第一篇:毕业论文-李阳-2012-3
提高建筑节能工程施工质量管理水平
【摘 要】文章介绍了我国建筑节能法规体系,建筑节能工程基本内容,基本要求和重点,施工准备、施工过程和竣工验收三个阶段质量控制要点,建设、施工、监理单位现场管理人员务必认真学习,熟练运用,严格把关,使建筑节能工程所用材料,设备质量以及工程施工安装质量达国家合格标准。
【关键词】建筑节能;验收规范;复验项目;检测项目 1.引言
由于我们国家建筑节能工程起步晚,从业人员节能意识淡薄,思想观念落后,对建筑节能工程的必要性和重要性认识不足,重视不够,管理不严,执行不力,在实施过程中施工图设计深度不够,与验收规范不匹配,与建设部要求节能图审单列的规定不一致,随意变更,偷工减料,以次充好,以假充真,降低节能标准等违法违规行为时有发生,应引起各级领导和工程技术人员高度重视,采取有效措施予以纠正制止。为此,我们撰写了《提高建筑节能工程施工质量管理水平》与大家研讨交流,使建筑节能工程质量达到国家合格标准。
2.我国建筑节能法规体系
2.1《中华人民共和国节约能源法》,自2008年4月1日起施行;
2.2《民用建筑节能条例》,自2008年10月1日起施行;
2.3《公共机构节能条例》,自2008年10月1日起施行;
2.4《民用建筑节能工程质量监督工作导则》,自2008年1月29日起施行;
2.5《民用建筑节能管理规定》,自2006年1月1日起施行;
2.6《民用建筑工程节能质量监督管理办法》,自2006年7月31日起施行;
2.7《民用建筑节能设计标准》(采暖居住建筑部分)JGJ26-95,自1996年7月1日起施行;
2.8《采暖居住建筑节能检验标准》JGJ132-2001,自2001年6月1日起施行;
2.9《夏热冬冷地区居住建筑节能设计标准》JGJ134-2001,自2001年10月1日起施行;
2.10《公共建筑节能设计标准》GB0189-2005,自2005年7月1日起施行;
2.11《外墙外保温工程技术规程》JGJ144-2004,自2005年3月1日起实施;
2.12《建筑节能工程施工质量验收规范》GB50411-2007,自2007年10月1日起实施。
至此,我国建筑节能法规体系基本建立健全。对于加快建设资源节约型、环境友好型社会和促进经济社会可持续发展,实现节能减排基本国策具有重要战略意义。作为建设、施工、监理单位管理人员,应当认真学习贯彻执行,提高认识和管理水平,加强监控力度,提高建筑节能效果非常重要。
《建筑节能工程施工质量验收规范》,以下简称《规范》。
3.建筑节能工程基本内容
建筑节能分部工程划分的10个分项工程及其主要验收内容:
3.1墙体节能工程:主体结构基层、保温材料,饰面层等。
3.2幕墙节能工程:主体结构基层、隔热材料、保温材料、隔气层、幕墙玻璃,单元式幕墙板块、通风换气系统、遮阳设施、冷凝水收集排放系统等。
3.3门窗节能工程:门、窗、玻璃、遮阳设施等。
3.4屋面节能工程:基层、保温隔热层、保护层、防水层、面层等。
3.5地面节能工程:基层、保温层、保护层、面层等。
3.6采暖节能工程:系统制式、散热器、阀门与仪表、热力入口装置、保温材料、调试等。
3.7通风与空气调节节能工程:系统制式、通风与空调设备、阀门与仪表、绝热材料、调试等。
3.8空调与采暖系统的冷热源及管网节能工程:系统制式、冷热源设备、辅助设备、管网、阀门与仪表、绝热保温材料、调试等。
3.9配电与照明节能工程:低压配电电源、照明光源、灯具、附属装置、控制功能、调试等。
3.10检测与控制节能工程:冷热源系统的检测控制系统,空调水系统的监测控制系统,通风与空调系统的监测控制系统,监测与计量装置,供配电的监测控制系统,照明自动控制系统,综合控制系统等。
4.建筑节能工程基本要求和重点
4.1一部涉及多专业的验收规范
《规范》是根据国家现行法规和相关标准,总结了近年来我国建筑工程中节能工程的设计、施工、验收和运行管理方面的实践经验和研究成果,借鉴了国际先进经验和做法,充分考虑了我国现阶段建筑节能工程的实际情况,突出了验收中基本要求和重点。内容包括:墙体、幕墙、门窗、屋面、地面、采暖、通风与空调、空调与采暖系统冷热源及管网、配电与照明、监测与控制等建筑节能工程。是我国第一部涉及多专业的节能工程施工质量验收规范。
4.2严格执行强制性条文
《规范》第1.0.5、3.1.2、3.3.1、4.2.2、4.2.7、4.2.15、5.2.2、6.2.2、7.2.2、8.2.2、9.2.3、9.2.10、10.2.3、10.2.14、11.2.3、11.2.5、11.2.11、12.2.2、13.2.5、15.0.5条,共20条强制性条文,比相关专业验收规范的强制性条文多,必须严格执行。
4.3单位工程验收应在建筑节能分部验收合格后进行
根据国家规定,建设工程必须节能,节能达不到要求的建筑工程不得验收交付使用。因此,规定单位工程竣工验收应在建筑节能分部工程验收合格后方可进行,并用黑体字标志为强制条文,必须严格执行。也就是建筑节能验收是单位工程验收的先决条件,具有“一票否决权”。
4.4涉及节能的设计变更应严加限制
由于种种原因,施工中可能需要改变节能设计。为了避免这些改变影响节能效果,所以对涉及节能的设计变更应严格加以限制。一是任何有关节能的设计变更,均需事前办理设计变更手续;二是有关节能的设计变更不应降低节能效果;三是涉及节能效果的设计变更,除应由设计单位认可外,还应报原负责节能设计审查机构审查方可确定;四是确定变更后,并应获得监理或建设单位的确认。这一设定增加了节能设计变更的难度,目的是为了尽可能维护已经审查确定的节能设计要求。减少不必要的节能设计变更。
4.5采用“四新”技术应进行评审、鉴定及备案
建筑节能工程采用的新技术、新设备、新材料、新工艺,简称四新技术。四新技术由于新,尚没有标准可作为依据。因此,对于四新技术的应用,应采取积极、慎重的态度。国家鼓励建筑节能工程施工中采用四新技术,但为了防止不成熟的技术和材料被应用到工程上,国家同时又规定了对四新技术要进行科技成果鉴定,技术评审或实行备案等措施。具体做法是:应按照有关规定进行评审、鉴定及备案方可采用。
4.6施工组织设计应包括节能工程施工内容
鉴于建筑节能的重要性,单位工程的施工组织设计应包括建筑节能工程施工内容。建筑节能工程施工前,施工单位应编制建筑节能工程施工技术方案并经监理(建设)单位审查批准。施工单位应对从事建筑节能工程施工作业的专业人员进行技术交底和必要的实际操作培训,以保证节能施工效果。
4.7材料和设备进场验收
材料和设备进场验收通常可分为三个步骤:一是对外观质量进行检查。对其品种、规格、包装、外观和尺寸等“可视质量”进行检查验收,并经监理工程师或建设单位代表核准,形成相应的质量记录。材料和设备的“可视质量”,是指那些可以通过目视和简单的尺量、称重、敲击等方法进行检查的质量。二是对质量证明文件进行核查。这些质量证明文件主要包括出厂合格证、产品说明书及相关性能检验报告、形式检验报告等;进口材料和设备应有出入境商品检验报告。三是按《规范》各章及附录A提出的进场材料和设备的复验项目,实施见证取样和送检,以验证其质量是否符合要求。4.8现场实体检验
建筑节能工程现场实体检验,包括围护结构现场实体检验和系统节能性能检测两大部分。一是对围护结构的外墙节能构造和严寒、寒冷、夏热冬冷地区的外窗气密性进行现场实体检测。外墙节能构造现场实体检验方法,采用附录C钻芯取样检验方法进行检测,并出具检测报告。外窗气密性的实体检测,是指对已完成安装的外窗在其使用位置进行的测试,是检验外窗的安装(含组装)质量,能够有效防止“送检窗合格,工程用窗不合格”的“挂羊头、卖狗肉”不法行为。二是对系统节能性能进行检测。采暖、通风与空调、配电与照明工程安装完成后,应进行系统节能性能的检测,由建设单位委托具有相应检测资质的检测机构进行检测,并出具见证检测报告。检测项目、抽样数量、允许偏差或规定值,按《规范》14.2.2表列的9个检测项目进行。
4.9建筑节能效果只能通过检测数据来评价
《规范》中相关章节及附录,对节能材料和设备进场复验项目规定有12项;围护结构现场实体检验项目规定有2项;系统节能性能检测项目规定有9项。这些复验项目、检测项目的数据,在分项、分部工程验收中用来评价质量是否符合施工图设计文件的要求,是否符合施工质量验收规范、标准的规定,是否符合施工合同约定,是否达到建筑节能效果。因此检测结论的正确与否十分重要。国家建设部第141号令,《建设工程质量检测管理办法》第十二条规定由建设单位委托具有相应资质的检测机构进行检测,并签订书面合同。故目前承担建筑节能工程检测试验的检测机构应具备见证检测资质,并通过节能试验项目的计量认证。
4.10把图像资料列入《规范》。本规范第4、5、6、7、8、9、10、11、12、13、15章,均要求对节能有关的隐蔽部位或内容进行隐蔽工程验收,并应有详细的文字记录和必要的图像资料。这是我国第一次把图像资料列入了验收规范,以验证其隐蔽工程的真实性和可追溯性。
5.施工准备阶段质量控制要点
5.1建筑节能工程施工图设计文件审查情况。
5.2建筑节能工程施工图设计文件审查备案情况。
5.3涉及建筑节能效果的设计变更重新报审和建设、监理单位确认情况。
5.4建筑节能工程施工专项方案及建筑节能监理规划和实施细则编制、审批情况。
5.5建筑节能专业施工人员岗前培训及技术交底情况。
5.6对建筑节能示范样板的确认。
6.施工过程质量控制要点
6.1材料、构配件和设备质量:①主要材料、构配件和设备的规格、型号、性能与设计文件要求是否相符。②主要材料、构配件和设备的合格证、中文说明书、形式检验报告、定型产品和成套技术应用型式检验报告、进场验收记录、见证取样送检复试报告的核查情况。③对材料、构配件和设备的进场验收签认情况。
6.2墙体节能工程:①基层表面空鼓、开裂、松动、风化,平整度及妨碍粘结的附着物的处理。②保温层重点对保温、牢固、开裂、渗漏、耐久性、防火等性能进行检查。③雨水管卡具、女儿墙、分隔缝、挑梁、连梁、壁柱、空调板、空调管洞、门窗洞口等易产生热桥部位保温措施。④施工产生的墙体缺陷(如穿墙套管、脚手架眼、孔洞等)处理。⑤不同材料基体交接处、容易碰撞的阳角及门窗洞口转角处等特殊部位的保温层防止开裂和破损的加强措施。⑥隔汽层构造处理、穿透隔汽层处密封措施、隔汽层冷凝水排水构造处理。⑦非采暖公共间(如普通住宅楼梯间、高层住宅疏散楼梯间、电梯前室、公共通道、公共大堂大厅、地下室等)按图施工情况。
6.3幕墙节能工程:①幕墙工程热桥部位的隔断热桥措施。②幕墙与周边墙体间的缝隙处理。③建筑伸缩缝、沉降缝、抗震缝等变形缝的保温密封处理。④遮阳设施的安装。
6.4门窗节能工程:①外门窗框或副框与洞口、外门窗框之间的间隙处理。②金属外门窗隔断热桥措施及金属副框隔断热桥措施。③严寒、寒冷、夏热冬冷地区建筑外窗气密性现场实体检验情况。④严寒、寒冷地区的外门安装及特种门安装的节能措施。⑤外门窗遮阳设施的安装。⑥天窗安装位置、坡度、密封节能措施。⑦天窗扇密封条的安装、镶嵌、接头处理。⑧门窗镀(帖)膜玻璃的安装方向及中空玻璃均压管密封及中空玻璃漏点复检情况。
6.5屋面节能工程:①屋面保温、隔热层铺设质量、厚度控制。②屋面保温、隔热层的平整度、坡向、细部及屋面热桥部位的保温隔热措施。③屋面隔汽层位置、铺设方式及密封措施。
6.6地面节能工程:①基层处理的质量。②地面保温层、隔离层、防潮层、保护层等各层的设置和构造做法以及保温层的厚度。③地面节能工程的保温板与基层之间、各构造层的粘结及缝隙处理。④穿越地面直接接触室外空气的各种金属管道的隔断热桥保温措施。⑤严寒、寒冷地区的建筑首层直接与土壤接触的地面、采暖地下室与土壤接触的外墙、毗邻不采暖空间的地面及底面直接接触室外空气的地面等隔断热桥保温措施。
6.7采暖节能工程:
①采暖系统安装应检查以下内容:⑪采暖系统的制式及安装;⑫散热设备、阀门与过滤器、温度计及仪表安装;⑬系统各分支管路水力平衡装置安装及调试的情况;⑭分室(区)热量计量设施安装和调试的情况;⑮散热器恒温阀的安装。
②采暖系统热力入口装置的安装应检查以下内容:⑪热力入口装置的选型;⑫热计量装置的安装和调试的情况;⑬水力平衡装置的安装及调试的情况;⑭过滤器、压力表、温度计及各种阀门的安装。
③采暖管道的保温层、防水层施工。
④采暖系统安装完成后的系统试运转和调试。
6.8通风与空调节能工程:
① 通风与空调节能工程中的送、排风系统、空调风系统、空调水系统的安装应检查以下内容:⑪各系统的制式及其安装;⑫各种设备、自控阀门与仪表安装;⑬水系统各分支管路水力平衡装置安装及调试的情况;⑭空调系统分栋、分户、分室(区)冷、热计量设备安装。
②风管的制作与安装应检查以下内容:⑪风管严密性及风管系统的严密性检测;⑫风管与部件、风管与土建风道及风管间的连接;⑬需要绝热的风管与金属支架的接触处、复合风管及需要绝热的非金属风管的连接和加固等处的冷桥处理。
③各种空调机组的安装、与风管连接的情况及现场组装的组合式空调机组各功能段之间连接检测。
④风机盘管机组的选型及安装和调试的情况。
⑤空调与通风系统中风机的选型及安装。
⑥带热回收功能的双向换气装置和集中排风系统中的排风热回收装置选型及安装。
⑦空调机组回水管上的电动两通调节阀、风机盘管机组回水管上的电动两通(调节)阀、空调冷热水系统中的水力平衡装置、冷(热)量计量装置等自控阀门与仪表的选型及安装。
⑧风管和空调水系统管道隔热层、防潮层选材。
⑨空调水系统的冷热水管道及配件与支、吊架之间绝热衬垫安装和冷桥隔断的措施。
⑩通风与空调系统安装完毕后的通风机和空调机组等设备的单机试运转和调试及通风空调系统无生产负荷下的联合试运转和调试检测。
6.9空调与采暖系统冷热源及管网节能工程:①空调与采暖系统冷热源设备和辅助设备及其管网系统的安装。②空调冷热源水系统管道及配件绝热层和防潮层的施工情况。③空调与采暖系统冷热源和辅助设备及其管道和管网系统安装完毕后的系统试运转及调试情况。
6.10配电与照明节能工程:①锅炉房动力用电、冷却塔水泵用电和照明用电计量设备安装②住宅公共部分和公共建筑的照明的高效光源、高效灯具和节能控制装置安装。③水泵、风机等设备的节能装置安装。④低压配电系统及照明系统检测。
6.11监测与控制节能工程:①监测与自动控制系统的安装、调试和联动情况。②监测和自动控制系统与空调、采暖、配电和照明等系统联动运行、监测情况。
7.竣工验收阶段质量控制要点: 7.1建筑节能工程验收应满足以下条件:①施工单位出具的建筑节能工程分部质量验收报告,建筑围护结构的外墙节能构造实体检验,严寒、寒冷和夏热冬冷地区的外窗气密性现场实体检测,采暖、通风与空调、照明系统检测资料等合格证明文件,以及施工过程中发现的质量问题整改报告等;②检查建筑节能分部工程重点部位隐蔽验收记录和相关图像资料;③检查相关节能分部工程检验批、分项工程、子分部工程验收合格标准及合格依据,以及检验批和分项工程的划分;④设计单位出具的建筑节能工程质量检查报告;⑤监理单位出具的建筑节能工程质量评估报告。
7.2验收组成员组成及节能验收程序是否符合规定。
7.3对节能工程实体质量进行抽测、对观感质量进行检查。
7.4对节能工程竣工资料进行核查。
7.5确认程序合法、质量合格后,参建各方在《建筑节能分部工程质量验收表》上签字;
8.结束语
《建筑节能工程施工质量验收规范》,涉及的专业多,强制性条文多,复验项目多,检测项目多。对设计要求多,图像资料首次列入了规范,单独组卷,单独验收,建筑节能效果只能通过检测数据来评价,单位工程竣工验收应在建筑节能分部工程验收合格后进行。建设、施工、监理单位现场管理人员,务必认真学习,熟练运用,严格把关,使建筑节能工程所用材料、设备质量和施工质量达到国家合格标准,给国家和人民交一份满意的答卷。
第二篇:李阳语录
李阳演讲经典语录(转载)
(事实和现状:
1、学英语的人成千上万,但成功者寥寥无几!
2、英语学习浪费了中国人大量的时间、打击了中国人的自信心,英语祸国殃民!
3、任何一个领域的成功者都是“极少数”!希望你能成为这极少数人中的一个!
4、讲一口流利英语的人就像获得奥林匹克的冠军一样,是多年刻苦训练的结果!普通人的意志是无法达成这个目标的!
5、中国大学生的英语最差!因为他们比高中生还要懒惰,而且只为了过四、六级而学习无用的聋哑英语!
6、在绝大多数的大学校园里看到外国人在读汉语,却找不到几个中国人读英语,真是悲哀!
7、四、六级证书如同废纸一张!英语好的人是不需要证书的!英语好不好,开口就知道!
8、我们必须找到最有效的英语学习方法!
信心类:
9、李阳疯狂英语的伟大宗旨:讲一口流利的英语,顺便考高分!而不是只会做选择题,根本无法用英语交流!
10、重大好消息:李阳老师当年背诵的第一篇文章出现了300个生词,查了两天,背了6天!李老师至今还能够背诵这篇文章!
11、李阳老师第一句韩国语花了三天才学会,第一句德语六天才学会。世界上最笨的人是李阳!
12、几乎所有英语成功的人都曾经经历过这样一个过程:不惜一切代价彻底模仿和背诵一篇文章!这件事你迟早要做!
13、一次疯狂、一次真正的疯狂就可以彻底改变一生!疯狂背诵一篇文章也将彻底改变你的一生!
14、一个星期“背烂”一篇短文,一年之内就会成为英语高手!就这么简单,你能做到吗?
15、让同学们找到成就感,他就愿意学习,于是就有了兴趣;让同学们尝到甜头,他就愿意坚持,于是就产生了毅力!
16、对于英语基础特别差的同学,最好的解决方案是:不管付出多少代价,都要彻底“背烂”一篇文章。一篇文章就可以建立你的自信!
17、再难的单词、再难的文章也经不起“反复的重复”!
18、世界上没有难文章、没有难单词,只有懒惰和缺乏信心!
19、人类最大的敌人就是恐惧和自我怀疑!
爱国类:
20、讲一口流利的英语就是最好的爱国!
21、做中国人最幸运!因为我们天生就会讲世界上最难的汉语,顺便又学会了英语!中国人高人一等!
22、英语是弱智的语言。有三个原因,第一,长得和汉语拼音完全一样;第二,发音类似拼音;第三,语法类似汉语。中国人不学好英语是没有理由的!中国人一定可以征服英语!
23、汉语是世界“语言之王”!是唯一能够同时开发左右脑的伟大语言!
24、全世界都怕中国!他们怕的不是中国的军队,他们最怕的就是新一代刻苦学习的中国人!
25、他们希望我们沉醉于电脑游戏、无聊的音乐,他们希望我们彻底失去斗志,他们希望我们堕落,我们绝对不能让他们的阴谋得逞!
26、美国已经有三千所学校开设了中文课程!向世界传播汉语的时代已经来临!让我们为伟大的祖国鼓掌!
27、打击外国人自信的“最简单办法”就是问他是否会讲汉语!
28、美国人掌握一个汉字需要一个星期,我们比美国人幸运多了!
29、日本人、韩国人有两门外语(汉语和英语),美国人、英国人有一门外语(汉语),而中国人没有外语,因为英语是汉语下的蛋!
30、中华民族将是全世界第一个掌握双语的民族;
方法总则类:
31、学英语就是把一个句子“苦练”成一个单词;而不是一个单词、一个单词地冒出来!这是李阳老师对英语学习最精练的总结!马上开始练:You can always depend on me.(我永远都是值得你信赖的。)
32、学好英语的“六字法则”:听录音,跟着读!反复听,反复模仿,直到说得和录音带“完全一样”为止!(这就是全世界最好的学习方法!)
33、任何一盒李阳疯狂英语的录音带都值得狂听100遍,直到全部脱口而出为止!
34、背诵课文是学好英语的唯一方法,没有第二个出路!要每个月都举行老师和学生的背诵大赛!
35、为什么完形填空难、阅读难、作文难,就是你从来没有进行“彻底背诵”!
36、背诵的四大秘诀:A、天天背;B、跟着录音背;C、背熟了还要再背;D、用零碎时间背。
37、“彻底背诵”就是重复一百遍,做到随时随地能够脱口而出,而且终生难忘!
38、熟读全文,只背一段!每个单元一定要把其中一个段落背得滚瓜烂熟!这对考试有巨大的帮助!
39、我爱长单词,我爱长句子;越长读起来越过瘾、越好听!
40、讲一口地道英语的三大秘密:A、用口腔的后半部分 B、调动腹部力量 C、嘴巴张到张不开为止。坚持一段时间,你就可以“彻底摆脱中国味”!
41、每篇文章都是一座“巨大的宝藏”!每篇课文至少要朗读30遍以上,否则不要学英语;
42、课文背不下来与智商无关,只是因为重复得不够,只要重复得够,“猪都能背下来”;
43、中国有句俗话:寺庙旁的猪也会背诵经文!因为它听的多了!
44、我们学英语的目的就是:大段、大段地讲英语,大段、大段地写英语;
45、学英语最好的方法是“背短文”;短文中什么都有!
46、我们的学习“基本单位”应该是短文,而不是孤立的单词和语法;
47、中考、高考主要由短文组成!短文的背诵量直接影响考试成绩!
48、一、两分钟是学英语的最佳时间;一分钟可以将一篇短文读两到三遍!
49、考高分秘诀是:反复朗读正确答案!只有这样才能培养“正确的语感”!
50、每个单词、句子、文章都是我热爱的朋友;
51、背诵(记忆)的秘诀:记住中文线索,然后翻译成英语!
52、读英语时要把嘴巴张到张不开为止,这样有助于形成“口腔肌肉记忆”;越夸张,记得越牢!
53、夸张朗读法可以让你快速形成“国际口腔肌肉”,说出地道、纯正的英语!可以快速改掉你的地方口音!
54、如果把高中五本书“学透”,终身就不用学英语了;这五本书是“终生的宝藏”!
55、傻瓜才“孤立地”背单词,聪明的人背短文;背诵百篇短文,单词量自然超过四、五千!
56、不要管记不记得住,只管重复得够不够;只要重复得够,想忘记都难!
57、联想法带来“惊人的记忆效果”!比如说:genius(天才),我联想成:天才把“鸡”给“捏死”了,所以叫“鸡捏死”。
58、错得越多,成长的空间就越大;千万不要气馁!
59、文章越看不懂,成长的空间就越大,就应该越兴奋!再难的文章也经不起重复;
60、如果你在课间十分钟读英语,有人笑话你,你就看着他说“白痴”、“弱智”!最好的回答是:我的未来与你不一样,为你的未来哭泣吧,可怜的孩子。然后继续朗读、继续疯狂、继续锻造自我。
61、学英语务必要精,务必要深。挖一口深井胜过挖一百口浅井。
62、花一个星期“彻底掌握”一篇课文比一个学期“囫囵吞枣”学十篇效果好一百倍!
63、课本是用来朗读的,不是用来做笔记的;千万不要把书涂得乱七八糟!
64、当你说的英语中国人听不懂的时候,你就成功了;
65、大块时间学数理化,零碎时间读英语;
66、英语“只配用”零碎时间;只有善用零碎时间的人才能学好英语!
67、用一年的零碎时间足以攻克英语!足以讲一口流利的英语!
68、一定要“随身带”一本英语书!这样才能“时刻培养语感”!
69、学习英语是“超级体力劳动”!嘴巴越累,进步越快!
第三篇:李阳励志
No.1
关键词:feel今天你觉得怎么样?
A: How are you feeling today?(今天你觉得怎么样?)
B: I feel a lot better, thanks for asking.(我感觉好多了。谢谢你的关心。)
【发音秘诀】请注意,are, lot, better, thanks和ask都是典型的美国发音。它们的“发音外号”请查表。
No.2
关键词:people
关键句: The Chinese are a great people.中华民族是伟大的民族。
A: The Chinese are a great people.(中华民族是伟大的民族。)
B: I completely agree with you.(我完全同意。)【发音秘诀】completely是一个“五星级副词”,读起来很过瘾。请夸张地反复练习“completely”!和它对应的中文是“彻底,完全,十分”。下面给你两个纯正美国英语例句:
1)Oh, my God!I completely forgot!(噢,上帝!我彻底给忘记了!)
