第一篇:扫描隧道显微镜实验报告
扫描隧道显微镜实验报告
【摘要】扫描隧道显微镜的英文缩写是STM(scanning tunneling microscope,STM)。本实验通过使用STM来观测样品表面的微观结构。
【关键词】STM 隧道效应 恒电流 恒高度
【引言】STM是20世纪80年代初期出现的一种新型表面分析工具。由德国人宾宁(G.Binnig,1947-)和瑞士人罗勒(H.Roher,1933-)1981年发明,根据量子力学原理中的隧道效应而设计。宾宁和罗勒因此获得1986年诺贝尔奖.1988年,IBM科学家从由扫描隧道显微镜激发的纳米尺度的局部区域观测到了光子发射,从而使发光及荧光等现象能够在纳米尺度上进行研究。1989年,IBM院士(IBM Fellow)Don Eigler成为第一个能够对单个原子表面进行操作的人,通过用一台“扫描隧道显微镜”操控35个氙原子的位置,拼写出了“I-B-M”3个字母。1991年,IBM科学家演示了一个原子开关。
STM的出现在表面科学、材料科学、生命科学等领域的研究中存在重大的意义,被国际科学界公认为20实际世纪80年代世界十大科技成就之一。【正文】
一、实验原理
1、隧道效应以及隧道电流的产生
在经典力学中,电子的总能量 E 可表示为:
EPzUZ
(1)2m其中UZ为电子势能,PZ为电子的动量。
对于经典物理学来说,当一个粒子的动能E低于前方势垒的高度V0时,它不可能越过此势垒,即透射系数等于零,粒子将完全被弹回。而按照量子力学的计算,在一般情况下,其透射系数不等于零,也就是说,粒子可以穿过比它能量更高的势垒(如图1)这个现象称为隧道效应。
扫描隧道显微镜的基本原理是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近(通常小于1nm)时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极,形成隧道电流。
IVexpKS
(2)
其中K2m/h
由式(2)可知,隧道电流强度对针尖和样品之间的距离有着指数依赖关系,当距离减小0.1nm,隧道电流即增加约一个数量级。因此,根据隧道电流的变化,我们可以得到样品表面微小的高低起伏变化的信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图。
2、扫描隧道显微镜主要工作模式(本次实验采用恒电流模式)恒电流模式:如图(a)所示
x-y方向进行扫描,在z方向加上电子反馈系统,初始隧道电流为一恒定值,当样品表面凸起时,针尖就向后退;反之,样品表面凹进时,反馈系统就使针尖向前移动,以控制隧道电流的恒定。将针尖在样品表面扫描时的运动轨迹在记录纸或荧光屏上显示出来,就得到了样品表面的态密度的分布或原子排列的图象。此模式可用来观察表面形貌起伏较大的样品,而且可以通过加在z方向上驱动的电压值推算表面起伏高度的数值。恒高度模式:如图(b)所示
在扫描过程中保持针尖的高度不变,通过记录隧道电流的变化来得到样品的表面形貌信息。这种模式通常用来测量表面形貌起伏不大的样品。
二、实验仪器
STM 扫描隧道显微镜,STM控制器,STM控制软件
图1 STM 扫描隧道显微镜 图2 STM控制器
三、实验操作方法
1、针尖的制备
首先用丙酮溶液对针、鑷子和剪刀进行清洁,用脱脂棉球对它们进行多次清洗。少等片刻让针、鑷子和剪刀完全干燥。接着拿鑷子用力夹紧针的一端,慢慢的调整剪刀使剪刀和针尖的另一端成一定角度(30~45 度左右),握剪刀的手在拌有向前冲力(冲力方向与剪刀和针所成的角度保持一致)的同时,快速剪下,形成一个针尖。然后以强光为背景对针尖进行观察,看它是否很尖锐,否则重复上述操作。
2、样品的制备
用透明胶带将石墨表层的不平粘去,使之变得平整。
3、用镊子小心的将针尖插入针槽內(切勿反插),在针槽外的長度约为 5~6mm,扞入时保持针与针槽内壁有较强的摩擦力,以确保针的稳固(方法是先将针事先稍微折弯后再插入)。手调节机座上前方两个帶螺旋测微仪的旋钮,逆时针调节(退针)十多圈左右。再把探头以针尖朝下的方向缓慢平稳的安放在平台上。注意探头1.5cm宽的缺口处朝前方,探头端面的两个凹孔应正好落在平台前面的两个支架上,此时针尖应正好指向样品表面。
4、启动计算机,打开控制器电源开关。单击桌面的“AJ-1”图标,执行操作软件,屏上会出现高度图像(H)、Z 高度显示(T)、马迖高级控制(A)共三个操作框。
5.手动进针。首先仔细观察样品表面位置并找到镜像小红灯,此时可在样品表面上看到在镜像红灯背景下的镜像针尖。因而可以估计出针尖与样品(镜面)之间的间距。接着用计算机实行一次“单步进”操怍,再用手顺时针调节两个螺旋测微仪旋钮,观察背景镜像红灯使实际针尖和镜像针尖的距离缓慢靠近,直至两针尖距离十分接近为止(千万不能接触!)。在计算机屏上单击菜单“视图Z 高度”,出现“Z 高度面板”,观察红线应居于OV,如果红线达到-100V即为撞针,针尖报废,需重新再制备和安装新针尖。如果一切正常就可开始扫描图像。6.自动进针。在计算机控制主界面上,单击“马达高级控制”菜单,再在马达高级控制面板(A)中单击“连续进”,并密切注意观察屏上显示进针情況,待“己进入隧道区马达停止连续进”的提示框出现后,再点击“确定”,此时红线应在-100—0V 之间。然后进行单步操作,即单击马达高级控制面板(A中的“单步进”,使红线最后调节于中间位置时停止操作,进针结束。最后关闭“马达高级控制面板(A)”图框。
7.针尖检验。在屏上打开“ IZ曲线 Z”图(即 IZ的高度曲线图),出现“高度图像”后在最左端单击“扫描”,实现针尖在样品表面扫描。扫描完毕后观察图中电流衰减情况,如果图中的曲线越陡峭,同时变化不大就说明针尖好。
四、实验数据与结果 第一次数据与结果:
第二次数据与结果:
五、实验总结及误差分析
通过本次实验的完成了解了扫描隧道显微镜的基本原理,从本质上理解了扫描隧道显微镜的作用。在本次实验中我们基本掌握了拔针的手法,以及运用STM获得了高序石墨的表面形貌。本次实验所获得的实验图像效果不好存在多方面原因。对其进行误差分析:
1、拔针手法不够娴熟,使得针不够好;
2、在调节计算机软件相关参数时出现的偏差;
3、可能由于实验系统本身的误差。
第二篇:扫描隧道显微镜实验报告
扫描隧道显微镜实验
13应用物理(1)班 杨礴 20***
一、实验目的
1.学习扫描隧道显微镜的原理和结构
2.学习利用扫描隧道显微镜观察样品的表面形貌
二、实验原理
扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。隧道电流 I 是电子波函数重叠的量度,与针尖和样品之间距离S和平均功函数Φ有关:
