种方式储存,太阳能+蓄能 几乎可以满足中国未来稳定的能源需求。
当然,光伏产业的发展离不开材料。光伏材料又称太阳电池材料,只有半导体材料具有这种功能。可做太阳电池材料的材料有单晶硅、多晶硅、非晶硅、GaAs、GaAlAs、InP、CdS、CdTe等。用于空间的有单晶硅、GaAs、InP。用于地面已批量生产的有单晶硅、多晶硅、非晶硅。其他尚处于开发阶段。目前致力于降低材料成本和提高转换效率,使太阳电池的电力价格与火力发电的电力价格竞争,从而为更广泛更大规模应用创造条件。但随着技术的发展,有机材料也被应用于光伏发电。光伏电池的发展方向 ㈠硅太阳能电池
硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。
单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15% 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。
非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。㈡多元化合物薄膜太阳能电池
多元化合物薄膜太阳能电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。
硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产
砷化镓(GaAs)III-V化合物电池的转换效率可达28%,抗辐照能力强,对热不敏感,适合于制造高效单结电池。
铜铟硒薄膜电池(简称CIS)适合光电转换,不存在光致衰退问题,转换效率和多晶硅一样。具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。㈢聚合物多层修饰电极型太阳能电池
有机材料柔性好,制作容易,材料来源广泛,成本底等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。㈣纳米晶太阳能电池
纳米TiO2晶体化学能太阳能电池是新近发展的,优点在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到20年以上。㈤有机太阳能电池
有机太阳能电池,就是由有机材料构成核心部分的太阳能电池。中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府已加强政策引导和政策激励。例如:太阳能屋顶计划、金太阳工程等诸多补贴扶持政策,还有在公共设施、政府办公楼等领域推广使用太阳能。在政策的支持下中国有望像美国一样,会启动一个巨大的市场。
太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。由此可以看出,太阳能电池市场前景广阔。
我国的光伏产业发展情况
目前我国的太阳能光伏电池的发展主要有以下三个流程或终端:
1.原材料供给端:半导体产业景气减缓及原材料产能的释放,甚至太阳能级冶金硅的出现,多晶硅原材料合同价小幅波动,现货价回落,由此判断2009年后长晶切片厂锁定利润的能力增强。而各晶体硅电池片厂在竞相扩产及其它种类太阳能电池片分食市场下,不免减价竞争。面对全球景气趋缓与成熟市场的政府补贴缩水,应谨慎审视自我在光伏产业链垂直整合或垂直分工的定位,以有限资金进行有效的策略性切入来降低进料成本提高竞争力。
2.提高生产效率与效益:目前晶体硅电池片厂产能利用率与设备使用率多不理想,应该回归企业营运基本面,着力于改善实际产量/设计产能、营收额/设备资本额、营利额/设备折旧额等衡量指标。具体降低营运成本的措施可能有:工艺优化以提升光电转换效率与良品率;落实日常点检与周期性预防保养以提高内外围设备妥善率即可生产时间A/T与平均故障时间MTBF指标;完善训练机制以提高人员技术水平的平均复机时间MTTR指标;适度全自动化以提高单位时间产出及缩短生产周期;原物料与能源使用节约合理化;加强后勤管理保障及时备料与应急生产预案等等。
3.创新与研发:现有主流晶体硅电池生产工艺在最佳匹配优化及持续投产下,重复验证了其光电转换效率的局限性。在多晶供料无虞的情况下,晶体硅电池片厂中长期技术发展应以自身特色工艺需求(例如变更电池结构或生产工艺流程;引进或开发新型辅料或设备),向上游供料端要求硅片技术规格(掺杂、少子体寿命、电阻率、厚度等等)以期光电转换效率最大化与成本最优化,并联合下游组件共同开发质量保障的高阶或低阶特色产品以满足不同市场需求,创造自身企业一片蓝海。