2)Your progress in English is completely amazing.(你在英语上的进步简直是太惊人了。)No.3
关键词:give
关键句:She gives me a big headache.她让我头痛。
A: She gives me a big headache.(她让我头痛。)
B: I know.It's really annoying.(我知道,真的很烦人。)
【发音秘诀】请你数一数,上面的对话中一共有多少了“短衣音”。
No.4
关键词:little
关键句:I feel a little sick today.今天感觉有点不舒服。
A: What's wrong with you?你怎么啦?
B: I feel a little sick today.今天感觉有点不舒服。
【发音秘诀】正是因为一个句子中有短元音、长元音和双元音,所以这个句子才会读起来悦耳动听。请反复练习“I feel a little sick today.”!
No.5
关键词:expensive
关键句:Everything is so expensive in Japan.在日本什么东西都那么昂贵。
A: Everything is so expensive in Japan.(在日本什么东西都那么昂贵。)
B: I can't even afford to go there for a week.(我甚至无法负担去那里一星期的费用。)李阳疯狂英语国际音标 第二节:中元音
No.9
关键词:love
关键句:I love money.我喜欢钱。
A: I love money.(我喜欢钱。)
B: Everyone loves money.(每个人都喜欢钱。)
No.10
关键词:lucky
关键句:I'm just lucky.我只是运气好。
A: How did you become so successful?(你是如何取得如此大的成功的?)
B: I'm just lucky.(我只是运气好。)
No.11
关键词:work
关键句:Did it work? 这行得通吗?
A: Did it work?(这行得通吗?)
B: I'm not sure yet.(我还不确信。)
【发音秘诀】“Did it”要连读。“work”是经典的“重读卷舌音”。
No.12
关键词:perfect
关键句:Nobody's perfect.没有十全十美的人。
A: You made a mistake!(你犯了一个错误。)
B: Nobody's perfect.(没有十全十美的人。)
【发音秘诀】nobody中有一个“疯狂舀水音”和一个“感叹祖国大好河山音”,perfect中要注意“重读卷舌音”。
No.13
关键词:matter
关键句:What's the matter?什么事?
A: What's the matter?(什么事?)
B: Nothing is the matter.Everything is fine.(没什么。一切顺利。)
【发音秘诀】matter的结尾是一个“轻读卷舌音”。
No.14
关键词:teacher
关键句:Our English teacher is great.我们的英语老师很好。
A: Our English teacher is great.(我们的英语老师很好。)
B: You're so lucky to have a good teacher.(你们有这样一位好老师真是幸运。
No.15
关键词:about
关键句:Forget about it.忘记它吧。
A: I'm sorry I'm late.(很抱歉,我来迟了。)
B: Forget about it.(忘记它吧。)
No.16
关键词:together
关键句:China and America should work together.中美应该携手合作。
A: China and America should work together.(中美应该携手合作。)
B: You're exactly right.(你说得太对了。)
李阳疯狂英语国际音标 第三节:后元音
No.17
关键词:father
关键句:My father has never traveled abroad.我父亲从未出国旅行过。
A: My father has never traveled abroad.(我父亲从未出国旅行过。)
B: My father lived in America for three years.(我父亲在美国住了三年。)
No.18
关键词:calm
关键句:Keep calm, It's nothing serious.保持冷静,没什么大不了的事。
A: Keep calm, It's nothing serious.(保持冷静,没什么大不了的事。)
B: But I'm so worried.I don't know what to do.(但我很担心,我不知道该怎么办。)No.19
关键词:after
关键句:How about the day after tomorrow?后天怎么样?
A: How about the day after tomorrow?(后天怎么样?)
B: I'm busy then.How about Friday?(后天我很忙,星期五怎么样?)
No.20
关键词:last
关键句:You've made the same mistake as last time.你犯了和上次一样的错误。
A: You've made the same mistake as last time.(你犯了和上次一样的错误。)
B: I'm sorry.I'm still learning.(我很抱歉,我还在学嘛。)
No.21
关键词:charge
关键句:Who's in charge here?这儿谁负责?
A: Who's in charge here?(这儿谁负责?)
B: Our manager is in charge of this department.(我们经理负责这个部门。)
No.22
关键词:hard
关键句:What makes you work so hard?什么使你这样卖命?
A: What makes you work so hard?(什么使你这样卖命?)
B: I am determined to succeed.(我决心成功。)
No.23
关键词:confidence
关键句:He has a lot of confidence.他充满了自信。
A: What do you think of Bill Clinton?(你认为比尔?克林顿怎么样?)
B: He has a lot of confidence.(他充满了自信。)
No.24
关键词:impossible
关键句:Nothing is impossible.没有做不成的事。
A: It's impossible for me to speak English.(要我说英语是不可能的。)
B: Nothing is impossible.(没有做不成的事。)
No.25
关键词:talk
关键句:I need to talk to you.我要和你谈谈。
A: I need to talk to you.(我要和你谈谈。)
B: Sure.Do you want to talk now?(行,你想现在谈吗?)
No.26
关键词:call
关键句:I will call you later.回头我给你电话。
A: I will call you later.(回头我给你电话。)
B: OK.I'll be waiting for your call.(好,我等你电话。)
No.27
关键词:more
关键句:I really can't stand it any more.我真的无法忍受了!
A: The traffic is terrible in Beijing.(北京的交通太糟糕了。)
B: Yeah, I really can't stand it any more.(我真的无法忍受了!)
No.28
关键词:for
关键句:I'm looking for Mr.Li.我要找李先生。
A: I'm looking for Mr.Li.我要找李先生。
B: Oh, he's just over there.(哦,他就在那儿。)
No.29
关键词:good
关键句:My mother is a good cook.我的妈妈是一位好厨师。
A: My mother is a good cook.(我的妈妈是一位好厨师。)
B: My mother is a terrible cook.(我的妈妈是一位差劲的厨师。)
No.30
关键词:look
关键句:You look great today.你今天看上去棒极了。
A: You look great today.(你今天看上去棒极了。)
B: I'm flattered.Thanks.(你过奖了,谢谢。)
No.31
关键词:improve
关键句:I want to improve my poor English.我想改进我的破烂英语。
A: I want to improve my poor English.(我想改进我的破烂英语。)
B: Then you should study Crazy English.(那你应该学习疯狂英语。)
No.32
关键词:truth
关键句:You must tell the truth.你必须说出真相。
A: You must tell the truth.(你必须说出真相。)
B: But I'm afraid to tell the truth.(但我怕说出真相。)
李阳疯狂英语国际音标 第四节:合口双元音
No.33
关键词:pain
关键句:No pain, no gain.没有付出,就没有收获。
A: You have to work long hours to make money.(要想挣钱,你得长时间工作。)
B: You're right.No pain, no gain.(你说得对。不劳无获。)
No.34
关键词:mistake
关键句:I made a mistake.我犯了一个错误。
A: I made a mistake.(我犯了一个错误。)
B: Everyone makes mistakes.(人人都犯错误。)
N
关键词:join关
疯狂英语清晨励志演讲 Welcome to Crazy English Club
QQ:1013118430
As you slowly open your eyes,look around,notice where the light comes into your room,listen carefully,see if there’s any new sounds you can recognize,feel with your body and spirit,see if you can sense the freshness in the air.Yes!Yes!Yes!!
It’s a new day,it’s a different day and it’s a bright day.And most importantly,it’s a new beginning for your life,a beginning where you’re going to make new decisions,take new actions,make new friends,and take your life a totally unprecedented level.In your minds’ eye,you can see clearly the things you want to have,the places you intend to go, the relationships you desire to develop,and the positions you aspire to reach.You can hear your laughter of joy and happiness in the day when everything happens as your dream;
you can see the smiles on the people around you when the magic moment strikes.You can feel your face is getting red
and your heart is beating fast and your blood is rushing
all over your body to every single corner of your being.You know all this is real as along as you’re confident,passionate and committed.And you are confident,you are passionate,you are committed.You’ll no longer fear making new sounds,showing new facial expressions,using your body in new ways,approaching new people and asking new questions.You’ll live every single day of your life with absolute passion.You’ll show your passion through the words you speak and the actions you take.You’ll focus all your time and effort on the most important goals of your life.You’ll never succumb to challenges or hardships.You’ll never waver in your pursuit of excellence.After all, you’re the best and you deserve the best.As your coach and friend,I can assure you the door to all the best things in the world will open to you but the key to that door is in your hand.You must do your part,you must faithfully follow the plans you make and take the actions you plan.You must never quit, you must never fear.I know you must do it, you can do it, you will do it and you will succeed.Now stand firm and tall, make a fist, get excited and yell it out:
I must do it!I can do it!I will do it!I will succeed!!
I must do it!I can do it!I will do it!I will succeed!!
I must do it!I can do it!I will do it!I will succeed!!
1.A journey of a thousand miles begins with single step.千里之行,始于足下。
2.Honesty is the best policy.诚实才是上策。
3.Money doesn't grow on trees.钱不是从天上掉下来的。
4.I know that my future is not just a dream.我知道我的未来不是梦。
5.To convert defeat into victory.反败为胜。
6.Youth means limitless possibilities.年轻就是无限的可能。
7.Leave behind a clean world for future generations.留给下一代一个清洁的地球。
8.You can do it too!
你也做得到!
9.Get to another summit in your career.开创职业生涯的另一个高峰。
10.Pursue breakthroughs in your life.追求自我的突破。
11.Never say die.永不放弃。
12.Knowledge is power.知识就是力量。
13.Never too old to learn.活到老,学到老。
14.Practice makes perfect.熟能生巧。
15.Go for it!= Just do it!
加油!向前冲!做了再说!
16.No pain, no gain.天下事没有不劳而获的东西。
17.Everyday and in every way I'm getting better.每天每个方面我的生活都正在好转。
18.Time is money.时间就是金钱。
19.Man can conquer nature.人定胜天。
20.Better late than never.只要开始,虽晚不迟!