Vb是加在针尖和样品之间的偏置电压,平均功函数,分别为针尖和样品的功函数,A为常数,在真空条件下约等于1。扫描探针一般采用直径小于1mm的细金属丝,如钨丝、铂―铱丝等;被观测样品应具有一定导电性才可以产生隧道电流。
由上式可知,隧道电流强度对针尖与样品表面之间距非常敏感,如果距离S减小0.1nm,隧道电流I将增加一个数量级,因此,利用电子反馈线路控制隧道电流的恒定,并用压电陶瓷材料控制针尖在样品表面的扫描,则探针在垂直于样品方向上高低的变化就反映出了样品表面的起伏。将针尖在样品表面扫描时运动的轨迹直接在荧光屏或记录纸上显示出来,就得到了样品表面态密度的分布或原子排列的图象。这种扫描方式可用于观察表面形貌起伏较大的样品,且可通过加在 z 向驱动器上的电压值推算表面起伏高度的数值,这是一种常用的扫描模式。对于起伏不大的样品表面,可以控制针尖高度守恒扫描,通过记录隧道电流的变化亦可得到表面态密度的分布。这种扫描方式的特点是扫描速度快,能够减少噪音和热漂移对信号的影响,但一般不能用于观察表面起伏大于1nm的样品。
从式可知,在Vb和 I 保持不变的扫描过程中,如果功函数随样品表面的位置而异,也同样会引起探针与样品表面间距S的变化,因而也引起控制针尖高度的电压Vz的变化。如样品表面原子种类不同,或样品表面吸附有原子、分子时,由于不同种类的原子或分子团等具有不同的电子态密度和功函数,此时扫描隧道显微镜(STM)给出的等电子态密度轮廓不再对应于样品表面原子的起伏,而是表面原子起伏与不同原子和各自态密度组合后的综合效果。扫描隧道显微镜(STM)不能区分这两个因素,但用扫描隧道谱(STS)方法却能区分。利用表面功函数、偏置电压与隧道电流之间的关系,可以得到表面电子态和化学特性的有关信息。
三、实验仪器
STM-IIa型扫描隧道显微镜
四、实验内容
1.开启计算机,控制机箱,高压电源,前置放大器,偏压电源 2.用粗调旋钮将样品逼近微探针-至样品与探针间距约1mm 3.用细调旋钮将样品缓慢逼近微探针-至样品与探针非常逼近4.扫缓慢细调并观察机箱显示读数-至隧道电流信号约1.50nA左右,Z向反馈信号约-150——-250之间
5.读数基本稳定后,打开扫描软件,开始扫描
6.STM关机操作步骤-先细调退出。关闭偏压电源,前置放大器,高压电源,控制机箱,计算机
五、数据结果
六、结果讨论
1.机箱显示读数显示的隧道电流,在样品非常逼近时,会迅速发生变化,因此在调节距离时,需要小心谨慎。
2.X方向与Y方向均为4000nm范围,Z方向为74.0nm。
七、扫描隧道显微镜的具体应用
1.扫描
STM工作时,探针将充分接近样品产生一高度空间限制的电子束,因此在成像工作时,STM具有极高的空间分辨率,可以进行科学观测
2.探伤及修补
STM在对表面进行加工处理的过程中可实时对表面形貌进行成像,用来发现表面各种结构上的缺陷和损伤,并用表面淀积和刻蚀等方法建立或切断连线,以消除缺陷,达到修补的目的。
八、STM的优越性
1.具有原子级高分辨率,STM在平行于样品表面方向上的分辨率可达0.1埃,即可以分辨出单个原子。
2.可在真空、大气、常温等不同环境下工作,样品甚至可以浸在水或其他溶液中,不需要特别的制样技术并且探测过程对样品无损伤。
3.可实时得到实空间中样品表面的三维图像,可用于具有周期性或不具备周期性的表面结构研究。
九、参考文献
1.杨景景,杜文汉,Sr/Si(100)表面TiSi纳米岛的扫描隧道显微镜研究,物理学报,2011,60(3)
2.谢天生,杜昊,孟祥敏,孙超,闻立时,纳米Ti膜形成过程的扫描隧道显微镜观察,金属学报,2001,37(2)
第三篇:扫描隧道显微镜(STM)实验报告
实
验
报
告
姓名 小编
班级 01**101
学号 011**01** 组别
实验日期 2011-11-23
课程名称
大学物理实验
同实验者
指导教师
成绩
扫描隧道显微镜(STM)
一.实验目的
1掌握和了解量子力学中的隧道效应的基本原理。
2学习和了解扫描隧道显微镜的基本结构和基本实验方法原理。
3基本了解扫描隧道显微镜的样品制作过程、设备的操作和调试过程,并
最后观察样品的表面形貌。
4正确使用AJ—1扫描隧道显微镜的控制软件,并对获得的表面图像进行处
理和数据分析。二.实验仪器
AJ—1型扫描隧道显微镜;P-IV型计算机;样品(高序石墨);
金属探针及工具。
三.实验原理 1.隧道电流
扫描隧道显微镜的工作原理是基于量子力学的隧道效应。对于经典物理学来说,当一粒子的动能E低于前方势垒的高度V0时,它不可能越过此势垒,即透射系数等于零,粒子将完全被弹回(如图3)。而按照量子力学的计算,在一般情况下,其透射系数不等于零,也就是说,粒子可以穿过比它的能量更高的势垒,这个现象称为隧道效应,它是由于粒子的波动性而引起的,只有在一定的条件下,这种效应才会显著。经计算,透射系数
(1)
由式中可见,透射系数T与势垒宽度a、能量差(V0-E)以及粒子的质量m有着很敏感的依赖关系,随着a的增加,T将指数衰减,因此在宏观实验中,很难观察到粒子隧穿势垒的现象。
扫描隧道显微镜是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1 nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。隧道电流I是针尖的电子波函数与样品的电子波函数重叠的量度,与针尖和样品之间距离S和平均功函数Φ有关
(2)
式中Vb是加在针尖和样品之间的偏置电压,平均功函数,Φ1和Φ2分别为针尖和样品的功函数,A为常数,在真空条件下约等于1。隧道探针一般采用直径小于1mm的细金属丝,如钨丝、铂—铱丝等,被观测样品应具有一定的导电性才可以产生隧道电流。
由(2)式可知,隧道电流强度对针尖和样品之间的距离有着指数的依赖关系,当距离减小0.1nm,隧道电流即增加约一个数量级。因此,根据隧道电流的变化,我们可以得到样品表面微小的高低起伏变化的信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图。2.STM的结构和工作模式
STM仪器由具有减振系统的STM头部、电子学控制系统和包括A/D多功能卡的计算机组成(图4)。头部的主要部件是用压电陶瓷做成的微位移扫描器,在x-y方向扫描电压的作用下,扫描器驱动探针在导电样品表面附近作x-y方向的扫描运动。与此同时,一台差动放大器检测探针与样品间的隧道电流,并把它转换成电压反馈到扫描器,作为探针z方向的部分驱动电压,以控制探针作扫描运动时离样品表面的高度。
STM常用的工作模式主要有以下两种:
a.恒流模式,如图3(a),利用压电陶瓷控制针尖在样品表面x-y方向扫描,而z方向的反馈回路控制隧道电流的恒定,当样品表面凸起时,针尖就会向后退,以保持隧道电流的值不变,当样品表面凹进时,反馈系统将使得针尖向前移动,则探针在垂直于样品方向上高低的变化就反映出了样品表面的起伏。将针尖在样品表面扫描时运动的轨迹记录并显示出来,就得到了样品表面态密度的分布或原子排列的图象。这种工作模式可用于观察表面形貌起伏较大的样品,且可通过加在z方向的驱动电压值推算表面起伏高度的数值。恒流模式是一种常用的工作模式,在这种工作模式中,要注意正确选择反馈回路的时间常数和扫描频率。
图3 扫描隧道显微镜的两种工作模式 b.恒高模式,如图3(b),针尖的x-y方向仍起着扫描的作用,而z方向则保持绝对高度不变,由于针尖与样品表面的局域高度会随时发生变化,因而隧道电流的大小也会随之明显变化,通过记录扫描过程中隧道电流的变化亦可得到表面态密度的分布。横高模式的特点是扫描速度快,能够减少噪音和热漂移对信号的影响,实现表面形貌的实时显示,但这种模式要求样品表面相当平坦,样品表面的起伏一般不大于1nm,否则探针容易与样品相撞。3.STM针尖的制备
隧道针尖的制备是STM技术中要解决的主要问题之一,针尖的大小、形状和化学同一性不仅影响着图象的分辨率和图象的形状,而且也影响着测定的电子态。针尖的宏观结构应使得针尖具有高的弯曲共振频率,从而减小相位滞后,提高采集速度。如果针尖的最尖端只有一个稳定的原子而不是有多重针尖,那么隧道电流就会很稳定,而且能够获得原子级分辨率的图象。针尖的化学纯度高,就不会涉及系列势垒。例如,针尖表面若有氧化层,则其电阻可能会高于隧道间隙的阻值,从而导致在针尖和样品间产生隧道电流之前,二者就发生碰撞。
现在常用铂铱合金作为隧道针尖材料。铂材料虽软,但不易被氧化,在铂中加入少量铱(例如铂铱的比例为80%:20%)形成的铂铱合金丝,除保留了不易被氧化的特性外,其刚性也得到了增强.为了得到锐利的针尖,通常对铂铱合金丝用机械剪切方法成型。4.STM的减震
由于STM工作时的针尖与样品间距一般小于1nm,同时由式(2)可见,隧道电流与隧道间距成指数关系,因此任何微小的振动,例如由说话的声音和人的走动所引起的振动,都会对仪器的稳定性产生影响。许多样品,特别是金属样品,在STM的恒流工作模式中,观察到的表面起伏通常为0.01nm。因此,STM仪器应具有良好的减震效果,一般由振动所引起的隧道间距变化必须小于0.001nm。建筑物一般在10到100Hz频率之间摆动,当在实验室附近的机器工作时,可能激发这些振动。通风管道、变压器和马达所引起的振动在6到65Hz之间,房屋骨架、墙壁和地板一般在15到25Hz易产生与剪切和弯曲有关的振动。实验室工作人员所产生的振动(如在地板上的行走)频率在1到3Hz范围。因此,STM减震系统的设计应主要考虑1到100Hz之间的振动。隔绝振动的方法主要靠提高仪器的固有振动频率和使用振动阻尼系统。目前实验室常用的减震系统采用合成橡胶缓冲垫、弹簧(或橡胶带)悬挂以及磁性涡流阻尼等三种综合减震措施来达到减震的目的。扫描隧道显微镜的底座常常采用金属板(或大理石)和橡胶垫叠加的方式,其作用主要是用来降低大幅度冲击震动所产生的影响,其固有阻尼一般是临界阻尼的十分之几甚至是百分之几。除此之外,对探测部分采用弹簧悬吊的方式,金属弹簧的弹性常数小,共振频率较小(约为0.5Hz),但其阻尼小,常常要附加其它减震措施。在一般情况下,以上两种减震措施基本上能够满足扫描隧道显微镜的减震要求。对仪器性能要求较高时,还可以配合诸如磁性涡流阻尼等其它减震措施。测量时,探测部分(探针和样品)通常罩在金属罩内,金属罩的作用主要是对外界的电磁扰动、空气震动等干扰信号进行屏蔽,提高探测的准确性。
【实验装置与控制处理软件】
NanoView-I型扫描隧道显微镜是面向教学实验开发的新型实验装置。1. 头部系统
扫描系统采用压电陶瓷管作为扫描器,样品固定在扫描器上,样品相对于探针作扫描运动。支撑系统包括基座、三根钢柱、悬吊支架和三只挂脚构成的托架系统。驱进系统由双手动螺旋测微头和一只精密步进马达顶杆(可手调也可计算机控制)组成,三点支撑针块并控制样品与针尖距离。防振系统采用三根弹簧吊住底盘,靠弹簧衰减由基座传入的震动。
驱进调节机构的设计主要用于粗调和精细调节针尖和样品之间的距离。利用两个螺旋测微头手动粗调,配合步进马达(可以手调也可计算机控制调节),先调节针尖和样品距离至一较小间距(毫米级),然后驱动步进马达,使间距从毫米级缓慢降至纳米级(在有反馈的情形下),进入扫描状态。退出时先驱动步进马达,使间距缓慢增大,退出扫描间距后,可加快退出速度。
STM系统的振动隔离措施采用平板堆垛系统加上悬吊来隔离振动。平板堆垛系统由大理石块(或金属平板)和橡胶圈构成。用于较大范围的扫描时,这种措施已经能够有效地隔离振动。在进行精细的扫描(比如获得原子图象)时,需要采用弹簧进行悬吊。2. 电子学控制系统 STM电子学控制系统的核心是一个无静态差动反馈回路,控制隧道结间距变化。在恒流工作模式中其基本过程是首先测出隧道电流并转换成电压,然后与参考电流比较,经过差动放大后再输入积分器,由积分器输出控制扫描管Z方向的伸缩,使得隧道电流恒定在预设的工作点上。由于反馈系统是一种高增益电路,隧道电流又在纳安的数量级,很容易受到外界的干扰,因此对系统要进行很好的屏蔽。3.软件系统
512,系统包括实时采集控制、离线分析处理、文件处理、调色板四大模块。在主控命令条中使用相应的按键就可以启动相应的模块,各模块之间可以任意切换。STM软件系统采用Windows95/98为操作界面,具有使用方便的菜单和工具箱,图象的存储可以采用多种格式,最大分辨率可达512 实时采集控制提供马达开/关、单步进/单步退、自动驱进/自动脱离等马达控制功能,提供任意角度扫描、定标、局域等功能。
离线分析处理提供图像浏览、缩放、线三维、表面三维等多种显示功能,提供斜面校正、平滑、卷积滤波、FFT、边缘增强、反转、两维行平均等图像处理手段,可对图像进行粗糙度、模糊度、剖面线分析及距离和高度定标。调色板系统包含16种调色板设定,任一种调色板均可由用户在R、G、B三分量上无级编辑,每一种调色板均包含灰度与彩色,信息可任意切换。
文件处理提供实时的屏幕硬拷贝功能,可保存当前任意区域的屏幕内容,提供标准图像格式输出,输出图像可为其它任何通用图像处理软件所识别与处理,以便用户编辑、排版、打印。四.实验内容
1.准备和安装样品、针尖
将一段长约3厘米的铂铱合金丝放在丙酮中洗净,取出后用经丙酮洗净的剪刀剪尖,再放入丙酮中洗几下(在此后的实验中千万不要碰到针尖!)。将探针后部略弯曲,插入扫描隧道显微镜头部的金属管中固定,针尖露出头部约5毫米。
将样品放在样品座上,应保证良好的电接触。将下部的两个螺旋测微头向上旋起,然后把头部轻轻放在支架上(要确保针尖和样品间有一定的距离),头部的两边用弹簧扣住。小心地细调螺旋测微头和手动控制电机,使针尖向样品逼近,用放大镜观察,在针尖和样品相距约0.5—1毫米处停住。