我国目前在建的或已建的光伏产业项目主要有: 1.江西赛维多晶硅项目
投资方为江西赛维太阳能有限公司,项目地址在江西的新余市,靠近江西赛维在新余市的现有太阳能晶片工厂。江西赛维太阳能有限公司是太阳能多晶片制造公司,江西赛维太阳能向全球光电产品,包括太阳能电池和太阳能模组生产商提供多晶片。另外该公司还向单晶及多晶太阳能电池和模组生产商提供晶片加工服务。江西赛维太阳能公司计划在2008年底完成多晶硅工厂建设,预计生产能力最高可到6000吨多晶矽,到2009年底再提高到15000吨水准。
江西赛维多晶硅项目由总部位於德克萨斯州的Fluor公司负责设计、采购设备及建造,项目合同达10亿美元。2.4.连云港多晶硅项目
2007年12月5日,总投资10亿美元、年产1万吨高纯度多晶硅项目投资协议在南京江苏议事园正式签约。该项目由TRINA SOLAR LIMITED(天合光能有限公司)在连云港市经济技术开发区投资建设。TRINA SOLAR LIMITED是一家在美国纽交所上市的国际知名光伏企业。美林集团、瑞士好能源、美国威灵顿、德意志银行等多家国际知名公司均为该公司股东。TRINA SOLAR LIMITED拟独资设立的天合光能(连云港)有限公司采用目前国际上较先进的改良西门子法生产工艺。
5..深南玻宜昌多晶硅项目
投资方为南玻与香港华仪有限公司、宜昌力源科技开发有限责任公司共同投资建设,项目名称宜昌南玻硅材料有限公司,它南玻集团下属控股子公司,隶属于南玻集团太阳能事业部,公司成立于2006年8月。公司位于湖北省宜昌市猇亭区,规划占地为1500亩,分一、二、三期工程统一规划布局,总规模为年产5000吨高纯多晶硅、450兆瓦太阳能电池组件,公司总投资约60亿人民币。宜昌南玻公司将主要从事半导体高纯硅材料、高纯超细有机硅单体、白碳黑的生产与销售以及多晶硅、单晶硅、硅片及有机硅材料的高效制取、提纯和分离等工艺技术和设备开发。首期工程年产1500吨高纯多晶硅项目即将开工。
项目一期目标为年产1500吨高纯多晶硅,于2006年10月22日奠基,一期建设计划在两年内完成。公司此前披露,一期工程拟投资7.8亿元,预计投资内部收益率可达49.48%,静态回收期(不含建设期)为2.61年。
该项目是宜昌市迄今引进的投资规模最大的工业项目,已被列入湖北省“十一五”计划的三大重点项目之一,也是广东省、深圳市对口支援三峡库区经济发展合作重点项目之一。
项目由俄罗斯国家稀有金属研究设计院与中国成达工程公司共同设计,同时融入了世界上先进的工艺及装备。它是南玻、俄罗斯国家稀有金属研究设计院、中国成达工程公司在项目技术上精诚合作的结晶。6.洛阳中硅多晶硅项目
这是中国目前最有竞争实力的多晶硅项目之一,中硅高科技有限公司为中国恩菲控股子公司,中硅高科技有限公司是洛阳单晶硅有限责任公司、洛阳金丰电化有限公司和中国有色工程设计研究总院三方在2003年年初共同出资组建的合资公司,其中中国有色工程设计研究总院拥有多项科技成果,处于国际多晶硅工艺技术研究的前列,洛阳单晶硅有限责任公司则是国内最大的半导体材料生产厂家(代号740,与峨眉半导体厂739齐名为中国多晶硅的“黄埔军校”),而金丰电化有限公司是本地较有实力的企业。2003年6月,年产300吨多晶硅高技术产业化项目奠基,2005年 10月项目如期投产。目前,300吨多晶硅项目已具备达产能力。2005年12月18日,洛阳中硅高科扩建1000吨多晶硅高技术产业化项目奠基,目前已基本完成设备安装,进入单体调试阶段。2007年12月18日,洛阳中硅高科年产2000吨多晶硅扩建工程的奠基。
洛阳中硅高科年产2000吨多晶硅项目是河南省、洛阳市“十一五”期间重点支持项目,其核心装备研究列入国家“863”科技支撑计划项目,总投资14亿元,建设工期20个月,计划于2008年建成投产。
其它的还有孝感大悟县多晶硅项目,牡丹江多晶硅项目,益阳晶鑫多晶硅项目,益阳湘投吨多晶硅项目,南阳迅天宇多晶硅项目,济宁中钢多晶硅项目,曲靖爱信佳多晶硅项目等,基本上各个省份都处天大规模建设时期。光伏产业市场分析 及发展前景
今年下半年起光伏产业从上游多晶硅到下游组件普遍进入大规模扩产周期,这也将带来对各种上游设备、中间材料的需求提升。这包括晶硅生产中需要铸锭炉以及晶硅切割过程中的耗材,刃料和切割液等。