第四篇:李媛毕业论文
目 录
一、概述...........................................................2
二、法医学鉴定意见与其他证据之间的关系...........................3
(一)法医学鉴定结论同证人证言、被害人陈述等言词证据的主要区别3
(二)法医学鉴定与物证、书证、视听资料和勘验、检查笔录等实物证据的区别.......................................................3
三、法医学鉴定意见在诉讼中的证据价值.............................4
(一)法医学鉴定在现场勘查中的作用............................4
(二)在民事诉讼和行政诉讼中的证据价值.......................6
四、如何提高法医学鉴定人的证据意识...............................7
(一)充分认识法医学鉴定的局限性..............................7
(二)高度重视法医学鉴定的程序性..............................7
(三)充实法医学鉴定工作者的法律知识..........................7 参考文献:........................................................8
一、概述
司法实践中,科学鉴定涉及的领域非常广泛按照鉴定对象的特点及鉴定所应用的原理、手段和方法的不同,较为常见的专业技术鉴定,主要包括法医鉴定、物证技术鉴定、司法精神病鉴定和司法会计鉴定等,其中法医学鉴定构成了司法鉴定的重要内容。
法医学是以医学、生物学及其他自然科学的理论技术,研究并解决司法实践中有关人体伤亡、病理和生理状态等问题的一门科学。在实践中,对法医学鉴定的理解有两层含义:其一,法医学鉴定是指法医学鉴定人接受指派和委托,对案件中涉及的医学问题进行检验和分析的活动;其二,法医学鉴定是指法医学鉴定人运用法医学知识和方法,按照司法、执法机关的送检目的和要求,在对需要鉴定的活体、尸体或物证进行科学的检验、分析、判断后所作出的鉴定结论。一般所涉及的法医学鉴定是指第二层含义。
法医学鉴定的主要特征:
1、法医学鉴定是法医学鉴定人运用自己的专业知识对案件中涉及的医学问题进行检验、分析鉴定的结果,是一种有医学科学根据的意见。科学性,是法医学鉴定的灵魂,也是法医学鉴定发挥证据效力的源泉。
2、法医学鉴定以法医学鉴定书或检验报告为表现形式。法医学鉴定书是法医学鉴定人将司法、执法机关送检的材料进行检验、鉴定后,根据检查结果和结论写成的书面报告。其基本格式包括绪言、案情摘要、检验、说明及结论五个部分。法医学检验报告是法医学鉴定人根据委托人送检的目的和要求,运用专业知识和技能对检材进行检查(实验)后所作的客观记录。鉴定人对实验或检查结果不加任何主观分析、推理,如毒物检验报告、物证检验报告等。无论何种表现形式,法医学鉴定只解决与案件有关的医学问题,而不解决法律问题。
3、作为证据的是法医学鉴定,而非法医学鉴定人。法医学鉴定人出庭举证接受诉讼参加人的询问,是法医学鉴定人参加质证的重要环节。
证据价值是有关证据能力和证据力大小的综合量值。证据能力是指证据能被采用而必须具备的条件,即被法律所容许的证据资格,体现了证据的合法性。法医学鉴定的证据能力是指法医学鉴定成为法定证据必须具备的条件,其主要体现在鉴定意见的形式要件上:(1)鉴定机构和鉴定人具有合法的资质;(2)鉴定程序符合法律及有关规定;(3)检材的来源、取得、保管、送检符合法律及有关规定,而且证据链完整;(4)鉴定意见的形式要件完备,注明了鉴定是由、委托人、鉴定机构、鉴定要求、鉴定过程、检验方法、鉴定文书的日期等相关内容,由鉴定机构加盖鉴定专用章,并由鉴定人签名盖章;(5)鉴定意见明确。
研究法医学鉴定的证据价值,能更好的理解和掌握各类证据的功能、地位与证明规则,充分认识到法医学鉴定与各类证据的区别及其在诉讼中的证据作用,加强鉴定人科学举证责任意识,维护法律的尊严和公正。
二、法医学鉴定意见与其他证据之间的关系
法医学鉴定意见与其他证据既有联系又有区别,他们都属于法定的证据形式,因而都具有客观性、关联性、合法性。从证据存在和表现形式上来看,法医学鉴定意见与当事人陈述证人证言等证据都属于能言词证据,因而具有言词证据共有的特点。另一方面,从法律自身的属性来讲,法医学鉴定意见与其他证据还存在很大的区别。
(一)法医学鉴定结论同证人证言、被害人陈述等言词证据的主要区别
1、法律对主体的要求不同。为保证医学鉴定的科学性,根据我国诉讼法和《司法鉴定人管理办法》的规定,法医学鉴定人必须具有一定的法医学理论知识和实践经验,具备法医学鉴定资格,并由公安、司法机关指派或聘请;而证人证言等言词证据的陈述者则不要求具备任何专业知识和技能。
2、法律对证据形式的要求不同。法医学鉴定属于要式证据,即法律要求法医学鉴定意见必须具备法定的格式要求,例如鉴定人在书写鉴定书时,除了要求鉴定人和复核人签名以外,还必须加盖法医学鉴定专用章,只有这样鉴定书才具有证据效力,而证人证言等言词证据,除了要求陈述者签名外,没有其他形式上的要求。
3、证据内容所体现的性质不同。法医学鉴定属于鉴定意见的一种,是法医学鉴定人对案件中涉及尸体、人身、物证等的法医学问题进行检验、分析后作出符合事实的科学结论,而不是对所见事实的直观描述;但证人证言等言词证据是陈述者对所感知或亲历事实的描述。
(二)法医学鉴定与物证、书证、视听资料和勘验、检查笔录等实物证据的区别
1、证明方式和功能不同。物证、书证、视听资料等实物证据都是以各种实物、形象、痕迹、符号等客观载体和客观存在的自然状态、属性为表现形式的一种证据;而法医学鉴定是以物证等证据材料为对象,进行检验、分析、鉴别,最终使各类证据材料产生证据价值,因而法医学鉴定意见具有转化证 据的功能,而其他证据没有这一功能。
2、检验结果不同。勘验、检查笔录是公安、司法人员对案件有关的场所、物品、人身、尸体等进行直观检查、检验所做的客观记录,不加任何分析判断;法医学鉴定意见是在此基础上运用法医学知识和技能,进行科学分析和判断而得出的意见。
法医学鉴定意见与其他证据相互作用、相互印证,共同为查明案件真实性发挥证明作用。一方面,法医学鉴定意见通过印证和转化证据功能使各类证据实现证明价值;另一方面,各类证据通过证据价值的实现来辅助公安、司法人员对法医学鉴定意见的审查判断,使法医学鉴定意见更真实更科学。
三、法医学鉴定意见在诉讼中的证据价值
我国《刑事诉讼法》第48条第2款将刑事证据分为以下八种:物证;书证;证人证言;被害人陈述;犯罪嫌疑人、被告人供述和辩解;鉴定意见;勘验、检查、辨认、侦查实验笔录;视听资料;电子数据。其中鉴定意见是指受公安司法机关指派或聘请的鉴定人,对案件中的专门性问题进行鉴定后做出的书面意见。
我国《刑法》中明确规定,公安、司法机关办案,要“以事实为根据,以法律为准绳”,因此,对于犯罪的立案,需要有充分的事实和证据作为依据,同时我国《刑事诉讼法》也规定,用于证明案件事实的鉴定意见可以作为证据,鉴定人可以作为证人出庭作证。这些都充分证明了法医学在刑事诉讼的立案、侦查、审查起诉、审判等各个环节中起着重要作用。
因此,法医学鉴定意见作为刑事诉讼证据的一种,在诉讼中具有十分重要的意义,同时又是鉴定案件中其他证据是否真实的重要手段。
(一)法医学鉴定在现场勘查中的作用
《中华人民共和国刑事刑诉法》第 126 条规定:“侦查人员对于与犯罪有关的场所、物 品、人身、尸体应当进行勘验或者检查。在必要的时候,可以指派或者聘请具有专门知识的人,在侦查人员的主持下进行勘验、侦查。”在这个法条中明确了法医在侦查作用中的合法性。法医在侦查过程中,最基本的,也是最不可缺少的就是及时确定以下几方面:(1)案件发生时间;(2)案件发生地点;(3)案件涉及人物;(4)案件作案方式;(5)案件性质。
法医学如何解决这些实际问题。(1)推测损伤、死亡时间:确认死亡时间是法医学尸体检查的重要内容之一,特别是对凶杀案或死亡情况经过不明的案件,侦查工作要求检查人员尽可能准确地推测死亡时间。(2)确定案件 发生地点:发现尸体的地点很大程度上并非是案发的地点。按照常理来说,案发的地点会保留更多的案件证据,给警方迅速侦查破案提供了条件。(3)辨别死者身份:在法医学实践中,需要验明正身的情况是相当多的,如遇见身份不明的活体、尸体、尸骨时,便要辨明该人是谁。这种辨明身份和验明正身的工作,即个人识别。例如对交通事故的遇难者、江河湖海的浮尸等,除按常规检查以鉴定死亡原因和死亡时间等外,必须进行个人识别。(4)推敲凶手杀人方式:通过对尸体体伤的检验,能够得出凶手所使用的 凶器种类以及作用部位。(5)确定案件性质:有时候,仅仅通过法医的鉴定就能决定一个案件的性质。例如,法医通过对一名上吊死者的鉴定,能够判断出此人是自杀还是被他人杀害后伪装成自杀。从而影响案件性质以及公安机关的后续行动。
2、法医学在破案中的作用——应用法医学手段侦破案件举例
例1:某年春节前夕,某市连续发生数起男子深夜入室强奸的案件。为此,该市公安局成立了专案小组,侦察人员虽布下了天罗地网,但罪犯狡猾多变,未能捕获。一次,在作案 现场发现了微量“五色纤维”,经化验后,在破案中起到了重大作用,经侦察抓住了罪犯,起初罪犯拒不认罪,经法医化验精斑的报告证实,罪犯低头认罪,受到法律严惩。
例2:美国某地,有位久病的丈夫死后,经过医生检查,开了死亡证明书。举行了宗教仪式的葬礼,尸体已火化,但是联邦调查局接受了死者亲属对死因的怀疑起诉,于是着手清查。在骨灰无法用化学方法测定的情况下,他们采用了“中子活化分析”的新方法,使骨灰接受中子轰击从而产生相应的辐射,由此发现死者生前曾长期受到微量砒霜毒害。在证据面前,死者的妻子不得不承认长时期地在丈夫的咖啡中下毒,待他变得衰弱时将他闷死。
可见,随着科学的进步发展和现代科学技术手段的应用,法医学作为侦查破案中的中坚力量,也在不断进步,在侦查破案中的作用也日益突出。从理论到实践,有很多实际案例都充分证明了法医学在刑事诉讼中的王牌作用,给公、检、法三机关有效执行各自任务提供了保障。
3、法医学鉴定书在刑事诉讼各阶段的作用
我国《刑事诉讼法》第48条规定鉴定意见可以作为证据;第145条规定,鉴定人进行鉴定后,应当写出鉴定意见,并且签名。鉴定人故意作虚假鉴定的,应当承担法律责任;第146条规定,侦查机关应当将用作证据的鉴定意见告知犯罪嫌疑人、被害人。如果犯罪嫌疑人、被害人提出申请,可以补充 鉴定或者重新鉴定。可见,刑诉法的修改将以前的鉴定结论给为鉴定意见(在这里不讨论修改的意义),无论怎样称呼,写出鉴定结论或者称为鉴定意见的文章就是鉴定书。法医学鉴定书是法医工作者对亲临现场检验或者将司法机关交验的案件材料(人或物)进行检验鉴定后,根据检验、鉴定的经过和结果所写成的书面报告。法医学鉴定书能反应案情检查对象、鉴定事由、科学的检查经过与检查结果的说明等等。它不仅是法律规定的证据之一,更是一种科学的证据。它在刑事诉讼中的价值是为侦查、起诉和审判提供科学的鉴定证据。
在侦查阶段,公安侦查机关的法医学鉴定为谋杀案件揭露犯罪,为凶杀案件提供鉴定证据,为死因不明者澄清事实,为活体进行损伤鉴定并提供侦察破案线索;在起诉阶段,检察机关的法医鉴定书为批捕、起诉案件认定证据,为自诉案件提供证据,为公诉案件出庭作证,为医疗纠纷、控告申诉案件区别性质。例如,开庭审理时,检察机关的法医宣读法医学鉴定书,协助法庭查清事实,正确认定案件性质,这是对公诉案件的出庭作证。在案件性质区分中,对于控告申诉中涉及人身伤亡等间题,需要检查机关的法医运用医学理论和技术查明死因,澄清事实与性质,及时解决矛盾,防止矛盾的激化和转化,相对减少刑事案件的发案率,做到不枉不纵。另外,检察机关的法医还应该参与各级医疗事故鉴定、司法精神病鉴定等项工作,明确事故原因,分清责任,为诉讼提供科学证据。在诉讼阶段,为活体的损伤程度做出正确判断,对医疗事故鉴定提供控告证据,对所交物证进行复核鉴定,鉴定人出庭鉴定等等。法医学鉴定书作为一种书面文件,是法医工作者智慧的结晶,在侦查、起诉和审判各个不同阶段都作为一种证据,使得这三个阶段的工作能顺序下去,最终完成,因此,法医学鉴定书在侦查、起诉和审判中所起的作用是非常重要的。
(二)在民事诉讼和行政诉讼中的证据价值
法医学鉴定意见作为法定证据的一种在民事诉讼和行政诉讼中仍然具有很重要的证据价值,其主要表现在以下几个方面:
1、为审判人员认定案件争议事实提供证据。例如:因监护、继承、子女抚养发生争议而进行的血清关系的法医学鉴定。
2、通过对活体伤残等级及伤残原因、劳动能力的鉴定,为人身伤害案件(包括行政赔偿案件、人身保险索赔案件和国家赔偿案件)确认因果关系和赔偿范围提供证据。
3、通过尸体解剖鉴定确定死亡原因,为医疗纠纷案件的审理提供依据。
四、如何提高法医学鉴定人的证据意识
法医学鉴定实践中经常会出现一些因鉴定人证据意识淡薄而表现出的问题,而且这些问题通常被鉴定机构或鉴定人所忽视,严重影响鉴定意见的证据价值。这些问题主要表现为(1)忽视对鉴定原始证据的审查;(2)重结果,轻程序;(3)不重视鉴定原始记录在出庭时的证明作用;(4)对鉴定意见作为法定证据的严肃性认识不到位。因此,要保障鉴定结论的证据效力,法医学鉴定人的证据意识的提高迫在眉睫。
(一)充分认识法医学鉴定的局限性
承认法医学鉴定的局限性,正是追求鉴定科学性的具体体现。实事求是地记录检验过程,客观真实地反映鉴定结果是司法鉴定科学性的灵魂。司法鉴定活动与科学研究活动的区别在于,鉴定的实验检材、比对样本或案件信息在一定的时期通常是非常有限的,有时即使使用再尖端的设备或再高水平的专家也无法得出确切的结论。
(二)高度重视法医学鉴定的程序性
终结论,轻程序是法医学鉴定长期以来存在的问题。鉴定程序大致可分为三类:国家法律规定、鉴定行业规范、程序性技术标准。遵循鉴定程序是鉴定结论合法性的重要标志,也是证明鉴定客观公正的标尺和依据。鉴定程序违法,鉴定结论必然会失去可采性,而鉴定结论若没有可采性,其准确性就失去了意义。法医学鉴定是为法律服务的,它必须按照法律的要求和程序进行,体现出法对法医学鉴定程序的规范作用。培养法医学鉴定人的程序意识,是保障鉴定质量及其证据能力的重要手段。
(三)充实法医学鉴定工作者的法律知识
从法律角度来看,证据部分是诉讼法的核心内容之一。可以说整个诉讼过程主要是发现、收集证据和运用证据证明案件事实的过程。法医学鉴定人才的培养不能只追求单一的“技术化”,而且还要“法律化”。因此,学习掌握证据学对从事法医学鉴定的工作者来说具有非常重要的意义。参考文献:
[1]王克峰.法医法学[M].北京:中国人民公安大学出版社,2002. [2]陈世贤.法医学[M].北京:法律出版社,2007.