2.金团簇样品图象扫描
启动计算机,打开控制器电源开关。单击桌面的“AJ-1”图标,执行操作软件。此时屏上出现在线软件的主接口,再单击菜单中“显微镜校正初始化”,屏上跳出一个选择框,选定“通道零”,然后多次点击“应用”,左边的通道零参数不断变化,选定一个其中变化参数绝对值最小的值,最后单击“确定”。
单击菜单“视图高度图像”,屏上会出现高度图像(H)、Z高度显示(T)、马迖高级控制(A)共三个操作框。然后再将“图像模式”修改成“曲线模式”,同时出现“高度曲线”框。此时的屏显示如图10所示。
选择“马达控制”,“隧道电流”置为0.3~0.4nA,“针尖偏压”置为250mv,“积分”置为5.0,点击“自动进”。至马达自动停止。“扫描范围”约为1微米,然后单击“扫描”。点击“调色板适应”以便得到合适的图象对比度。调整扫描角度和扫描速度,同时也可微调面板上的“积分”旋钮(反馈速度)。
手动进针。首先仔细观察样品表面位置并找到镜像小红灯,此时可在样品表面上看到在镜像红灯背景下的镜像针尖。
自动进针。在计算机控制主接口上,单击“马达高级控制”菜单,再在马达高级控制面板(A)中单击“连续进”,并密切注意观察屏上显示进针情况,待“己进入隧道区马达停止连续进”的提示框出现后,再点击“确定”,此时红线应在-50~+100V之间。然后进行单步操作,即单击马达高级控制面板(A)中的“单步进”,使红线最后调节于中间位置时停止操作,进针结束。最后关闭“马达高级控制面板(A)”图框。
光栅样品的扫描。
A、“扫描控制面板”框中:设置“扫描范囲”为最大;“X偏置”和“Y偏置”为O;设置“旋转角度”为O;“扫描速率”为1Hz左右。
B、在“反馈控制面板”框中:设置“比例增益”为5.0000;“积分增益”为18.0000;设置“设置点”(即隧道电流)为0.500nA;“偏压”为50mV左右;而“反馈循环”为“使能”状态。
C.在“高度控制面板”框中:设置“显示模式”为图像模式;“实时校正模式”为线平均校正;“显示范囲”置于150nm;并设置“显示中心点”为0.00V。
扫描结束后一定要将针尖退回!“马达控制”用“自动退”,然后关掉马达和控制箱。五.图象处理
(1)平滑处理:将像素与周边像素作加权平均。
(2)斜面校正:选择斜面的一个顶点,以该顶点为基点,线形增加该图象的所有像数值,可多次操作。
(3)傅立叶变换:对当前图象作FFT滤波,此变换对图象的周期性很敏感,在作原子图象扫描时很有用。
(4)边缘增强:对当前图象作边缘增强,使图象具有立体浮雕感。
(5)横切面分析
六。思考和分析。
1. 阐述恒高模式和恒流模式的基本工作原理。
a.恒流模式,如图3(a),利用压电陶瓷控制针尖在样品表面x-y方向扫描,而z方向的反馈回路控制隧道电流的恒定,当样品表面凸起时,针尖就会向后退,以保持隧道电流的值不变,当样品表面凹进时,反馈系统将使得针尖向前移动,则探针在垂直于样品方向上高低的变化就反映出了样品表面的起伏。将针尖在样品表面扫描时运动的轨迹记录并显示出来,就得到了样品表面态密度的分布或原子排列的图象。这种工作模式可用于观察表面形貌起伏较大的样品,且可通过加在z方向的驱动电压值推算表面起伏高度的数值。恒流模式是一种常用的工作模式,在这种工作模式中,要注意正确选择反馈回路的时间常数和扫描频率。
图3 扫描隧道显微镜的两种工作模式
b.恒高模式,如图3(b),针尖的x-y方向仍起着扫描的作用,而z方向则保持绝对高度不变,由于针尖与样品表面的局域高度会随时发生变化,因而隧道电流的大小也会随之明显变化,通过记录扫描过程中隧道电流的变化亦可得到表面态密度的分布。横高模式的特点是扫描速度快,能够减少噪音和热漂移对信号的影响,实现表面形貌的实时显示,但这种模式要求样品表面相当平坦,样品表面的起伏一般不大于1nm,否则探针容易与样品相撞。
2.通过对STM的实际操作,请说明和分析不同的扫描速度对样品表面形貌图的影响情况。
图片会不清晰,出现一些条纹,会影响的但图片的处理。3.样品偏压和隧道电流的不同设置对实验结果有何影响?
在扫描时,扫描的图片的真实度-与样品的表面实际情况,影响到实验结果的精确度。
4.用STM技术获得的样品表面形貌图实质上它表示的内容是什么?
样品表面原子分布的高低程度。
第四篇:扫描隧道显微镜实验报告
扫描隧道显微镜实验报告
武晓忠201211141046
指导教师:何琛娟
【摘要】: 通过用扫描隧道显微镜对石墨的表面形貌进行观测,加深对扫描显微镜的工作原理的了解、熟悉扫描显微镜的使用步骤和注意事项。以及了解在测量时对图像影响的因素。
【关键词】: 扫描隧道、针尖、隧道电流
【引
言】:
扫描隧道显微镜 scanning tunneling microscope 缩写为STM。它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。
STM使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广泛的应用前景,被国际科学界公认为20世纪80年代世界十大科技成就之一。
一、实验原理
先简单介绍一起各部分的工作原理
1、隧道电流:
扫描隧道显微镜的工作原理是基于量子力学的隧道效应.对于经典物理学来说,当一粒子的动能E低于前方势垒的高度V0时,它不可能越过此势垒,即透射系数等于零,粒子将完全被弹回.而按照量子力学的计算,在一般情况下,其透射系数不等于零,也就是说,粒子可以穿过比它的能量更高的势垒,这个现象称为隧道效应,它是由于粒子的波动性而引起的,只有在一定的条件下,这种效应才会显著。
在量子力学理论中,电子具有波动性,其位置是弥散的,在V(r)E的区域,h2/2mV2Vrrer薛定谔方程: 的解不一定是零(如果V不是无限大的话)。因此一个入射粒子穿透一个V(r)E的有限区域的几率是非零的,所以物质表面上的一些电子会散逸出来,在样品四周形成电子云。在导体表面上之外空间的某一位置发现电子的几率会随这个位置与表面距离的增大而呈现指数形式的衰减。隧道效应的物理意义:
STM的工作原理来源于量子力学的隧道效应贯穿原理。其核心是一个能在样品表面上扫描,并与样品间有一定的偏置电压,其镇静为原子尺度的针尖,由于电子隧穿的几率与势垒Vr的 宽度呈现负指数关系,当针尖和样品的距离非常接近时,其间的电势变得很薄,电子云相互重叠,在针尖和样品之间施加一电压,电子就可以通过隧道效应由针尖移到样品或从样品移到针尖,形成隧道电流。通过记录针尖和样品间的隧道电流的变化就可以得到样品表面行貌的信息。STM针尖和样品之间构成势垒的间隙S约为
110nm。
IVexpKS(2)
公式(2)给出了隧道电流I与两电极间的距离S的负指数关系,K2m/h。其中,m为自由电子的质量,为有效平均势垒高度,V为针尖与样品间的偏置电压。