随着太阳能作为一种新能源的逐渐应用,光伏材料的市场规模逐年增加,应用的范围日趋广泛。光伏材料指的是应用在太阳能发电组件上给光伏发电提供支持的化学材料,主要使用在太阳能发电设备的背板、前板、密封部位和防反射表面,包括玻璃、热聚合物和弹性塑料聚合物、密封剂以及防反射涂料。
据Frost&Sullivan的研究,至2009年,光伏材料的全球市场总价值已达到13.4亿美元。2006年到2009年的年复合增长率11.9%。2006年光伏材料的全球市场总价值仅为5.4亿美元。
在2009年整个光伏行业中,包括玻璃和含氟聚合物的光伏前板,其市场占总市场收入的31.6%;光伏背板市场,主要包括光电产品,如聚合物和特种玻璃产品,占整个市场收入的36.6%。普遍用于所有太阳能电池的以层压形式存在的密封剂,占市场总收入的26.3%,防反射涂料以及其他材料占据市场收入的5.5%。
不过,随着消费者需求的不断变化、终端用户市场需求波动以及市场对光伏组件效率的要求不断提高,将使光伏行业发展速度略微减缓,Frost&Sullivan预计在2016年,光伏材料市场的年增长率将下降到22.4%,总价值达107.6亿美元。
在整个光伏材料市场中,Isovolate AG、Coveme和Mitsui Chemical Fabro公司的收入在市场份额中排名前三位。其中Isovolate主要经营太阳能电池背板,其市场份额为10.4%,占总份额的十分之一;Coveme公司和Mitsui Chemical Fabro分别经营背板组件和密封剂,其市场份额均为8.9%。对于生产销售密封剂为主的STR Solar和制造背板组件的Madico公司,也以7.3%和7.0%的市场份额在光伏材料行业占据着重要的地位。
不过,截止目前,光伏材料市场主要由欧洲和美国公司主导,同时一些日本和中国的企业也在不断地扩大其全球业务。印度、中国已成为光伏材料发展的新市场和新的制造国家。2009年,全球范围内存在着超过350家供应光伏材料的公司,其中包括了像AGE Solar、Bridgestone和Isovolate AG等跨国公司,也包括了许多的地区性公司。行业内的强强联合和兼并、收购等现象也层出不穷。
多晶硅是光伏太阳能电池的主要组成组分。根据有关分析数据表明,近5年多晶硅已出现高的增长率,并且将呈现继续增长的重要潜力。
PHOTON咨询公司指出,太阳能市场以十分强劲的态势增长,并将持续保持,2005~2010年的年均增长率超过50%,但是多晶硅供应商的市场机遇受到价格、供应和需求巨大变化的影响。后危机时代太阳能模块设施增长的强劲复苏致使多晶硅市场吃紧。
2010年8月,韩国OCI公司与韩国经济发展集团签约备忘录,将共同投资84亿美元(包括其他事项),将在韩国郡山新增能力,这将使OCI公司总的多晶硅制造能力翻二番以上。Hemlock公司正在美国田纳西州Clarksville建设投资为12亿美元的多晶硅制造厂,而瓦克化学公司正在德国Nünchritz建设投资为8亿欧元(10亿美元)的太阳能级多晶硅制造装置。
按照PHOTON咨询公司的2010年太阳能市场报告,在现行政策和经济环境下,预计多晶硅供应在2010~2014年的年均增长率为16%,将达到2014年29万吨/年。能力增长主要受到主要生产商的扩能所驱动,这些生产商包括美国Hemlock半导体公司、OCI公司和瓦克化学公司。
分析指出,光伏部门受刺激政策的拉动,正在扩能之中,预计多晶硅供应的年均增长率可望达43%,将使其能力达到2014年近50万吨。目前正在研究的或已经应该到工业中的光伏材料的制备: 1.有机光伏材料的制备: 1.1原料与试剂
所用溶剂采用通常的方法纯化和干燥.2-溴噻吩,3,4-二溴噻吩和金属镁片为 Alfa Aesar公司产品. 镍催化剂,N-氯磺酰异氰酸酯和苝四甲酸二酐(P TCDA)均为 Aldrich公司产品,直接使用.2,2′:5′,2″ -三噻吩(3 T),2,2 ′:5′,2″:5″,2″′ -四噻吩(4 T)和2,3,4,5 -四噻吩基噻吩 XT 为自行合成 . 1.2 测定
紫外光谱的测定采用美国热电公司的 Helios -γ型光谱仪.
设计、合成了新型齐聚噻吩衍生物 3T-CN,3T-2CN,4T-CN,4T-2CN,XT 和 XT-2CN. 以3T-CN,3T-2CN,4T-CN,4T-2CN,XT 和 XT-2 CN 分别作为电子给体材料 P TCDA作为电子受体材料组装了p - n异质结有机光伏器件 对这些器件的光分别为 1.51%,2.24% 2.10% 2.74% 0.58%和65% 如表1所示.