[3]郭景元.法医物证学[M].北京:中国人民公安大学出版社,2005. [4]常林.试论法医学鉴定与案情的关系[J].法律与医学杂志,2007(4).
[5]朱广友.科学证据的基本特征——兼谈法医 学鉴定意见的审查[J].中国司法鉴定,2007(5). [6]鲁涤.试论法医学鉴定人的证据意识[J].中国司法鉴定,2010(6).
第五篇:李银毕业论文
齐 齐 哈 尔 大 学
毕业设计(论文)
题
目
用概率论的方法证明组合恒等式
学
院
理
学
院
专业班级
信息与计算科学 082
学生姓名
李 银
指导教师
崔 继 贤
成绩
****年**月**日
齐齐哈尔大学毕业设计(论文)
摘要
组合恒等式是组合数学中的一个组成部分,也是组合数学研究的一个重要内容.本文主要探讨如何利用概率方法研究组合恒等式,主要从不同的角度解答同一概率问题,得到同一事件的概率两种不同的表达形式,由其相等导出组合恒等式.通过构造概率模型,利用“必然事件的概率等于1”和“不可能事件的概率等于0”证明组合恒等式,或者利用古典概率方法证明组合恒等式,也就是在实际问题中将需要证明的组合恒等式引证出来。对于需要被证明的组合恒等式,将所构造概率模型中相关事件的概率计算出来以后,从而推导出式子两端相等。每种论证方法中首先总的介绍这种方法是用的什么思想,然后列举例子加以论证,使所述问题更加透彻.关键字:组合恒等式;概率模型; 古典概率; 数字特征
I
齐齐哈尔大学毕业设计(论文)
Abstract Combinatorial identity is an important part and research field of combinatorics.This paper explores using probabilistic method to derive combinatorial identities.We count a probabilistic problem by using different ways to obtain different expresses for the question.We build a probabilistic model on a classical probability to find or prove some identities by constructing the event whose probability equals 1 or 0, that is,the
the equatin will be drawn from the concrete problems.We investigate combinatorial identities using probability properties and numeral characters of a random variable with discrete type.Each method was first demonstrated the general description of what this method is thought, and then held some examples discussed.Keywords: Combinatorial identity;probabilistic model;classical probability;numeral characters
II
目 录
摘要............................................................................................................................I Abstract........................................................................................................................II 第1章
绪
论..........................................................................错误!未定义书签。
1.1引言......................................................................................................................1 1.2课题背景............................................................................错误!未定义书签。1.3实际应用方面的价值..........................................................................................2
1.4本文主要的研究内容..........................................................................................3 1.5相关工作..............................................................................................................3 第2章 运用概率论的基本理论证明组合恒等式......................................................4 2.1运用完备事件组证明组合恒等式......................................................................4 2.2运用全概率公式证明组合恒等式......................................................................7
2.3运用概率性质证明组合恒等式..........................................................................8 第3章 运用概率理论构造数学模型证明组合恒等式............................................11 3.1运用随机变量的数字特征证明组合恒等式....................................................11 3.2运用构造概率模型证明组合恒等式................................................................18 3.3运用等概率法证明组合恒等式........................................................................22 第4章 由概率方法引申出的恒等式证明................................................................26 4.1 级数恒等式的证明............................................................................................26 4.2 初等恒等式的证明............................................................................................27 4.3级数组合恒等式的证明....................................................................................27 总结..............................................................................................................................31 参考文献......................................................................................................................32 致谢..............................................................................................................................33
齐齐哈尔大学毕业设计(论文)
第1章
绪
论
1.1引言
当前,组合恒等式无论是在中学还是大学都应用广泛,很多问题都涉及到这方面的解法.在组合数学中,有很多类型的组合恒等式.这么多纷繁复杂的组合恒等式,我们必须寻求一种最简便的方法使问题得以解决,查阅过很多资料,通过很多证明方法的检验,我们寻求除了一种组合恒等式的证明方法-组合恒等式的概率方法.对于较为简单的组合恒等式,我们可以一步就分析出结果,稍复杂的需要我们演算一两步达到欲求的结果,但是并不是所有的组合恒等式都是那么的简单,有的组合恒等式很复杂,我们要深入了解,就必须通过一步步的证明、深究,证明组合恒等式的方法有很多,譬如有分类法、概率法、求导法等一系列方法证明组合恒等式.本文,我们选用利用概率方法来证明组合恒等式,我主要介绍这几种方法:构造模型法、概率性质法、数字特征法,这些都是前人通过比较发现的较为好的方法,我们加以更好的应用,我们应当看到组合恒等式与概率二者的结合,只要把握了这一点,相信就能够从中受益匪浅,感触颇多.含有组合数的恒等式叫做组合恒等式.简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式.事实上,许多试题中出现的较复杂的组合数计算或恒等式证明,也往往运用这些基本组合恒等式,通过转化,分解为若干个简单的组合恒等式而加以解决.我们简单的介绍四种组合恒等式:二项式组合恒等式、关于Catalan三角数的组合恒等式、基于格路模型的组合恒等式、由概率引起的组合恒等式.通过对一些组合恒等式的了解,我们就选用各种概率的方法加以证明它们,达到一个比较完善的效果.1.2课题背景
组合数学是以离散结构为主要研究对象的一门学科,它主要研究满足一定条 件的组态(一种安排)的存在性、计数及构造等方面的问题.近几年,随着计算机科学的产生与发展,组合数学得到了迅速的发展。
概率起源于欧洲国家的一种赌博方式——掷骰子。随着科学技术发展的迫切需要,概率论在20世纪迅速地发展起来。柯尔莫哥洛夫首次用测度理论定义了什么是概率。他的公理化方法不仅成为现代概率论的基础,还使概率论成为严谨的数学分支。
由于其他学科、技术的推动,概率论得到飞速发展,理论课题不断扩大与深
齐齐哈尔大学毕业设计(论文)入,应用范围大大拓宽。俄罗斯的彼得堡数学学派,继承和发展了古典概率论之精华,拯救了濒临危机的概率论;变革和制定了一系列研究方法,振兴了概率论学科;提出和创立了概率论新思想,开拓了概率论新领域。由于资料的限制、语言的困难和文化的差异使得国内外系统研究彼得堡数学学派概率思想者还甚少,有关资料相当匮乏,一些相关论述大都出现在综合性的书籍中,倾向于按照现代数学的习惯给出一般性的解释,且多为简要性介绍,读者难以了解其精髓所在。鉴于彼得堡数学学派在概率论发展史上的重要地位,本文以概率论思想为主线,通过建立概率模型,对概率思想证明恒等式方面进行了简单的应用。
组合数学和概率论的产生都可以追溯到十七世纪,从17世纪到20世纪30年代,组合数学受到娱乐及数论、概率论、化学等学科的推动而迅速发展,得到了一般的存在定理和计数原理,如抽屉原理、容斥原理、波利亚计数定理等,还解决了一系列著名而有趣的组合学问题,如更列问题、家政问题、36军官问题等,自20世纪以来,许多理论学科和应用学科给组合数学提出了大量的具有理论和实际意义的课题,促使了许多新理论的产生,如区组设计、组合算法等,从而解决了一系列理论上的以及与经济发展密切相关的课题。此外证明常见的组合恒等式中概率的方法也有所应用。
1.3实际应用方面的价值
大家都知道,在证明初等恒等式的时候,如果我们采用初等方法,在一般情况下比较困难,在许多数学分支中,有很多的组合恒等式的形式通常不是显而易见的,证明它们有一定的难度,这就会使得它们的应用受到限制。如果可以对于会有带来很多的便利。用概率论的方法去解决一些分析学中的问题或者证明一些组合恒等式,是概率论与数理统计研究的重要方向之一,根据有关资料的例子可以看出,运用概率论的方法来证明组合恒等式,是值得我们探讨的一个十分有意义的新问题。因为在运用概率论的方法证明组合恒等式时,它的思维灵活,背景生动并且容易理解,表达方式单间,并且效率高而被许多数学家所喜爱。但是要熟练掌握这种证明方法,需要掌握知识的内部联系,而且必须了解知识的客观背景,弄清楚知识的来龙去脉,编制知识的网络结构,抓住问题的主要特征。如果在教学中利用好这类综合性解题的良好教材,则可以冲发挥这种类型题材的应用。