可以看出,粗略的来说,S每改变0.1nm,隧道电流I就会改变一个数量级,因此可以知道隧道电流几乎总是集中在间隙最小的区域。
扫描探针一般采用直径小于1mm的细金属丝,如钨丝,铂—铱丝等,被观测样品应具有一定导电性才可以产生隧道电流。
2、隧道针尖:
隧道针尖的结构是扫描隧道显微技术要解决的主要问题之一。针尖的大小、形状和化学同一性不仅影响着扫描隧道显微镜图象的分辨率和图象的形状,而且也影响着测定的电子态。
针尖的宏观结构应使得针尖具有高的弯曲共振频率,从而可以减少相位滞后,提高采集速度。如果针尖的尖端只有一个稳定的原子而不是有多重针尖,那么隧道电流就会很稳定,而且能够获得原子级分辨的图象。针尖的化学纯度高,就不会涉及系列势垒。例如,针尖表面若有氧化层,则其电阻可能会高于隧道间隙的阻值,从而导致针尖和样品间产生隧道电流之前,二者就发生碰撞。
目前制备针尖的方法主要有电化学腐蚀法、机械成型法等。
制备针尖的材料主要有金属钨丝、铂-铱合金丝等。钨针尖的制备常用电化学腐蚀法。如果针尖上只有一个或两个原子的突出,原则上就能获得原子级的分辨率,因为隧穿几率随后度迅速衰减,所以针尖的锐度、形状和化学纯度直接影响着STM的扫描效果和分辨率。本实验用直径为0.5mm的钨丝通过电化学腐蚀的方法制备STM 针尖。U型管中装有NaOH水溶液,U型管一端插入要溶解的钨丝作为阳极,另一端插入阴极,材料也是钨丝。当在阳极上加约5~40mA的电流时,阴极便有气泡放出。
制备过程中,钨丝的一端插入到电解液时,溶液表面由于表面张力使得钨丝周围形成一个弯曲的液面,此处的钨丝溶解的较快,逐步细化,最终形成针尖,弯曲液面越短,形成针尖的纵横比越小,要注意控制弯曲液面的变化,使得针尖具有较小的纵横比,此时插入到液面以下的钨丝长度约为0.5~1mm为宜,本实验用3mol/L的NaOH为电解液,温度为室温。
3、三维扫描控制器:
压电陶瓷有压电性质,能将1mV~1000V电压信号转换成十几分之一纳米到几微米的位 移。用它制成三维扫描控制器,控制针尖的微小移动。
减震系统:任何微小的震动都会对仪器的稳定产生影响,隔绝震动的方法:提高固有频率和 使用震动阻尼系统。
底座结构图:降低大幅度震动带来的影响,另外仪器中对探测部分采用弹簧悬吊的模式,提高固有频率。
4、STM的结构和工作模式
STM仪器由具有减振系统的STM头部、电子学控制系统和包括A/D多功能卡的计算机组成(图2).头部的主要部件是用压电陶瓷做成的微位移扫描器,在x-y方向扫描电压的作用下,扫描器驱动探针在导电样品表面附近作x-y方向的扫描运动.与此同时,由差动放大器来检测探针与样品间的隧道电流,并把它转换成电压,反馈到扫描器,作为探针z方向的部分驱动电压,以控制探针作扫描运动时离样品表面的高度.STM常用的工作模式主要有以下两种:(1)恒流模式
图2 恒流模式
利用压电陶瓷控制针尖在样品表面x-y方向扫描,而z方向的反馈回路控制隧道电流的恒定,当样品表面凸起时,针尖就会向后退,以保持隧道电流的值不变,当样品表面凹进时,反馈系统将使得针尖向前移动,则探针在垂直于样品方向上高低的变化就反映出了样品表面的起伏.将针尖在样品表面扫描时运动的轨迹记录并显示出来,就得到了样品表面态密度的分布或原子排列的图像.这种工作模式可用于观察表面形貌起伏较大的样品,且可通过加在z方向的驱动电压值推算表面起伏高度的数值.恒流模式是一种常用的工作模式,在这种工作模式中,要注意正确选择反馈回路的时间常数和扫描频率.(2)恒高模式
图3 恒高度模式
针尖的x-y方向仍起着扫描的作用,而z方向则保持绝对高度不变,由于针尖与样品表面的局域高度会随时发生变化,因而隧道电流的大小也会随之明显变化,通过记录扫描过程中隧道电流的变化亦可得到表面态密度的分布.恒高模式的特点是扫描速度快,能够减少噪音和热漂移对信号的影响,实现表面形貌的实时显示,但这种模式要求样品表面相当平坦,样品表面的起伏一般不大于1 nm,否则探针容易与样品相撞.
二、实验步骤:
1、用上述介绍的化学腐蚀的方法制3~4根STM 的针尖。
2、用旧针尖来调节实验中所需要的针尖高度进行粗逼近,直到针尖距样品表面为 0.5-1.0mm之间,在以此为参考,装上制备好的新针尖,在装针尖的过程中要注意关闭电子控制系统。装好后检测针尖与样品是否短路,系统反馈是否良好。
3、装好针尖后,运行STM系统控制软件,设置隧道电流和偏置电压分别为1nA和1.1V。进行自动进针,系统报警后进行手动进针,直到复合扫描要求为止,再对石墨样品表面进行扫描,采集石墨样品表面图像数据后进行处理,并根据石墨样品的晶格参数计算系统X和Y方向压电陶瓷的电压灵敏度。
三、实验数据处理:
图4 扫描图像
图片顺序从左至右、从上至下依次为123456。
图1:偏置电压1000mv~500mv,x*4,y*4,周期2000ms 图2:x*2,y*2,周期1000ms 图3: x*1.2,y*1.2,周期500ms 图4: y*0.2,x *1.2,周期500ms 图5: y*0.04,x*1.2,周期500ms 图6:周期150ms,其他不变 隧道电流2.57nA 通过分析上述图像可知:
1、在电流一定的条件下,减小偏置电压,样品与针尖距离减小;偏置电压一定,增大隧道电流,样品与针尖距离减小。
2、同等倍数缩小x,y的取值范围,同时对应的缩小扫描时间,会导致扫描得到的图像放大同等倍数。
3、缩小周期,会同等倍数放大扫描图像。
4、由于石墨碳原子的六角网格第一层与第二层错开六角形对角线的1/2而平行叠合,第一 层与第三层位置重复,属于ABAB型序列。又由于STM的局限性,只能在所拍得图片中显示空间原子较密的部分原子。所以我们看到的原子结构实际上只保留了AB两层重叠的相邻原子。而错开的部分原子并未在图像中显示。我们看到的原子间距为2.46 Å。结构示意图如下。
图5 石墨结构示意图
下面计算压电陶瓷的压电系数。
图6 扫描图像
隧道电流(mA)
1.00 偏压(mV)
400.00 扫描时间(ms)
800 X轴范围(V)
Y轴范围(V)
在图上取石墨晶体的某一晶向AB,AB长度为10cm,直线AB在x轴和y轴的截距分别为8.6cm、4.8cm,与x轴夹角为θ。夹角cosθ=8.6/10=0.86,sinθ=4.8/10=0.46 X方向压电系数:1V/(5*0.246nm*4.8/10)=1.69V/nm Y方向压电系数:1V/(8*0,246nm*8.6/10)=0.590V/nm
四、实验总结与讨论:
1、扫描速度不宜过快,也不宜过慢。扫描速度太快会导致扫描反馈不够及时,可能会导致毁坏探针;扫描速度过慢会导致放大探针本身的不稳定性,对扫描图像造成较大的干扰影响。