伏性能进行了研究. 研究发现 以3T-CN,3T-2CN,4T-CN,4T-2CN,XT和XT-2CN 分别作为电子给体材料的有机光伏器件的光电转换效率分别为1.15%,2.24%,2.10%,2.74%,0.58%和0.65%.电子给体材料中-CN基团的引入可以提高器件的光电转换效率. 2.多晶硅的提纯办法 2.1三氯氢硅氢还原法
三氯氢硅氢还原法亦称西门子法,是德国Siemens公司于1954年发明的一项制备高纯多晶硅技术。该技术采用高纯三氯氢硅(SiHCl)作为原料,氢气作为还原剂,采用西门子法或流化床的方式生长多晶硅。此法有以下3个关键工序。(1)硅粉与氯化氢在流化床上进行反应以形成SiHCl,反应方程式为: Si+3HCl→SiHCl+H2(2)对SiHCl3进行分馏提纯,以获得高纯甚至10-9级(ppb)超纯的状态:反应中除了生成中间化合物SiHCl外,还有附加产物,如SiCl、SiH2Cl2和FeCl3、BCl3、PCl3等杂质,需要精馏提纯。经过粗馏和精馏两道工艺,中间化合物SiHCl的杂质含量-7-10可以降到10~10数量级。
(3)将高纯SiHCl用H2通过化学气相沉积(CVD)还原成高纯多晶硅,反应方程式为 :SiHCl+H2→Si+3HCl或2SiHCl→Si+2HCl+SiCl该工序是将置于反应室的原始高纯多晶硅细棒(直径5mm~6mm,作为生长籽晶)通电加热到1100℃以上,加入中间化合物SiHCl和高纯H2,通过CVD技术在原始细棒上沉积形成直径为150mm~200mm的多晶硅棒,从而制得电子级或太阳级多晶硅。2.2 硅烷热分解法
1956年英国标准电讯实验所成功研发出了硅烷(SiH4)热分解制备多晶硅的方法, 即通常所说的硅烷法。1959年日本的石冢研究所也同样成功地开发出了该方法。后来,美国联合碳化物公司(Union Carbide)采用歧化法制备SiH4,并综合上述工艺加以改进,诞生了生产多晶硅的新硅烷法。这种方法是通过SiHCl4将冶金级硅转化成硅烷气的形式。制得的硅烷气经提纯后在热分解炉中分解,生成的高纯多晶硅沉积在加热到850℃以上的细小多晶硅棒上,采用该技术的有美国ASIMI和SGS(现为REC)公司。同样,硅烷的最后分解也可以利用流化床技术得到颗粒状高纯多晶硅。目前采用此技术生产粒状多晶硅的公司有:挪威的REC、德国的Wacker、美国的Hemlock和MEMC公司等。硅烷气的制备方法多种多样,如SiCl4 氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等,其主要优点在于硅烷易于提纯,热分解温度低等。虽然该法获得的多晶硅纯度高,但综合生产成本较高,而且硅烷易燃易爆,生产操作时危险性大。2.3 物理提纯法 长期以来,从冶金级硅提纯制备出低成本太阳能级多晶硅已引起业内人士的极大兴趣,有关人员也进行了大量的研究工作,即采用简单廉价的冶金级硅提纯过程以取代复杂昂贵的传统西门子法。为达到此目的,常采用低成本高产率的物理提纯 法(亦称冶金法),具体方法是采用不同提纯工艺的优化组合对冶金级硅进行提炼进而达到太阳能级硅的纯度要求。其中每一种工艺都可以将冶金级硅中的杂质含量降低1个数量级。
晶硅太阳电池向高效化和薄膜化方向发展
晶硅电池在过去20年里有了很大发展,许多新技术的采用和引入使太阳电池效率有了很大提高。在早期的硅电池研究中,人们探索各种各样的电池结构和技术来改进电池性能,如背表面场,浅结,绒面,氧化膜钝化,Ti/Pd金属化电极和减反射膜等。后来的高效电池是在这些早期实验和理论基础上的发展起来的。单晶硅高效电池
单晶硅高效电池的典型代表是斯但福大学的背面点接触电池(PCC),新南威尔士大学(UNSW)的钝化发射区电池(PESC,PERC,PERL以及德国Fraumhofer太阳能研究所的局域化背表面场(LBSF)电池等。
我国在“八五”和“九五”期间也进行了高效电池研究,并取得了可喜结果。近年来硅电他的一个重要进展来自于表面钝化技术的提高。从钝化发射区太阳电池(PESC)的薄氧化层(<10nm)发展到PCC/PERC/PER1。电池的厚氧化层(110nm)。热氧化钝化表面技术已使表面态密度降到
10卜cm2以下,表面复合速度降到100cm/s以下。此外,表面V型槽和倒金字塔技术,双层减反射膜技术的提高和陷光理论的完善也进一步减小了电池表面的反射和对红外光的吸收。低成本高效硅电池也得到了飞速发展。(1)新南威尔士大学高效电池
(A)钝化发射区电池(PESC):PESC电池1985年问世,1986年V型槽技术又被应用到该电池上,效率突破20%。V型槽对电他的贡献是:减少电池表面反射;垂直光线在V型槽表面折射后以41”角进入硅片,使光生载流子更接近发射结,提高了收集效率,对低寿命衬底尤为重要;V型槽可使发射极横向电阻降低3倍。由于PESC电他的最佳发射极方块电阻在150 Ω/口以上,降低发射极电阻可提高电池填充因子。
在发射结磷扩散后,„m厚的Al层沉积在电他背面,再热生长10nm表面钝化氧化层,并使背面Al和硅形成合金,正面氧化层可大大降低表面复合速度,背面Al合金可吸除体内杂质和缺陷,因此开路电压得到提高。早期PESC电池采用浅结,然而后来的研究证明,浅结只是对没有表面钝化的电他有效,对有良好表面钝化的电池是不必要的,而氧化层钝化的性能和铝吸除的作用能在较高温度下增强,因此最佳PEsC电他的发射结深增加到1µm左右。值得注意的是,目前所有效率超过20%的电池都采用深结而不是浅结。浅结电池已成为历史。
PEsC电池的金属化由剥离方法形成Ti-pd接触,然后电镀Ag构成。这种金属化有相当大的厚/宽比和很小的接触面积,因此这种电池可以做到大子83%的填充因子和20.8%(AM1.5)的效率。