在学习概率论中,我们首先接触到得的是古典概型,这些概率模型的特点是所研究的样本容量中样本的个数是有限的,常利用排列组合方法去解决古典概型中的问题,如分配问题,伯努利概型等。对于一些离散型随机变量,也可用排列组合方法进行讨论,如超几何分布等。反过来,可以通过构造这些特殊的概率模型,利用概率模型的性质,如概率函数的规范性,可以求解一些用常规方法难证
齐齐哈尔大学毕业设计(论文)明的恒等式。有些恒等式用常用的分析方法证明是很不易的,如中学中的排列组合恒等式、或者更复杂的恒等式的证明,建立了概率模型后,通过求概率的思想,能很方便地把恒等式证明出来。
1.4本文主要的研究内容
本课题研究的内容是利用概率论的知识,巧妙地将其与组合恒等式有关的概率构造出来并对其计算,分析,同时对组合恒等式加以证明,并由此给出了组合恒等式概率论的方法证明的方法和思路。
用概率论的方法证明组合恒等式的主要思想是在证明组恒等式的时候,如果我们从概率论的角度去分析它们可以使问题变得简单,也就是说对于需要被证明的组合恒等式,在构造构造好概率模型之后,从不同角度的角度考虑其概率或随机变量的数字特征,在运用概率论的公式,有关性质,结论等,将所构造的模型相关事件的概率计算出来,从而可以推导出需要证明的结论,从而对于组合恒等式的证明更加即便容易掌握。
1.5相关工作
用概率论的方法证明一些关系式或者解决其他一些分析学中的问题,是概率论的研究方向之一,本篇论文就是这方面应用的结果。关于组合恒等式的证明我们通常采用的是分析学的方法,但是用概率论的方法证明一些组合恒等式却更加的简便。对于如何使用概率论的方法证明组合恒等式,经过本人得仔细思考,大致总结了以下几个方法:
(1)运用完备事件组证明组合恒等式(2)运用全概率公式证明组合恒等式
(3)运用随机变量的数字特征证明组合恒等式(4)运用构造概率模型证明组合恒等式(5)运用等概率法证明组合恒等式(6)运用概率性质证明组合恒等式
齐齐哈尔大学毕业设计(论文)第2章 用概率论的基本理论证明组合恒等式
2.1 运用完备事件组证明组合恒等式
这种方法的基本思想是:我们对于一些组合恒等式,可以构造出适当的模型,并且选择出与组合恒等式相关的随机变量,并求出它的分布列
P{i}Pi(i1,2,,n)
接着我们再利用完备事件组的性质Pi1,于是我们便达到了证明组合和恒等
i1式的目的。
引理 设{A1,A2,,An}构成一个完备事件组,即A1,A2,,An互斥,nniAi1,则P(Ai)1。[1]
i1n例
1证明组合恒等式:
Ck0kn22(mk)Cnk2(mk)C2n2m
证明
我们可以利用完备事件组的性质,构造成如下概率模型:
假设盒子里有n副大小不同的手套,现在我们从中随机抽取2m只(2m pkCpCmkk2m2k12m2k(C2)2m2nC(k0,1,2,,m) m根据完备事件组的性质知道: nPk0k1 于是可以得到 Ck0kn22(mk)Cnk2(mk)C2n2m 例 2证明组合恒等式 Cnk1CnkCnk1 证明 首先我们将公式变形为 CnCkkn1CnCk1kn11 现在我们利用完备事件组的性质,构造如下概率模型:一批货物共n1个,准备批发出厂.若已知其中有一个是废品,现在从中随机地抽取k个货物出来1k n1,问废品被抽到的概率是多少?抽出k个货物中没有废品的概率又 齐齐哈尔大学毕业设计(论文)是多少? 若记事件A1为“抽出k个货物中没有废品”的事件,那么事件A2A1就是“抽到k个货物中有废品”的事件,即A1和A2为两个对立事件.有 PA1CnCkkn1.PA2PA1C1Cnk1k1Cn1.由于A1,A2构成完备事件组,所以,有 PA1PA21.从而有 成立,即有 Cnk1CnkCnk1 成立.例 3证明组合恒等式 CmCnCmCn0k1k1CnkkCn1Cnk1kCn11 CmCnCmCmCmn(其中m,n,kN,km,kn) k11k0k证明 现在我们利用完备事件组的性质,构造如下概率模型:设盒子中有m张红色卡片和n张白色卡片,每次取出k(kmn)张卡片,求得到i(im)张卡片的概率。(i0,1,2,,k) 记事件Ai为“取得i张红色卡片和k-i张白色卡片”(i0,1,2,,k)则A0A1Ak,且A0,A1,A2,,Ak互不相容,kk于是 1P()P(Ai)i0P(A) ii0k又因为P(Ai)CmCnikikkCmn这样得出 Ci0imCmkiCmn 0k1k1k11k0kCnCmCnCmCnCmCmCmn 所以 Cm123nn12Cn3CnnCnn2例 4证明组合恒等式 Cn 齐齐哈尔大学毕业设计(论文)证明 现在我们利用完备事件组的性质,构造如下概率模型:将n个箱子排成一列,从红黑白三种颜色的M张卡片中任取n(nM)张卡片放到这n个箱子里,如果n张卡片中恰有一张红色卡片,则包含的基本事件为n2n1。 记事件Ai为“恰有n-i张白色卡片”(in1),则这ni张白色卡片放在n个箱子里共有Cnn1种放法,而对于其他i个箱子只能放1张红色卡片和i1张黑色卡片,又有i种方法。所以,事件Ai包含的基本事件数为iCnn1 于是 P(Ai)iCnn2n1n1 显然,A0,A1,A2,,An互不相容,并且A0A1An nnin所以 1P()P(Ai)i1P(A)i1i1iCnn2n1n1 又由于 CnniCni 123nn12Cn3CnnCnn2于是 Cn 例5 证明范德蒙(Vendermonde)恒等式 CnCmCnCm0k1k1CnCmCnmk0k 证明 我们首先来构造一个如下的概率模型: 设一个盒子中有nm张不同的卡片,其中n张红色卡片m张白色卡片,我们随机的从中取出k张卡片并且不放回作为一组。 记随机变量为取出的n张卡片所包含的红色卡片数,我们可以容易的计算出的分布列为 P{i}CnCmkikiCnmi0,1,2,,min(n,k) 并且由分布列的性质我们可以得出 min(n,k)min(n,k)P{i0i}1即 Ci0inCbkiCnm kk1k1k0kCnCmCnCmCnm 但是当mn时 Cnm0 所以Cn0Cm 齐齐哈尔大学毕业设计(论文)2.2 运用全概率公式证明组合恒等式 引理 设{Bn}为的一个有限划分,即BkBi(ki),(k,i1,2,,n.) nBk1k则AF1且P(Bk)0(k1,2,,n),n,P(A)P(Bk1i)P(ABi)成立。 [1] 例 证明组合恒等式 Cnk1Cnk1Cnk11Cnk1 证明 首先我们将公式变形为 CnCk1kn1Cn1Ck1kn1Cn1Ckn1k1 接着我们利用全概率公式,构造如下概率模型: 设箱子中有nm张卡片,但是其中有一张黑色卡片,一张白色卡片,现在随机从中抽取k张卡片(1kn1) 记事件A为“抽取的k张卡片中含有黑色卡片” 事件A为“抽取的k张卡片中含有白色卡片” 则P(A)C1CnCkn10k,由全概率公式: C1Cnk1k1P(A)P(B)P(AB)P(B)P(AB)Cn1C1Cn1Cnk11k2C1CnCn1k0kC1Cn1Cnk1k1Cn1kk2Cn1Cn1kk1Cn1由于 PAPA1 从而得出 CnCk1kn1Cn1Ck1kn1Cn1Ckn1k1 即 Cnk1Cnk1Cnk11Cnk1 如果将上述摸卡片模型稍微需做一下改变,设箱子中有n1张卡片,其中仅有一张黑色卡片,其余均为白色卡片,就可以证得组合加法公式: Cnk1CnkCnk1 如果我们建立如下摸卡片模型:设箱子里有m张黑色卡片和n张白色卡片,现在从中随机抽取k(0kmn)张卡片,仿照此例子,利用伯努利概率公式 PkCnkpkqnk 我们可以证明组合公式 CmCnCmCn0k1k1CmCnCmCmCmn k11k0k 齐齐哈尔大学毕业设计(论文)2.3 运用概率性质证明组合恒等式 我们利用概率的性质来证明组合恒等式,这是一种方便的证明方法,而且简单易懂,通常用“必然事件的概率等于1”和“不可能事件的概率等于0”来证明。 例1 证明组合恒等式 Cnkkk0n112k2n 证明 我们构造如下概率模型: 设一个人有两瓶牙签,每瓶n根,每次用牙签时,他在两瓶中任取一瓶.然后抽出一根,使用若干次后,发现一瓶牙签已经用完,求另一盒中还有r根牙签的概率.如果用 A1,A2分别表示甲瓶或者乙瓶中余下r根牙签.用 Ar 表示一瓶用完,而另一瓶中有r根的事件,则ArA1A2.注意到,当发现一瓶已空时.这一瓶必定在前面已用过n次,另一瓶余下r根,从而另一瓶已用过nr次,故共用了2nr1次.每次取到甲(乙)瓶的概率是12.所以 PArPA1A2PA1PA2 =C21n2nr11222nrnnr12Cn2nr1122nnr 1=C2nnr2 n由于r 的取值必定是1,2,,n之一,故Ar为必然事件,即 r1nPAr1,r11也就是 C2nnr2r1n2nr1 令knr, 则k0,1,,n1,1所以 Cnkk2k0n1nkn11或Cnkkk012k2.n例2 证明组合恒等式当kn时,齐齐哈尔大学毕业设计(论文) kkk12n1n2n1C1Cn11Cn11 nnn1n证明 我们建立如下概率模型: 设有k张卡片,等可能地投入n个箱子,求每一个箱子中至少有一张卡片的概率.记事件B为每一箱子中至少有一张卡片 事件Ai为第i个箱子中没有卡片(i1,2,,n)则 BA1A2A3An 根据容斥原理,得 PBPA1A2A3An nPAPA1i1i1i21nni1Ai2 1ni1i2in11i1i2in1kPAi1Ai2Ain11n1PA1A2An 因为PAin1knk11(i1,2,,n) n21(对任意的i1i2) nkPAi1Ai2n2knk依次类推,对任意的i1i2in,我们有 PAi1Ai2Ai331nk PAi1Ai2Ain1n11nkk nPA1A2An1n于是 齐齐哈尔大学毕业设计(论文)ni1n11PAiCn1nk PAiAi12i1i21i1i222Cn1nk 所以12n1n2n1PBC1Cn11Cn1 nnnkkk1n从而 PB1PB kkk112n1n即 PB1Cn1Cn211Cnn11nnn 但是由于kn ,事件B每一箱子中至少有一张卡片为一不可能事件,故 P(B)0,从而当knk时.kk12n1 C1Cn21(1)nCnn11nnn1n1.1232n12Cn3CnnCn2n 例3 证明组合恒等式 Cn证明 我们构造如下概率模型: 有一枚均匀的硬币,我们重复投掷n次,求它正面向上的次数的期望。显然,我们知道~B(n,),于是便得出: 2nnn1 Ekp(i0k)kCi0kn1n()2kCi0kn2n 而且 k1,第k次试验正面朝上0,第k次试验反面朝上nnk1,2,,n 所以便得到 E()E(k)k1ni0Ekn2 kC那么 i0kn2nn2 1232n12Cn3CnnCn2n 整理后,得 Cn 齐齐哈尔大学毕业设计(论文)第3章 运用概率理论构造数学模型证明组合恒等式 3.1 运用随机变量的数字特征证明组合恒等式 在概率论中,我们可以讨论随机变量的数字特征,并且通过随机变量的数学期望而进一步证明一些恒等式。而运用随机变量的数字特征来证明组合恒等式就是我们依照需要被证明的组合恒等式的特点,然后构造出合适的随机变量,并且利用随机变量的数字特征的定义,性质来证明组合恒等式成立的方法,其中可以利用数学期望,数学方差等。利用数字特征法是证明组合恒等式的一种比较重要的方法,我们在了解了具体概念后就用一系列的例子加以说明并且具体阐述,从而让我们了解到这种方法是怎样的一种方法。 引理3.1.1 若随机变量的方差D(),则D()=E(2)E2()引理3.1.2 伯努利概型设有服从二项分布 Ai{i},i0,.1,2,,n(其中0p1,n为非负整数n[1]),并有 Cininp(1p)ini1[1] k例1 证明组合恒等式 CkminCkCn2mmnm 证明 当m=1和m=2时,我们可以用以下证明方法: 设~b(n,p),PkCnkpkqnk(k0,1,2,,n),0p1且pq1 n当m=1时: E()12nkCk0nknpqknknp 令p=,则kCn2knk1n11n1,也就是Ck1CnkCn 2k1当m=2时: nE()E[(1)]E[(1)]E()2k(k1)Ck1knknPqknknp n根据公式D()=E()E(),从而得出npq12n22k(k1)Ck2n(n1)2n2 令p=,则 k(k1)Ck2knn(n1)2n2 齐齐哈尔大学毕业设计(论文)以上两个是特例,它的一般性情况证明如下: 运用推广的伯努利概型和多项式分布,我们构造如下概率模型: 设一个盒子中有红黄白三种颜色的卡片若干,每次随机抽取一张,取后放回,这样连续做n次,p1和p2表示每次抽取红色卡片与黄色卡片的概率,1和2表示每次抽到的红色卡片与黄色卡片的次数。于是(1,2)服从多项分布,其分布律为 P{ii,jj}令p114,p212n!i!j!(nij)!p1p2(1p1p2)ijnij,则联合分布率为: n!i!j!(nij)!122n1 P{ii,jj}nm 它的边缘分布为:P(2m)1i0p{1i,12m} 112n同时 2~B(n,),P(2m)Cnm()m()nmCnm222 因为多项分布的边缘分布是二项分布,从而两式相等,也就是: nm Ci0minCmiCn2imnm k所以证得原组合恒等式CniCkmCnm2nm成立。 kmm1例2 证明组合恒等式 Ci1Ci1i1nmmnm1n1 证明 我们利用随机变量的数字特征,构造出一下概率模型: 设一个盒子中装有n张白色卡片,m张黑色卡片,一张接一张地将卡片取出,直到取出白色卡片为止,求平均要取多少张卡片。 