2、调节针尖与样品的距离的过程中,先用粗调,再细调。细调的过程中,电压的调节范围应该是在100v左右,否则就会没有调节到理想的位置。
3、要想得到最好的图像,针尖要很理想,且样品最好要光滑,且在扫描的过程中系数对图像质量的影响也是很重要的。
4、在图像分析中,x,y方向原子分布不均匀,y方向原子分布更为密集,所以可以保持x范围不变,缩小y的范围,来得到更好的图像。
5、实验的扫描效果并不是很理想,图像不是很清晰。这和扫描过程中的众多因素有关,如外界信号的干扰、扫描参数的设置、真空度、石墨样品表面的光滑程度等,其中影响最大的就是制备的针尖质量的好坏,如针尖纵横比和尖锐程度。
6、纵横比越小的针尖,做实验所得的效果越好。弯液面的形状决定针尖的纵横比和整体形状。弯液面越短,纵横比越小。在化学反应进行的过程中,钨丝截面的变化和扰动等原因均可能引起弯液面位置的变化,为避免形成畸形针尖,应时刻注意液面的变化。所以不能对着样品吹气,不能使桌面振动。钨丝在溶液中的长度也直接影响针尖的质量。如果在溶液中的残端太长,在重力的作用下,残端掉落得快,这样的针尖纵横比大,会影响针尖的稳定性。
五、参考文献
[1] 熊俊,近代物理实验,北京:北京师范大学出版社,2007
第五篇:实验报告
实验报告
固体碱催化剂KF/CaO-MgO-Fe3O4的制备与表征
摘要:采用在制备复合物CaO—MgO的过程中加入一定量磁性基质Fe3O4来制备磁性复合物CaO—MgO—Fe3O4,再以等体积浸渍法负载KF,制备了负载型磁性固体碱催化剂KF/CaO—MgO—Fe3O4,并将其用于催化菜籽油与甲醇酯交换反应制备生物柴油。重点考察催化剂制备条件对酯交换反应的影响。实验结果表明,在m(CaO):m(MgO)=9:
1、KF负载量为载体质量的20%和500℃焙烧2h制备的催化剂具有较好的催化活性,酯化率达98.4%。磁性催化剂具有多孔结构,孔径在100nm左右,催化剂粒径(30—50)nm,是负载型磁性纳米固体碱催化剂。
关键词:磁性纳米固体碱;生物柴油;复合氧化物催化剂;磁性纳米复合氧化物催化剂
1.时代背景
生物柴油是一种典型的“绿色能源”,它是以植物油、动物油、餐饮废油等为原料制成的液体燃料,是一种清洁的可再生能源,是优质的石油替代品。大力发展生物柴油,对经济可持续发展,推进能源利用,控制城市空气污染,减轻环境压力具有十分重要的战略意义。
能源是经济社会发展的重要动力,面对全球经济的迅速发展,人类对能源的需求日益增长,中国能源消耗每年以超过10%的速度增长。长期以来,石化燃料一直是人类消费的主要能源。石化能源不可再生,按照目前已探明的世界石油储量和开采速度,全球石油的平稳供应只能维持40.6年。世界石油资源的日益枯竭和世界经济高速发展对石油资源的需求急速膨胀,使得原油的价格日益飚升,厄瓜多尔石油部长预计09年全球原油均价为55一60美元/桶(中金在线,2009),2009年原油均价或至75美元/桶(中证网,2008)。中国社会科学院2008年4月7日发布的《中国能源发展报告(2008)》蓝皮书中预计,2007一2020年间,中国石油消费仍将保持较高的增长速度,其中2010年和2020年中国石油消费量将达4.07亿吨和5.63亿吨,分别比2006年提高17.42%和62.47%。报告预计,2007年至2010年石油需求年均增长率为4.5%,2010至2020年石油需求年均增长率为3.3%。其中柴油比重将继续提高,由2006年的34%提高到2007年的36%;汽油所占比重将减少;煤油比重保持在3%至4%之间(中证网,2008)。近年来,中国石油消费逐年递增,GDP和石油消费关联度提高、交通运输业迅速发展、企业拥有量快速增加等因素共同推动着中国的石油消费。根据中国石油和化学工业协会的统计,2008年我国原油表观消费量为3.65亿吨,其中进口原油1.79亿吨,对外依存度达到49%。随着农用柴油机械的发展,我国柴油市场的供需矛盾将不断突出,预计到2010年,我国柴油的需求量将超过1.5亿吨。同时,世界柴油需求量占燃料油总量的比例将会继续上升,全球柴油供应量不足的矛盾将不断激化,因此世界各国都把目光放到了石油替代能源—生物柴油的开发与应用上面。生物柴油是一种清洁的绿色能源。生物柴油和常规柴油的性能比较见表1(孙纯和刘金迪,2006)。与普通柴油相比,生物柴油具有诸多优良的环保性能。使用生物柴油燃料,可降低90%的空气毒性,降低94%的患癌率。由于生物柴油的含氧量高达10%,因此燃烧较为充分,排烟少,废气中只有少量一氧化碳和氮氧化合物,没有苯并芘及二恶英等。排放的CO与矿物柴油相比减少约48%,有催化剂时减少约95%,排放的CO2比矿物柴油减少约50%,SO2和硫化物的排放可减少30%,有催化剂时可减少70%以上;燃烧后残炭低,废气中微小颗粒物含量低(0.02%);具有良好的低温发动启动性能,无添加剂冷滤点达一20℃;具有较好的润滑性能,降低了喷油泵、发动机缸体和连杆的磨损率,使用寿命更长;具有较好的安全性能,生物柴油闪点大于100℃,高于矿物柴油,在运输、储存、使用方面十分安全;具有良好的燃烧性能,其十六烷值超过50,燃烧性能优于矿物柴油,燃烧后残留物呈微酸性,可延长催化剂和发动机的使用寿命;生物柴油的生物降解率高(3星期后降解率:生物柴油98%,矿物柴油70%);具有可再生性能,与矿物柴油不同,其原料来源为各种植物油或动物油,原料供应源源不断;无须改动柴油机,即可直接添加使用生物柴油,并且无需另外添设加油设备、储存设备及人员的特殊技能培训;生物柴油以一定比例与石化柴油调和使用,可降低油耗、提高动力,且能减少尾气污染,改善环境质量(邢英和郡怡佳,2006;张良波,2008)。
2001年美国环保署颁布的生物柴油测试报告表明,与石油柴油相比,使用B20(20%生物柴油与80%柴油的混合物)的柴油混合燃料,可以使尾气中的生物柴油催化剂—磁性纳米固体碱的制备及应用烟尘含量降低10.1%,低碳烃降低21.1%,一氧化碳降低11.0%;若使用未掺杂的生物柴油,则可以使致癌物质多环芳烃减少80一90%,一氧化碳减少48%,二氧化硫减少30%一50%,烟度降低75%。生物柴油尾气排放符合欧Ⅲ标准。
国外生物柴油发展现状:能源危机和环境污染等问题的持续存在,越来越呼唤清洁能源的诞生。经科学家数十年的艰辛努力,新型替代能源—生物柴油得到了迅速发展,并己开始规模化使用。近年来,美国和欧盟纷纷制定优惠政策,鼓励本国企业大力发展生物柴油产业,支持农民种植油料作物,并提供高额的财政补贴,对生物柴油给予税收优惠,以提高生物柴油的市场竞争力,其发展势头十分强劲。