(B)钝化发射区和背表面电池(PERC):铝背面吸杂是PEsC电池的一个关键技术。然而由于背表面的高复合和低反射,它成了限制PESC电池技术进一步提高的主要因素。PERC和PERL电池成功地解决了这个问题。它用背面点接触来代替PEsC电他的整个背面铝合金接触,并用TCA(氯乙烷)生长的110nm厚的氧化层来钝化电他的正表面和背表面。TCA氧化产生极低的界面态密度,同时还能排除金属杂质和减少表面层错,从而能保持衬底原有的少子寿命。由于衬底的高少子寿命和背面金属接触点处的高复合,背面接触点设计成2mm的大间距和2001Lm的接触孔径。接触点间距需大于少子扩散长度以减小复合。这种电池达到了大约700mV的开路电压和22.3%的效率。然而,由于接触点间距太大,串联电阻高,因此填充因子较低。
(C)钝化发射区和背面局部扩散电池(PERL):在背面接触点下增加一个浓硼扩散层,以减小金属接触电阻。由于硼扩散层减小了有效表面复合,接触点问距可以减小到250µm、接触孔径减小到10µm而不增加背表面的复合,从而大大减小了电他的串联电阻。PERL电池达到了702mV的开路电压和23.5%的效率。PERC和PER1。电池的另一个特点是其极好的陷光效应。由于硅是间接带隙半导体,对红外的吸收系数很低,一部分红外光可以穿透
2电池而不被吸收。理想情况下入射光可以在衬底材料内往返穿过4n次,n为硅的折射率。PER1。电池的背面,由铝在SiO2上形成一个很好反射面,入射光在背表面上反射回正表面,由于正表面的倒金字塔结构,这些反射光的一大部分又被反射回衬底,如此往返多次。Sandia国家实验室的P。Basore博士发明了一种红外分析的方法来测量陷光性能,测得PERL电池背面的反射率大于95%,陷光系数大于往返25次。因此PREL电他的红外响应极高,也特别适应于对单色红外光的吸收。在1.02µm波长的单色光下,PER1。电他的转换效率达到45.1%。这种电池AM0下效率也达到了20.8%。
(D)埋栅电池:UNSW开发的激光刻槽埋栅电池,在发射结扩散后,用激光在前面刻出20µm宽、40µm深的沟槽,将槽清洗后进行浓磷扩散。然后在槽内镀出金属电极。电极位于电池内部,减少了栅线的遮蔽面积。电池背面与PESC相同,由于刻槽会引进损伤,其性能略低于PESC电池。电他效率达到19.6%。
(2)斯但福大学的背面点接触电池(PCC)点接触电他的结构与PER1。电池一样,用TCA生长氧化层钝化电池正反面。为了减少金属条的遮光效应,金属电极设计在电池的背面。电池正面采用由光刻制成的金字塔(绒面)结构。位于背面的发射区被设计成点状,50µm间距,10µm扩散区,5µm接触孔径,基区也作成同样的形状,这样可减小背面复合。衬底采用n型低阻材料(取其表面及体内复合均低的优势),衬底减薄到约100µm,以进一步减小体内复合。这种电他的转换效率在AM1.5下为22.3%。
(3)德国Fraunhofer太阳能研究所的深结局部背场电池(LBSF)
LBSF的结构与PERL电池类似,也采用TCA氧化层钝化和倒金字塔正面结构。由于背面硼扩散一般造成高表面复合,局部铝扩散被用来制作电池的表面接触,2cmX2cm电池电池效率达到23.3%(Voc=700mV,Isc-~41.3mA,FF一0.806)。
+(4)日本sHARP的C一Si/µc-Si异质pp结高效电池
SHARP公司能源转换实验室的高效电池,前面采用绒面织构化,在SiO2钝化层上沉积SiN为A只乙后面用RF-PECVD掺硼的µc一Si薄膜作为背场,用SiN薄膜作为后表面的钝化层,Al层通过SiN上的孔与µcSi薄膜接触。5cmX5cm电他在AM1.5条件下效率达到21.4%(Voc=669mV,Isc=40.5mA,FF=0.79)。
(5)我国单晶硅高效电池
天津电源研究所在国家科委“八五”计划支持下开展高效电池研究,其电池结构类似UNSw的V型槽PEsC电池,电池效率达到20.4%。北京市太阳能研究所“九五”期间在北京市政府支持下开展了高效电池研究,电池前面有倒金字塔织构化结构,2cmX2cm电池效率达到了19.8%,大面(5cmX5cm)激光刻槽埋栅电池效率达到了18.6%。二十一世纪光伏材料的发展趋势和展望
90年代以来,在可持续发展战略的推动下,可再生能源技术进入了快速发展的阶段。据专家预测,下世纪中叶太阳能和其它可再生能源能够提供世界能耗的50%。
光伏建筑将成为光伏应用的最大市场
太阳能光伏系统和建筑的完美结合体现了可持续发展的理想范例,国际社会十分重视。国际能源组织(IEA)+ 1991和1997相继两次起动建筑光伏集成计划,获得很大成功,建筑光伏集成有许多优点:①具有高技术、无污和自供电的特点,能够强化建筑物的美感和建筑质量;②光伏部件是建筑物总构成的一部分,除了发电功能外,还是建筑物耐候的外部蒙皮,具有多功能和可持续发展的特征;③分布型的太阳辐射和分布型的建筑物互相匹配;④建筑物的外壳能为光伏系统提供足够的面积;⑤不需要额外的昂贵占地面积,省去了光伏系统的支撑结构,省去了输电费用;③PV阵列可以代替常规建筑材料,从而节省安装和材料费用,例如昂贵的外墙包覆装修成本有可能等于光伏组件的成本,如果安装光伏系统被集成到建筑施工过程,安装成本又可大大降低;①在用电地点发电,避免传输和分电损失(5一10%),降低了电力传输和电力分配的投资和维修成本,建筑光伏集成系统既适用于居民住宅,也适用商业、工业和公共建筑,高速公路音障等,既可集成到屋顶,也可集成到外墙上;既可集成到新设计的建筑上,也可集成到现有的建筑上。光伏建筑集成近年来发展很炔,许多国家相继制定了本国的光伏屋顶计划。建筑自身能耗占世界总能耗的1/3,是未来太阳能光伏发电的最大市场。光伏系统和建筑结合将根本改变太阳能光伏发电在世界能源中的从属地位,前景光明。
PV产业向百兆瓦级规模和更高技术水平发展
目前PV组件的生产规模在5一20Mw/年,下世纪将向百兆瓦级甚至更大规模发展。同时自动化程度、技术水平也将大大提高,电池效率将由现在的水平(单晶硅13%一15%,多晶硅11%一13%)向更高水平(单晶硅18%一20%,多晶硅16%一18%)发展,同时薄膜电池在不断研究开发,这些都为大幅度降低光伏发电 成本提供了技术基础。