这是求一个随机变量X的期望值: 记事件{Xi}={取出的前i-1张卡片全是黑色卡片},1(Xi)令Xi0(Xi),那么 xiixi Xi0Xi0Xix110x i1ix1 齐齐哈尔大学毕业设计(论文) i1xim!由于Xi非负,所以EXE(Xi0)P(Xi1i)Ci1Cmi1nm 但是我们可以将EX更简单的表示形式计算出来,于是我们假设已经把所有的同时令X1表示第一张白色卡片之前的黑色卡片nm张卡片从盒子中取出来了,张数,,最后Xn1表示最末一张白色卡片之后的黑色卡片张数,根据X1的定义: X1X2Xn1m,Ex1Ex2Exn!m n!m!(nm)!在考虑x1,x2,,xn1的联合分布为P{X1i1,X2i2,,Xn1in1}=中i1,i2,,in1是非负整数,它们的和为m。,其这是因为从盒中取出的nm张卡片一共有(nm)!种可能方法。而且,取出的先是i1张黑色卡片,接着是一张白色卡片,再接着是i2张黑色卡片,接着又是一张白色卡片等等,很明显,共有n!m!种可能方式。因此,就可以得到上述式子。 于是我们可以得到:X1,X2,,Xm1的联合分布是i1,i2,,in1的对称函数,所以对任意n个变量求和,所得到的结果是相同的,于是我们知道xi的边缘分布相同。从而 EXimn1(i1,2,,n1),EX[1Xi]1m1mn1nm1n1 于是我们得出 Ci1Ci1i1nmmnm1n1 如果采用分析学的方法来证明这个组合恒等式是非常难的,所以我们采用数字特征法来证明。 nnkn例3 证明组合恒等式 kCk1n2n1,kk12Cnn(n1)2kn2.证明 我们可以考虑下列随机变量的数字特征.设一名篮球运动员在条件相同下向同一篮筐投篮n次,每次进球的概率为12,考虑“投进篮筐次数”这个随机变量X的数字特征.1,第k次投进篮筐 记 Xk0,第k次没有进篮筐 齐齐哈尔大学毕业设计(论文)则X1、X2、X3、、Xn独立同为二点分布:PXi1PXi0(i1,2,,n), 且XX1X2Xn服从二项分布B(n,所以 EXE(X1X2Xn)=EXkk1nn1212) k1PX11n2 DXDX1X2Xnnnk1DXknDX1n4 而 EX12nnkPXk0knk12nnnkCk1knkn kCk1n2n 2即 kCk1n2n1 又 EXkPX2k0k12nnkk12kCn EX2DXEX 2 12nnkk12Cknn 即 42rn2nkCnn(n1)2k12kn2 例 4证明组合恒等式 Ck0kmCnrkCmn r证明 考察从由nm个大人和n个孩子组成的家庭队伍中选取r1个人参加亲子比赛的问题.所选r1个人中大人的人数用X 表示,则随机变量X服从超几何分布,且 PXkCm1Cnr1kr1kCmn1(k0,1,,r1) 于是 EXr1kk0Cm1CnCrkr1k r1mn1m1r1r1k1r1kCmCnrmn1Cmnk1m1r1krkCmCnrmn1Cmnk0 令 1,第k个大人被选中Xk0,第k个大人未被选中 PXk1r1mn(k1,2,,m1) r1mn1;EXkPXk1, k1,2,,m1.齐齐哈尔大学毕业设计(论文) XX1X2Xm1 EXEXPXkk1k1nm1m1k1r1m1mn1k 例 5证明组合恒等式 k1Cn1/Cmn1k1mnm(m1) 证明 一个盒子中装有m张白色卡片n张黑色卡片,我们进行连续不放回地抽取卡片,直至摸到白色卡片时为止,下面考察取黑色卡片数的数学期望.设随机变量表示取黑色卡片数 1,前(i-1)次都是取到的黑色卡i0,前(i-1)次至少取到白色卡片n片,第i次也取到黑色卡片一次,或第i次取到白色卡片其中i1,2,,n则 i1i 又 pi1n(n1)ni1mnmn1mni1 且 Eipi1 于是我们得出 nniEEi1mnmn1mni1i1nn1ni1nmnmnmn1mnm3m2mnm2m1nnn1nn14nn143m12mnmnmn1mnm4mnm3m1nnn1nn15nn14m13mnmnmn1mnm5mnm4m1nnn1mnmnm1nm1nn1nn132nn1321化简时,每一次只将最后两项通分k个 同时,k黑,黑,黑,白 其中k0,1,2,,n.k1k1.则pkCnkm/Cmn 齐齐哈尔大学毕业设计(论文)从而 Ekpk0nk1n1k1nkknKCk1knm/k1Ck1mnmnCn1/mnCmn1k1k1nk11 Cmnmn/Cmn1n 由E的唯一性知:nmnmnk1Cn1/Cmn1k1knm1 k整理即得:Cnk11/Cmn1k1mnmm1n.例6 证明组合和恒等式 k2k0kC2nk2n1C2n2nn2n 证明 首先,我们构造如下概率模型: 设某人有两瓶牙签,每一瓶都有n根,每次用牙签的时候,他在两盒中任取一盒,然后抽出一根适用若干次后,发现一瓶牙签已经用完,求另一瓶中有k根牙签的概率。 如果用 A1,A2分别表示甲或乙瓶中余下 k根牙签.用 Ar 表示一盒用完,而另一盒中有 k根的事件,则ArA1A2.注意到,当发现一盒已空时. 这一盒必定在前面已用过 n次,另一盒余下k根,从而另一盒已用过n—k 次,故共用了2 n —k +1 次.每次取到甲(乙)瓶的概率是 12.所以 PArPA1A2PA1PA2 11 =C2nnr2221nnr11nC2nr2221nnr =C于是我们得出: n2nr122nr pkC2nkn122nk,k0,1,2,,n.下面用不同的方法计算随机变量的期望值.齐齐哈尔大学毕业设计(论文) 2nk根据定义:E122nkpk0nnknkCk0n2nk12 =K2k0knC2nk 另一方面,设Eu,由pk1知: k0nnnnunpkk0KPk0n1k0KKnkPk0nk12nkP2nknkCk0n1nk2nknkCk0n1n1nk2nk122nk2nkCk0n1k0nk12nk1122nk1122nkp2n122n12k1112n1pk0n1k12k0k1pk11p0/2 2n122n移项整理得:E2n1p01由E的唯一性知:nC2n1 nn122nnk0k2C2nkkn2n122nC2n1 整理即得:k2kC2nnk2n1C2nn22n k0n1例7 证明组合恒等式 k(k1)(nk)2Cn41 k2证明 我们构造如下概率模型: 设有n张扑克牌,其中只有3张是K,我们将扑克牌洗一遍之后再从中随机不放回抽取,直到抽取到第二张K为止,此时抽出的纸牌数为,求它的期望。 首先我们先需要计算出的分布列,按照古典概率的计算: 齐齐哈尔大学毕业设计(论文)P(k)3!(n3)!(k1)(nk)n!6(k1)(nk)n(n1)(n2),k2,3,,n1 然后根据数学期望的定义我们可以得出: n1Ekp(k2k)k(k1)(nk) n(n1)(n2)k26n1另外,我们假设从最低下开始一张一张地翻牌,直到抽取到第二张K出现为止,此时抽出的纸牌数目为,由对称性可知,与有相同的分布列,于是也有相同的数学期望,即EE,而且它们有关系:n1 对这个式子两边求期望:EEn1 所以En12然后将其带入式可得 n1k(k1)(nk)2C 4n1k23.2 运用构造概率模型证明组合恒等式 运用构造概率模型证明组合和恒等式大体上分为两步: n 第一步,将待证明的组合恒等式改写为Pi1的形式; i1 第二步,通过构造出合适的概率模型,使得完备事件组Ai(i1,2,,n)互斥,n并且Ai,同时P(Ai)pi(i1,2,,n)。 i1 其中第一步需要掌握灵活的恒等式变形能力,以及敏锐的观察力,而要完成关键的第二步,必须对于古典概率问题有深刻的理解,还要把握许多的综合条件,同时具有丰富的联想能力。由于证明中的关键是对随机事件概率的逆过程的求解——我们需要由Pk去寻找Ak,故在思考过程中起主导作用的是发散性思维,创造性思维。 例1 证明组合恒等式 Cnk1Cnk1Cnk11Cnk1 证明 首先我们将公式变形为 CnCk1kn1Cn1Ck1kn1Cn1Ckn1k1 齐齐哈尔大学毕业设计(论文)接下来,我们构造这样的概率模型: 一个盒子里装有n1张卡片,其中有一张红色卡片,一张黑色卡片,n1张白色卡片,现随机地从盒子中抽取k张卡片.设事件A为k张卡片中有红色卡片的事件,事件A的逆事件记为A.则 PAC1CnC1k1kn1; 设事件B为k张卡片中有黑色卡片的事件,事件B的逆事件记为B,由事件间的关系有 AABBABAB.从而 PAPABAB PABPAB 所以 PAC1C1Cn1Ckn101k1C1C1Cn1CCnkn100k.k1k由对立事件和得性质PAPA1.可得 k1kCn1Cn1Cn1Cn1Cn1kk1 从而 Cnk1Cnk1Cnk11Cnk1 例2 证明组合恒等式 1CnmC1n11CnmCnm1C1n111C1n2CnmC3C2C1C1n11111C1m1C1mnm.证明 我们首先将公式变形为 CmCn11CmCnmCnCn11111CmCnmCnm1CnCn1Cn2111111CmCnmC3C2C1CnCn1Cm1Cm1111111111 接下来,我们构造这样的概率模型: 一个盒子中中装有n张卡片,其中有m张红色卡片,现在从中连续取出卡片并且不放回,求取得红色卡片的概率。 记事件A为取得红色卡片,事件Ai为第i次取得红色卡片 于是我们得到 A=A1A1A2A1A2A3A1A2AnmAnm1 由加法公式、乘法公式及条件概率的定义,得 PACmC1n1CnmC1n1CmC1n11CnmC1n1Cnm1C1n11C1C11m1CmC1m1 齐齐哈尔大学毕业设计(论文)显然,只要逐个取卡片,早晚是要取得红色卡片的.即事件A为一必然事件,故P(A)1.所以1CnmCn111CnmCnm1Cn1Cn21111CnmC3C2C1Cn1Cm1Cm1111111nm.古典概率与组合数有着十分密切的联系,某些组合式本身或稍加整理,就具有某种明显的概率意义.例如 CmCnmCrnkrk就可视为下面概率问题的解:“某盒中有n个球,其中有红球m个,今从盒中任取 r个球,求恰有k个红球的概率”,基于这一点,对某些组合恒等式,我们可采用古典概率的方法来证明.nkkn例3 证明组合恒等式 CmCrkCmr1 nm kk0n证明 我们构造如下古典模型: 一个城市的道路是经纬均匀网状,李某的家庭住址和上班地点恰好分别处于两个交叉点.以李某的家庭住址所在的两条路为坐标轴、交叉点为坐标原点,建立直角坐标系,并使李某的上班地点处于坐标系第一象限之中.设李某的上班地点位于点(mnr1,n).考虑李某从家庭住址到上班地点走过的路最短时所选择的路径问题,(即在以(0,0)、(0,n)、(mnr1,n)、(mnr1,0)为顶点的矩形内,李某从住处到单位上班沿与X轴平行的方向行走时只能向左拐,沿与Y轴平行的方向行走时只能向右拐).易知,李某从家庭住址到上班地点走过的路最短所选择经过的路径共有Cmr1种不同方式.n记Ak表示事件“李某经过端点为(r,k)和(r1,k)的路径数” Ak所包含的基本事件个数为:从(0,0)点到(r,k)点走过的路径数乘以从(r1,k)点到(mnr1,n)点的路径条数.nkknkCrkCmk 即为 CrkkCmnr1(r1)nk PAkCrkCmkCnmr1knk(k1,2,,n) 齐齐哈尔大学毕业设计(论文)由Ak的定义知,A0、A1、Ar构成一个完备事件组.r 1PAkk0nPAkk0k0rrCrkCmkCnmr1knk nkn上式整理得: CrkkCmCmr1 kk0令mn得: Cr0Cr1CrnnCrnn1 n例4 证明组合恒等式 Cnnr1Ci0ninir2 证明 我们构造如下古典概率模型: 设将n张相同的卡片放到r个不同的盒子中,把这一实验结果作为一个向量(x1,x2,,xr),其中xi表示被分到第i个盒子中的卡片数,于是满足 x1x2xrn()的向量(x1,x2,,xr)的个数。 考虑n张白色卡片与r1张黑色卡片组成的排列,将每一个这样的排列与()式按照下面的方式对应起来:使x1等于排列中第一张黑色卡片左边的白色卡片的张数,x2等于第二张黑色卡片间白色卡片的张数,如此继续到xr,它等于最后一张黑色卡片右边的白色卡片的张数。很容易得到n张白色卡片与r1张黑色卡片的所有排列与方程()的全体解一一对应,由于排列共有 (nr1)!n!(r1)!nCnnr1个,即解也有Cnnr1个,所以得到Cnnr1Ci0ninir2 或者还可以如下:我们很明显看出x1可取0,1,2,,n的n1个值,x2,,xr可以组成一个r1维向量(x2,,xr) 令A0:当x1=0时,(x2,,xr)的解的个数为Cnnrn 2;; An:当x1=n时,(x2,,xr)的解的个数为Cnnr2 nnCi0ninir2由于 P(Ai)i0Cnr121 n1 齐齐哈尔大学毕业设计(论文)所以得到 Cnnnr1Ci0ninir2 r例5 证明组合恒等式 CrrmCj0jmj1 1r证明 之前的例子我们证明过这样一个组合恒等式:CnrCnrCn1 1这个需要被证明的组合恒等式实际就是该组合恒等式的推广,于是我们建立如下古典概率模型: 现在将mr张卡片从1进行编号,并从中抽取r张卡片作为一组,用n来表示1,2,,n号都被选出而n1号未被选出的最大值,如1号未被选出那么n0.若1号选上了而2号未被选上,则n1,如此等等,令ni,不同组的卡片数显然等于从编号为i2,i3,,im的卡片中抽出ri张卡片的选法总数。于是 rni的组有Crimri1个,因此总数Crmr满足CrrmrCi0rimri1 我们令jri得 CrrmCj0jmj1 3.3运用等概率法证明组合恒等式 我们从不同的角度解答同一个概率问题,就可以得到同一事件的概率两种不同的表达形式,并且由它们相等来证明组合恒等式。