美国历来都相当重视能源战略,积极发展可替代能源是美国能源战略中的重要组成部分,作为一种新型替代能源,生物柴油在美国已经发展了相当长的时间。自20世纪90年代初,美国就开始将生物柴油投入商业应用,目前生物柴油己成为该国增长最快的新能源产品。1992年美国制定的能源政策措施中计划,到2010年,非石油的替代燃料要占到进口石油燃料总量的10%。2002年,美国材料试验学会(ASTM)通过了生物柴油标准。
2006年,美国生物柴油产量达2.5亿加仑,并计划于2012年使美国的生物柴油消费量增加到4.62亿升。截至2006年9月,美国共有81家生物柴油厂,另外还有82个项目正在投建或扩建当中。为了进一步鼓励使用生物柴油,美国农业部决定今后两年每年拿出1.5亿美元用以补贴生物柴油等生物燃料的使用。2006年,欧盟生物柴油产能超过600万吨,产量达到420万吨。2007一2010年间,欧盟生物柴油产量将维持33.9%的年增长幅度,并计划在2010年将生物
柴油占欧盟交通能源使用量的比例提高到5.8%,2020年提高到10%。为了增加生物柴油在燃料消费市场的需求量,欧盟于2008年1月提出了相应的议案,要求到2010年欧盟国家生物柴油消费量达到燃料消费市场的10%;另一项强制性目标要求欧盟国家到2012年生物柴油消耗量必须达到燃料总消耗量的6.5%,从而确保实施欧盟生物柴油的长期发展计划,实现环境的可持续性发展。欧盟制定了多项优惠政策鼓励开发和使用生物柴油,如免征生物柴油增值税,并规定机动车使用生物燃料占动力燃料总额的最低比例。德国、法国、意大利、奥地利、比利时、丹麦、匈牙利、爱尔兰、西班牙等国也纷纷开始研究和发展生物柴油,并制定了各自的发展战略,在生物柴油研究开发和产业化方面取得了相当的进展。
德国是目前全球最大的生物柴油生产国,主要采用纯态生物柴油(B100)作为车用燃料,实施免征燃油税政策(邢英和都怡佳,2006)。德国政府大力提倡使用生物柴油,对德国的生物柴油生产企业全额免除税收,使得生物柴油的价格低于普通柴油。2004年德国已有 1800个加油站供应生物柴油,并已颁布了德国生物柴油标准(DIN V51606)。法国对生物柴油的税率也为零,市场上
使用BS生物柴油,在排放控制严格的地区,使用B30生物柴油作为公共交通燃料。在欧洲,意大利是生物柴油使用最广泛的国家,基本上使用纯态生物柴油作为车用燃料,主要用于柴油车辆和农业机械方面。意大利对生物柴油的税率也为零,在国内已普及使用,使用标准是BS。在奥地利,生物柴油的税率为石化柴油的4.6%,目前有3个生物柴油生产厂,总生产能力超过14万吨/年。
葡萄牙的生物柴油生产主要使用菜籽油、大豆油和棕搁油,目前约有6家工厂,生产能力超过30万吨/年。近年来,西班牙也开始大力发展生物柴油产业,目前在建和己建设完成的生物柴油企业约10家,产能约40一60万吨/年,所有这些生物柴油项目建成后,西班牙有望挤入欧洲生物柴油生产四强。芬兰富腾能源公司在芬兰南部城市波尔沃兴建了1家生物柴油厂,于2007年夏季完工并投产,产量约为17万吨/年。拉脱维亚Bio一Venia公司也计划在波罗的海沿岸的文茨皮尔斯建造该国首座大型生物柴油总厂,产量约10万吨/年(段炼,2009)。近年来,阿根廷生物柴油出口量巨大。根据阿根廷农业部的统计资料显示,2007年阿根廷生物柴油出口量达31.9万吨的,其中76%出口给美国,23.7%出口给欧洲;2008年,阿根廷生物柴油产量突破150万吨,生物柴油协会预计,到2010年生物柴油产量将达到220万吨。目前阿根廷约有生物柴油生产厂8家,产能约60万吨/年。阿根廷政府鼓励企业投建生物柴油厂,为生物柴油企业提供优惠的税收措施,希望到2010年可以开始使用5%生物柴油。
在世界市场上,马来西亚逐步上升为生物柴油的主要出口国(段炼,2009)。马来西亚的生物柴油工业兴起于2006年,2006年7月,GoldenHope成立了第一个产能3万吨/年的工厂,2007年上半年,与马来西亚棕榈油委员会(MPOB)又合作兴建了第二个6万吨/年的的分厂。据市场统计,2007一2008年,已经投入运营的生物柴油工厂约12一巧家。到2007年底,这些工厂生产量达到约60一70万吨,到2008年中期约有200一2400万吨。在马来西亚生产的燃料作为Enffue(环境友好型燃料)的品牌被出口到世界各国,如美国、欧盟以及亚太国家。日本从1995年开始研究生物柴油,1999年建立了以煎炸油为原料日产259吨的生物柴油工业化生产实验装置,2003年生物柴油年产量达40万吨,并实施了生物能源“阳光计划”(全球品牌网,2009)。此外,印度有“绿色能源工程计划”(全球品牌网,2009)。加拿大惊呼本国生物能源行业落后于美欧和日本,大力调整政策迎头赶上;目前,瑞士正准备种植10万公顷生物柴油植物,借此解决每年50%左右的石油需求量;南美的巴西、阿根廷、哥伦比亚和亚洲的韩国以及俄罗斯等国也正积极发展生物柴油。
国内生物柴油发展现状:与国外相比,我国生物柴油的研发起步较晚,但发展迅速。目前我国生物柴油各方面的研究都取得了阶段性成果,一部分科研成果已达到国际先进水平,研究内容包括油脂植物的分布、筛选、培育、遗传改良及其加工工艺和设备。海南正和生物能源公司、湖南天源清洁燃料有限公司、四川古杉油脂化工公司和福建卓越新能源发展公司都己开发出拥有自主知识产权的生物柴油生产技术,并相继建成规模超过万吨的生物柴油生产厂,这标志着生物柴油产业在中国大地的蓬勃发展(武彤等,2008)。
我国对可再生能源生产企业也逐渐采取各种采取优惠措施,如减半征收增值税。随着《可再生能源法》的颁布,国家对可再生能源生产的政策也逐步确立,并出台了其他一系列配套细则,如2006年1月国家发改委颁布的《可再生能源产业发展指导目录》、《可再生能源发电有关管理规定》等法律;2006年6月财政部出台的《可再生能源发展专项资金管理暂行办法》;国务院常务会议审议并原则通过的《可再生能源中长期发展规划》等。从“十一五”起,国家和地方就开始在资金和财税两个方面大力支持可再生能源生产企业的发展。我国“十一五”纲要提出要发展各种石油替代品,将发展生物基液体燃料确定为国家产业的发展方向。2007年9月4日,国家发展和改革委员会向全社会公布了我国《可再生能源中长期发展规划》,提出到2010年生物柴油年利用量达到20万吨,2020年生物柴油年利用量达到200万吨。
2001一2004年是我国生物柴油企业发展的起始阶段。2003年,四川古杉油脂化学公司在河北邯郸建成了3万吨/年的生物柴油工厂,这是当时我国建成的最大的生物柴油工厂。截至2003年,我国共有5家生物柴油生产工厂,年生产能力约9万吨,年产量达到4一5万吨,主要以餐饮和食品企业回收的废油为生产原料。2004年我国新建生物柴油项目明显增多,当年开工建设的生物柴油项目主要有:河南星火生物工程公司的5万吨/年项目、福建源华能源科技公司的3万吨/年项目、四川古杉集团本部的3万吨/年项目、山东绿诺新能源公司的2万吨/年项目。此外,还有许多小型生物柴油项目开工建设。