下世纪前半期光伏发电将超过核电
专家预计,下世纪前半期的30一50年代,光伏发电将超过核电。1997年世界发电总装机容量约2000GW,其中核电约400GW,约占20%,世界核电目前是收缩或维持,而我国届时核能将发展到约100GW,这就意味着世界光伏发电届时将达到500GW左右。1998年世界光伏发电累计总装机容量800MW,以2040年计算,这要求光伏发电年增长率达16.5%,这是一个很实际的发展速度,前提是光伏系统安装成本至少能和核能相比。PV发电成本下降趋势
美国能源部1996年关于PV联网系统市场价格下降趋势预测表明,每年它将以9%速率降低。1996年pv系统的平均安装成本约7美元/Wp,预计2005年安装成本将降到3美元/Wp,PV发电成本)11美元/kWh;2010年PV发电成本降到6美分/kWh,系统安装成本约1.7美元/Wp。
降低成本可通过扩大规模、提高自动化程度和技术水平、提高电池效率等途径实现。可行性研究指出,500MW/年的规模,采用现有已经实现商业化生产的晶硅技术,可使PV组件成本降低到:欧元左右(其中多晶硅电池组件成本0.91欧元/Wp),如果加上技术改进和提高电池效率等措施,组件平均成本可降低到1美元/Wp。在这个组件成本水平上,加上系统其它部件成本降低,发电成本6美分/kWh是能实现的。考虑到薄膜电池,未来降低成本的潜力更大,因此在下世纪前10一30年把PV系统安装成本降低到与核电可比或更低是完全可能的。
参考文献:
1.太阳能光伏产业发展战略研究报告(摘要)作者:信息产业部电子科技委《太阳能光伏产业发展战略研究》课题组中国集成电路 年6期
2.现在中国的多晶硅项目包括现有、已投产、在建的多晶硅项目
3.中国光伏产业发展研究 梁学善 2010-08-31 投票新兴产业 能源/环境 有机太阳能
4.电池材料研究新进展New Progress in Study of Organic Solar...作者:张天慧-2011 5.太阳能光伏发电材料技术发展分析 中国产业竞争情报网
6.各国赛跑发展领军光伏材料市场
中国新能源网
2010-8-2
7.光伏材料市场增长114% 2015年将达169亿美元 OFweek-太阳能光伏网
2011-02-12
8.全球光伏材料市场高增长可期 将达32.5亿美元
中国证券报
2010-11-24
9.光伏材料市场未来三年呈现高增长 年均增速超40% OFweek太阳能光伏网
2010-11-24
10.霍尼韦尔开发适恶劣环境光伏材料
OFweek-太阳能光伏网
2008-05-30
11.光伏材料实验室巧妙利用太阳的能量
翟圆圆
创新科技
2011-4 12.陆险峰
化工新材料市场缺口下的隐忧
化工新型材料
2010-3-8 13.武素梅,薛钰芝
机械力诱导自蔓延法制CuInSe2光伏材料
太阳能学报
2008-12-18 14.何有军
李永舫
聚合物太阳电池光伏材料
化学进展
2009-11 15.田娜,马晓燕,王毅菲等
聚合物太阳电池光伏材料的研究进展
高分子通报
16.张献城
太阳能光伏产业中多晶硅生产与发展研究
科技咨讯
2010第28期 17.刘平,洪锐宾,关丽等
新型有机光伏材料的制备及其光伏性能
材料研究与应用
2010-12
第五篇:3《光伏材料加工工艺》实践报告(参考)
《光伏材料加工工艺》
实践报告
专 业 光伏材料及应用 学生姓名 谢 健 伟 准考证号
指导教师 陈 立 老 师
2013 年 04 月
目录
一、实践目的................................................................................................................2
二、单晶硅太阳能电池简介........................................................................................2
三、太阳能电池片的化学清洗工艺............................................................................3
四、太阳能电池片制作工艺流程图............................................................................3
五、太阳能电池组件封装工艺流程............................................................................7
六、实践心得................................................................................................................8
《光伏材料加工工艺》实践报告
一、实践目的
光伏材料是指能将太阳能直接转换成电能的材料。光伏材料又称太阳电池材料,只有半导体材料具有这种功能。可做太阳电池材料的材料有单晶硅、多晶硅、非晶硅、GaAs、GaAlAs、InP、CdS、CdTe等。用于空间的有单晶硅、GaAs、InP。用于地面已批量生产的有单晶硅、多晶硅、非晶硅。本实践课程的主要目的就是学习光伏材料的加工工艺,掌握光伏材料加工的流程。
二、单晶硅太阳能电池简介
单晶硅太阳能电池,是以高纯的单晶硅棒为原料的太阳能电池,是当前开发得最快的一种太阳能电池。它的构造和生产工艺已定型,产品已广泛用于空间和地面。