在概率问题中,我们往往不能局限在一种思维,其实可以用多角度的思想去解答,这样也会给证明带来便利。 1nnCn2 例1 证明Cn0Cn证明 这是一个重要的组合恒等式, 这里用概率的思想证明.为此我们构造如下概率模型: “某人投篮命中率,现独立地重复投篮了n次,问投进的概率是多 21少?” 记事件Ak为投篮n次投进了k次(k1,2,n), 于是问题是求PA1A2An.由于A1,A2,A3An两两互斥,得 齐齐哈尔大学毕业设计(论文)PA1A2AnPA kk1n11 =Cnk22k1nknknk1Cn2nk 又因A1A2An的对立事件是A1A2An,问题可以转化为求1PA1A2An,而 PA1A2AnCn2n0 Cn2n01PA1A2An1 1nnCn2.即Cn0Cn1例2 证明组合恒等式 Cn0CnCnnC2nn 222证明 根据组合式的性质.CnrCnnr, 原式左边可变形为: CnCnCnCn0n1n1CnCnC2nn0n 两端同除以C2nn,得: CnCnC2nn0nCnCnC2nnkn1CnCnC2nnn01 我们来观察上面这个式子式的概率意义,可以构造下面的模型: “一盒子里有2n张卡片,其中n张白色卡片n张红色卡片,今从中任取n张卡片,求至少有一张红色卡片的概率.” 记事件A为抽得的n个球中至少有一张红色卡片; 事件Ai为抽得的n个球中恰有i张红色卡片 则 PAiCnCnCn2nini(i1,2,n) 而 AA1A2An 且 AiAj ij 根据有限可加性,得 齐齐哈尔大学毕业设计(论文)PAPA1PA2PAn CnCnC2nn1n1CnCnC2nn2n2CnCnC2nnn0 另一方面 A{ 抽得的 n 张卡片都是白色卡片 } 而 PACnCnCn2n0n CnCnC2nn0n于是 PA1PA1 所以 CnCnCn2n1n1CnCnCn2n2n2CnCnCn2nn01CnCnCn0nn2n CnCnCnCn2001n1CnCnC2n2n01即 Cn0CnCnnC2nn 2m例3 证明组合恒等式 CniCnmiiCnm2m i0证明 我们构造以下概率模型: 设箱子中有n付大小不同的手套,现在我们随机从中取出m只,计算取出的手套全不配对的概率.把从2n只手套中取出m只不同手套的组合作为样本点,则样本点总数为C2nm.记事件A为取出的m只手套全不配对,接下来计算P(A).方法一 A发生要求m只手套必须取自于不同型号种类的手套,而手套的种类有n种,因而m只手套可有n种可供选取,共有Cnm个选取种数.同时,在每一 1种类型号的手套中又有“左”、“右”两只手套可选择,有C2种取法,这样,取11C(出m只手套共有C2m个)种取法.综合上述,A的基本事件数目为Cnm2m,2则PACnm2m/C2mn.方法二 令Ai取出的m只手套中含有i个“左”只手套,i0,1,m.显然 齐齐哈尔大学毕业设计(论文)AAi 且 AiAj(ij)则 PAi0mPA.又因为A中的i只“左” imii0手套可有n种“左”手套可供选取,共有Cni种取法.其余另外的mi只手套全是“右”手套,为了使得取出的m只手套全不配对,那么,这ni只“右”手套只能在剩下的ni种型号的手套所对应的ni“右”手套中选取,共有Cnmii种取法.于是,由乘法原理可得,Ai的基本事件数目为CniCnmii(i0,1,2m)那么 PAiiCimnCni/Cm2n mm由此可得 PAPAimiiCnCni/Cm2n i0i0综合上述可得组合恒等式: mCimimnCniCn2m i0n例4 证明组合恒等式 CiniaCbCnabCnb i1证明 我们构造如下的概率模型: 设一个盒子中有a张黑色卡片,b张白色卡片,我们现在从中随机抽取 (nmin(a,b))张卡片,求所取的卡片中至少有一张黑色卡片的概率。 记事件A为任取的n张卡片中至少有一张黑色卡片; 事件Ai为任取的n张卡片中至少有一张黑色卡片(i1,2,,n) nn那么A1,A2,,An是互不相容事件并且Ai,则P(Ai)1 i1i1ini而 P(AaCbi)Cn(iC1,2,,n) abniinCaCnb于是 P(A)P(A)i1in i1Cab记事件A为任取的n张卡片中没有黑色卡片 齐齐哈尔大学毕业设计(论文) n则 P(A)CbCnab Cbnn那么 P(A)1P(A)1nCab 所以我们得到 Ci1iaCbniCnab1CbCnnab n整理可得 Ci1iaCbniCabCbnn 第4章 由概率论方法引申出的恒等式证明 4.1 级数恒等式的证明 例 证明级数恒等式 n1n(n1)!1 证明 我们建立如下概率模型: 设有一个盒子,里面装有黑色卡片和白色卡片,设其为事件A,其中白色卡片一张,黑色卡片无数张,则事件A只包含两个基本事件摸出为黑色卡片(设为事件B)和摸出白色卡片(设为事件C)的随机试验,我们进行有放回的随机抽取卡片,并且为独立重复n次试验,则在第k次试验中,B出现的概率P(k),不出现的概率为Q(k),则Q(k)1P(k)。 现令T(n)表示在n次独立试验中B首次出现在第n次试验中的概率,于是有T(1)P(1),T(2)Q(1)P(2),„„,T(n)Q(1)Q(2)Q(n1)P(n), 令P(N)T(n),(N)Q(n),则有P(N)(N)1。 n1n1NN取P(n)nn1,则(N)Q(n)n1NNn1NNN1n1n,N故P(N)(N)T(n)Q(n)n1Nn1n1(n1)!n11n11 由于N,lim1n1Nn10,所以有n1n(n1)!1,齐齐哈尔大学毕业设计(论文)4.2 初等组合恒等式的证明 例 证明下面两个组合恒等式 1(1)CnrCnr1Cnr1 其中n,r,s,N (2)Cns1Cn1Cn2Cs 其中n,r,s,N sss证明 (1)我们建立如下概率模型: 设一个盒子中装有n张卡片,其中仅有一张红色卡片,现从盒子中取出r张卡片,则有Cnr种取法。于是我们可将这Cnr种取法分为两类:一类是包含红色卡片的,取定了那个红色卡片之外,还需在剩下的n1张卡片中取出r1张卡片来,1共有C11Cnr种取法;另一类是不含红色卡片,应在除去红色卡片后的n1张卡片1中取出r张卡片,因此共有C10Cnr1种取法,并且这两类取法之和即为取法总数,即Cnr种取法。所以有 CnC1Cn1C1Cn1Cn1Cn1,故(1)式得证。 下面证(2)式: 对(2)式作变换:令rs1有 Cns1r1r10rr1rCn1Cn1 s1ss1s再令nn1有 Cn1Cn2Cn2 以此类推… Cs2Cs1Cs1CsCs1 s1sss把上面的式子左右各相加,化简有 CnCn1Cn2......Cs。 s1s1s1sss(2)式得证。 4.3 级数组合恒等式的证明 例 证明下面的级数组合恒等式 ki0(1)CCimkinCknmki0 (2)CCCiminnnmki0 (3)CnCnii(2n)!(n!)2 齐齐哈尔大学毕业设计(论文) 0当1rnnkkr(1)C(nk)当rn(4)n!nk0n(n1)n!当rn+12证明 (1)我们构造如下概率模型: 设一个盒子中有n张白色卡片和m张黑色卡片,我们现从中随机地取出k张卡片,考虑取出的k张卡片中有i张白色卡片的事件Ai(i=0,1,„,k)的概率,于是可得 PAiA0,A1,„„,AkkkCmCnCikiknm,i0,1,2k,是互不相容的事件,且这k1个事件之并是必然事件,即UAi,则P(Ai)P()1,i0i0k于是CmCnkikiki0i0Cnm1,即CmCnikiCnm.k(2)令kn,由式(1)可得式(2);(3)令nm,由式(2)可得式(3)。(4)欲证此等式,首先引入一个引理 引理:设随机事件A1,A2,,An满足 P(Ai)p1,(i1n) P(Ai1Ai2)p2,(1i1i2n) P(Ai1Ai2Ai3)p3,(1i1i2i3n) „„,P(A1A2An)pn,nk1nk1则有P(Ak)(1)k1CnP(k) (1) k为了证明本式,我们建立如下概率模型: 从1到n这n个自然数中每次任取一数,有放回地抽取r次,令Ai={取出的r个 齐齐哈尔大学毕业设计(论文)数均不等于i,i1,2,,n则 pkP(Ai1Ai2Aik)(nk1nk1nknk1),(1i1i2ikn,k1,2n) nknr则由(1)式P(Ak)(1)Cn(k),(2) nr当1rn时,必存在i使得取出的r个数均不等于i,因此Ai是必然事件,于 i1是,由(2)式有 n(1)k1k1C(knnkn_r)P(Ai)1C,即 (1k)1Cnkn(k),0 rni10nnk1① 当rn时,Ai={取出的n个数中至少有一个等于i},i = 1,2,„,n,于是,nAi{取出的n个数均不相同},由[7]知其概率为i1n!nn,从而有 n!nnni1ni1P(UAi)1P(Ai)1n kkr(k)n!把上式代入(2)式整理可得 (1)Cnnk0ni1ni1② 当rn1时,则Ai{取出的n1个数恰有两个数相同},其概率P(Ai),n于是得出可知 P(Ai)i1n!nnn1Cn1,2n!2P(UA)1P(A)1C从而有 iin1 n1i1i1nnnko代入(2)式整理可得(1)Cn(nk)n!Cn1kkr2n(n1)2n! ③ 当r0时,考虑随机试验:从大于n的自然数中任取一数,令Ai={取出的数大于i},i =1,„,n,则显然 pkP(Ai1Ai2Aik)1,(1i1i2ikn,k1.2..n) 齐齐哈尔大学毕业设计(论文) kk且P(UAi)1C,代入(1)式整理可得(1)Cn0,koi10nnnnko0当1rnnkkr当rn所以有 (1)Cn(nk)n! k0综上所述,证明完毕。 n(n1)2n!当rn+130 齐齐哈尔大学毕业设计(论文) 总 结 本文通过概率理论给出了证明组合恒等式的方法,主要应用了概率论中的古典概率,完备事件,互不相容,基本事件总数等相关知识。其主要思想是针对所要证明的组合恒等式构造出适当的概率模型,求出该模型中有关事件的概率。而构造概率模型来证明组合恒等式的基本方法是:首先根据需要被证明的组合恒等式特点建立相对应的概率模型;然后在概率模型中分析思考问题。然后根据概率的一些性质,推出应有的结论。组合恒等式的证明方法有很多,而用概率论的方法来证明组合恒等式不仅提供了组合恒等式的不同证明途径,而且有助于加深我们对概率论基础知识的理解和掌握。 本文主要研究了如何运用概率论的方法证明一些组合恒等式,一共分为三章: 第一章绪论中,简单介绍了概率论方法研究的背景和发展状况,自然引出了需要研究的问题; 第二章主要介绍如何运用概率论的基本理论来证明组合恒等式; 第三章主要介绍如何运用概率理论构造数学模型;来证明组合恒等式; 第四章针对前面的证明方法进行推广证明一些其他的恒等式,以便于更加深刻理解这种用概率理论证明恒等式的好处。 组合恒等式的证明问题通常需要超高的技巧,有意识的积累一些组合恒等式的证明方法是很有益的。特别是运用概率论的方法证明,构造出适当的概率模型加以说明和解释则非常有助于恒等式的记忆,理解与运用。 通过对本文的深入研究,不但使我对于概率论的方法证明组合恒等式有了更深一步了解,而且了解概率论在科学研究和实际生活中的很多应用,这更坚定了我努力研究数学知识并将这些知识应用于生活中的决心。 齐齐哈尔大学毕业设计(论文) 参考文献 [1] 纪玉卿,祝广大.组合恒等式的概率证法[J].许昌师专学报, 1999,18(5):84-87 [2] 谭毓澄,张劲松,王玉娟.由一概率问题引出的组合恒等式[J].江西教育学院学报(综合),2008,29(6): 7-8 [3] 田俊忠,魏淑清.恒等式的概率方法证明[J].固原师专学(自然科学版),1997,18(13): 10-12 [4] 卢开澄,卢华明.组合数学[M].北京:清华大学出版社,2006 [5] 姚仲明.恒等式证明的概率模型法[J].安庆师范学院学报(自然科学版), 2003,9(4):37-38 [6] 张太平.用概率思想证明组合恒等式[J].《张太平:用概率思想证明组合恒等式》1999,10(2):67-70 [7] 潘茂桂.用概率方法证明组合恒等式[J].牡丹江师范学院报(自然科学版).2000,1(2):39-40 [8] 潘茂桂,撒晓婴.用概率方法证明组合恒等式[J].西南民族学院学报(自然科学版),1993,11(4):436-440 [9] 鲍焕明.组合恒等式的概率证明[J].牡丹江师范学院报(自然科学版).2000, 1(2):39-40 [10]Brualdi R A.Introductory combinatorics [M].New York:North-Holland, 1997,1-50.[11]Probablity Theory I 4th Edition [M].New York:Springer-Verlag,1977,189-195.32 齐齐哈尔大学毕业设计(论文) 致 谢 我要感谢我的导师崔继贤老师,他为人随和热情,治学严谨细心。在闲聊中他总是能像知心朋友一样鼓励我,在论文的写作和措辞方面他总会以“专业标准” 严格要求我,从选题定题开始,一直到论文最后的反复修改,润色,崔老师始终认真负责地给与我深刻而细致地指导,帮助我开拓研究思路,热心点拨,热忱鼓励。正是崔老师的无私帮助与热忱鼓励,我的毕业论文才能够得以顺利完成,再次谢谢崔老师。 然后还要感谢大学四年来所有的老师,为我打下数学专业知识的基础,感谢李学院和我的母校——齐齐哈尔大学四年来对我的大力栽培。 最后我要感谢我四年的大学同学,感谢我的家人和那些永远忘不了的朋友,他们的支持与情感,是我永远的财富