为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。单晶硅太阳能电池将单晶硅棒切成片,一般片厚约0.3毫米。硅片经过抛磨、清洗等工序,制成待加工的原料硅片。加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。扩散是在石英管制成的高温扩散炉中进行。这样就硅片上形成P>N结。然后采用丝网印刷法,精配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉。因此,单晶硅太阳能电池的单体片就制成了。单体片经过抽查检验,图1 单晶硅太阳能电池的基本结构
即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流。最后用框架和材料进行封装。用户根据系统设计,可将太阳能电池组件组成各种大小不同的太阳能电池方阵,亦称太阳能电池阵列。目前单晶硅太阳能电池的光电转换效率为15%左右,实验室成果也有20%以上的。
单晶硅太阳能电池的基本结构如图1所示。
三、太阳能电池片的化学清洗工艺
切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。
具体来说太阳能硅片表面沾污大致可分为三类:
1、有机杂质沾污: 可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。
2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径 ≥ 0.4 μm颗粒,利用兆声波可去除 ≥ 0.2 μm颗粒。
3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。硅片表面金属杂质沾污又可分为两大类: ①沾污离子或原子通过吸附分散附着在硅片表面。②带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。
金属离子沾污的清楚方法如下:
①用 H2O2作强氧化剂,使“电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面。
②用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。
③用大量去离子水进行超声波清洗,以排除溶液中的金属离子。
由于SC-1是H2O2和NH4OH的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。
另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。
四、太阳能电池片制作工艺流程图
太阳能电池片制作工艺流程如图2所示。
图2 晶体硅太阳能电池片制作工艺流程
具体的制作工艺说明
(1)切片:采用多线切割,将硅棒切割成正方形的硅片。
(2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。
(3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。(4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0.5um。
(5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。
(6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。
(7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。
(8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2,SiO2,Al2O3,SiO,Si3N4,TiO2,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。
(9)烧结:将电池芯片烧结于镍或铜的底板上。(10)测试分档:按规定参数规范,测试分类。
生产电池片的工艺比较复杂,一般要经过硅片检测、表面制绒、扩散制结、去磷硅玻璃、等离子刻蚀、镀减反射膜、丝网印刷、快速烧结和检测分装等主要步骤。这里介绍的是晶硅太阳能电池片生产的一般工艺与设备。
1、硅片检测
硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术参数进行在线测量,这些参数主要包括硅片表面不平整度、少子寿命、电阻率、P/N型和微裂纹等。该组设备分自动上下料、硅片传输、系统整合部分和四个检测模块。其中,光伏硅片检测仪对硅片表面不平整度进行检测,同时检测硅片的尺寸和对角线等外观参数;微裂纹检测模块用来检测硅片的内部微裂纹;另外还有两个检测模组,其中一个在线测试模组主要测试硅片体电阻率和硅片类型,另一个模块用于检测硅片的少子寿命。在进行少子寿命和电阻率检测之前,需要先对硅片的对角线、微裂纹进行检测,并自动剔除破损硅片。硅片检测设备能够自动装片和卸片,并且能够将不合格品放到固定位置,从而提高检测精度和效率。
2、表面制绒
单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。
3、扩散制结
太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。
4、去磷硅玻璃
该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。
5、等离子刻蚀 由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结。通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激发下,产生电离并形成等离子体。等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,除了转变成离子外,还能吸收能量并形成大量的活性基团。活性反应基团由于扩散或者在电场作用下到达SiO2表面,在那里与被刻蚀材料表面发生化学反应,并形成挥发性的反应生成物脱离被刻蚀物质表面,被真空系统抽出腔体。
6、镀减反射膜
抛光硅表面的反射率为35%,为了减少表面反射,提高电池的转换效率,需要沉积一层氮化硅减反射膜。现在工业生产中常采用PECVD设备制备减反射膜。PECVD即等离子增强型化学气相沉积。它的技术原理是利用低温等离子体作能量源,样品置于低气压下辉光放电的阴极上,利用辉光放电使样品升温到预定的温度,然后通入适量的反应气体SiH4和NH3,气体经一系列化学反应和等离子体反应,在样品表面形成固态薄膜即氮化硅薄膜。一般情况下,使用这种等离子增强型化学气相沉积的方法沉积的薄膜厚度在70nm左右。这样厚度的薄膜具有光学的功能性。利用薄膜干涉原理,可以使光的反射大为减少,电池的短路电流和输出就有很大增加,效率也有相当的提高。
7、丝网印刷
太阳电池经过制绒、扩散及PECVD等工序后,已经制成PN结,可以在光照下产生电流,为了将产生的电流导出,需要在电池表面上制作正、负两个电极。制造电极的方法很多,而丝网印刷是目前制作太阳电池电极最普遍的一种生产工艺。丝网印刷是采用压印的方式将预定的图形印刷在基板上,该设备由电池背面银铝浆印刷、电池背面铝浆印刷和电池正面银浆印刷三部分组成。其工作原理为:利用丝网图形部分网孔透过浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动。油墨在移动中被刮刀从图形部分的网孔中挤压到基片上。由于浆料的粘性作用使印迹固着在一定范围内,印刷中刮板始终与丝网印版和基片呈线性接触,接触线随刮刀移动而移动,从而完成印刷行程。
8、快速烧结
经过丝网印刷后的硅片,不能直接使用,需经烧结炉快速烧结,将有机树脂粘合剂燃烧掉,剩下几乎纯粹的、由于玻璃质作用而密合在硅片上的银电极。当银电极和晶体硅在温度达到共晶温度时,晶体硅原子以一定的比例融入到熔融的银电极材料中去,从而形成上下电极的欧姆接触,提高电池片的开路电压和填充因子两个关键参数,使其具有电阻特性,以提高电池片的转换效率。烧结炉分为预烧结、烧结、降温冷却三个阶段。预烧结阶段目的是使浆料中的高分子粘合剂分解、燃烧掉,此阶段温度慢慢上升;烧结阶段中烧结体内完成各种物理化学反应,形成电阻膜结构,使其真正具有电阻特性,该阶段温度达到峰值;降温冷却阶段,玻璃冷却硬化并凝固,使电阻膜结构固定地粘附于基片上。
9、外围设备
在电池片生产过程中,还需要供电、动力、给水、排水、暖通、真空、特汽等外围设施。消防和环保设备对于保证安全和持续发展也显得尤为重要。一条年产50MW能力的太阳能电池片生产线,仅工艺和动力设备用电功率就在1800KW左右。工艺纯水的用量在每小时15吨左右,水质要求达到中国电子级水GB/T11446.1-1997中EW-1级技术标准。工艺冷却水用量也在每小时15吨左右,水质中微粒粒径不宜大于10微米,供水温度宜在15-20℃。真空排气量在300M3/H左右。同时,还需要大约氮气储罐20立方米,氧气储罐10立方米。考虑到特殊气体如硅烷的安全因素,还需要单独设置一个特气间,以绝对保证生产安全。另外,硅烷燃烧塔、污水处理站等也是电池片生产的必备设施。
五、太阳能电池组件封装工艺流程
组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。
太阳能电池组件封装工艺流程如下:
电池检测→正面焊接→检验→背面串接→检验→敷设(玻璃清洗、材料切割、玻璃预处理、敷设→层压→去毛边(去边、清洗)→装边框(涂胶、装角键、冲孔、装框、擦洗余胶)→焊接接线盒→高压测试→组件测试→外观检验→包装入库
在这里简单的介绍一下工艺的作用。
1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。
2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连
3、背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。
4、层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。
5、组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA时,层压循环时间约为25分钟。固化温度为150℃。
6、修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。
7、装框:类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组件,延长电池的使用寿命。边框和玻璃组件的缝隙用硅酮树脂填充。各边框间用角键连接。
8、焊接接线盒:在组件背面引线处焊接一个盒子,以利于电池与其他设备或电池间的连接。
9、高压测试:高压测试是指在组件边框和电极引线间施加一定的电压,测 试组件的耐压性和绝缘强度,以保证组件在恶劣的自然条件(雷击等)下不被损坏。
10、组件测试:测试的目的是对电池的输出功率进行标定,测试其输出特性,确定组件的质量等级。
六、实践心得
通过实践,对晶体硅太阳能电池的加工过程、电池组件的生产流程有了一个全面是认识,对今后从事这方面的工作打下了非常重要的实践基础。在实践的过程中,认识到,组件高效和高寿命如何保证,可以从以下几方面着手:
1、高转换效率、高质量的电池片 ;
2、高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等;
3、合理的封装工艺;
4、员工严谨的工作作风;由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。