从2005年开始,我国生物柴油产业进入高速发展阶段。到2005年底,我国已有8家生物柴油生产厂,年生产能力超过20万吨,较上年增长一倍多。其中,四川古杉油脂化工公司旗下的三个生物柴油工厂合计年生产能力达到7万吨,成为我国最大的生物柴油生产企业;河南星火生物工程公司的生物柴油年产能达到5万吨,位居全国第二位。2005一2006年我国生物柴油产业发展速度超出市场预期,新开工建设的生物柴油项目共有20多个,其中出现了一批年产5万吨以上的大型生物柴油项目。2006年部分大型生物柴油项目陆续竣工投产,使得我国生物柴油产能迅速增加。国家粮油信息中心统计数据显示,到2006年底,我国已有25家生物柴油生产企业,年生产能力达到120万吨,是2005 年的6倍。2006年我国建成投产的主要生物柴油项目有:安徽国风集团和江苏清江生物能源科技公司年产20万吨的生物柴油项目,这两个企业是目前我国单厂生产规模最大的生物柴油企业;四川古杉集团和山东华鹜集团年产10万吨生物柴油项目;浙江东江能源科技有限公司年产5万吨的生物柴油项目;江苏丹阳河海植物油厂年产4万吨的生物柴油项目;中国生物柴油国际控股有限公司、河南天冠燃料乙醇公司及石家庄金谷生物制品厂年产3万吨的生物柴油项目。
到2006年底,我国生物柴油产能达到300万吨/年,生物柴油产能继续增加,生产企业近50家。其中,江苏碧路生物能源饲料蛋白公司投资建设的年产25万吨生物柴油项目于2007年底建成投产,成为我国最大的生物柴油工厂。2007年我国建成投产的年产5万吨以上的其他大型生物柴油项目主要有:江苏宜兴四海公司巧万吨/年项目;辽宁瑞联科技发展公司、河北富宽油脂集团公司、河南星火生物工程公司、河南天冠燃料乙醇公司上海公司、江苏无锡华宏生物燃料公司、广西柳州明慧生物燃料公司、内蒙古天宏生物能源科技公司及四川古杉集团北京分公司10万吨/年项目;吉林植物油公司和金鹰集团福建莆田公司6万吨/年项目;河北东安实业公司、闻仁德上海环保能源公司及中国生物柴油国际控股有限公司5万吨/年项目。此外,还有许多年产5万吨以下的生物柴油项目建成投产。2007年全国生物柴油产能已达300万吨,但实际产量只有30万吨,增产空间较大。随着我国生物柴油产能快速扩张,生物柴油产量也随之增加。但由于2007年10月份以来国内外食用植物油价格大幅上涨,伴随着废弃油脂的价格也一路攀升,原料竞争加大,生物柴油生产成本提高,导致目前国内已建成的大型生物柴油企业开工率都保持较低水平,国内企业对生物柴油产业的投资热情降低,在一定程度上制约了国内生物柴油产业的发展。2008年新开工建设的生物柴油项目已明显减少,而停建和缓建的生物柴油项目却在不断增加,许多原计划今年扩大产能的企业也大都暂停了改扩建工作。尽管如此,近年我国生物柴油生产能力仍将会继续保持增加的趋势,只是增速开始放缓。2008年国家发改委批准了中石油南充炼油化工总厂6万吨/年、中石化贵州分公司5万吨/年和中海油海南6万吨/年3个小油桐生物柴油产业化示范项目,中国生物柴油的产业化得到逐步推进。四力l古杉、海南正和、福建卓越、重庆华正、北京清研等数十家企业参与生物柴油产业的开发与生产,并取得了一定的成果。到2008年底我生物柴油催化剂—磁性纳米固体碱的制备及应用国生物柴油生产能力至少增加100万吨,达到400多万吨。
近年来,我国相继建成了许多年产量过万吨的生物柴油厂。计划到2010年,我国年生产生物柴油100万吨;到2020年,年产生物柴油将达到900万吨。预计到2010年,我国生物柴油需求量将达2000万吨。面对着巨大的需求缺口,投资我国生物柴油的时机己经出现。
2.磁性纳米固体碱
2.1 磁性纳米固体碱的制备设想:通过一定的方法,将固体碱材料多功能化,即将系列碱土金属氧化物的负载型固体碱催化剂与磁性基质组合制备成系列磁性固体碱催化剂(KF/XO一Fe3O4,X=Mg,Ca,Sr),赋予固体碱催化剂以磁性,制备出磁性纳米固体碱双功能催化剂,比较该系列催化剂的催化性能,筛选出催化效果较好的催化剂,并研究其在生物柴油制备中的应用。由于氧化钡(BaO)会溶解在甲醇中,并且有毒,因此一般很少研究氧化钡催化制备生物柴油。主要研究内容如下:(l)磁性固体碱催化剂的制备采用等体积浸渍法,研究了催化剂(KF/XO一Fe3O4,X=Mg,Ca,Sr)制备条件的优化(KF/XO的质量比、焙烧温度和焙烧时间),并采用透射电镜(TEM)、低温从吸附一脱附、X一射线粉末衍射(XRD)、拉曼(Raman)、Hanunett指示剂和振动样品磁强计(VSM)等手段对催化剂进行表征。(2)筛选出催化效率较好的催化剂,进一步研究其在生物柴油制备中的应用,包括优化酯交换反应条件(催化剂用量、醇/油摩尔比、反应温度和反应时间),催化剂耐酸耐水性能和催化剂回收、重复使用和再生。初步探讨催化反应机理。(3)初步设计生产工艺流程和磁性分离管。2.2 磁性纳米固体催化剂的制备:以共沉淀法、等体积浸渍法和焙烧法制备催化剂。以n(Na2CO3):,n(NaOH)=3:1的溶液为底液和沉淀剂,称取一定比例的无水CaCl2和MgCl2·6H20,混合加人蒸馏水,搅拌至完全溶解,置于恒压滴液漏斗。400 r/min进行搅拌,控制滴液速率为l滴/s。滴加完毕后,60℃陈化6h,停止搅拌,静置1h,抽滤,洗涤至无杂质离子,马弗炉900℃焙烧4 h,得到钙镁复合氧化物载体。取一定量的载体粉末,以一定比例的KF溶液等体积浸渍,一定温度下焙烧一定时间,即得负载型KF/CaO—MgO固体碱催化剂。
2.3 磁性纳米固体碱的研究结论:采用共沉淀法,以钙和镁氧化物为复合载体,制备负载型纳米固体碱催化剂KF/CaO—MgO,在m(CaO):m(MgO)=9:
1、KF负载量为载体质量的25%、焙烧温度600℃和焙烧时间3 h的条件下,制备的催化剂催化活性最高,酯化率达到95%以上。因此,磁性固体催化剂制备生物柴油是成功可行的。磁性固体催化剂是一种高效的环境友好催化材料,是在固体催化剂上负载磁性基质,使其不仅具有磁性功能而且具有碱性的催化功能的双重功能。这种催化剂具有较高的催化活性;易与反应体系分离回收,具有可再生能力;对环境友好,对反应设备没有腐蚀。
3.复合氧化物固体碱催化剂的研究
水滑石经煅烧后形成的复合氧化物中二价金属离子和三价金属离子分散均匀,可形成与无水碳酸钠碱强度相当的固体碱;通过调节水滑石中所含双金属离子的种类以及配比可对其碱强度和孔径分布实现有效调节。据报道,以水滑石煅烧制得的复合氧化物作为非均相催化剂可用于催化制备生物柴油,如David G Cantrell等用醇油物质量比为30:1,反应时间为3 h,在60℃下油脂转化率最高为74.8%;Wenlei Xie等。在催化剂用量为油重的7.5%,醇油物质量比为15:l,反应9 h后,油脂转化率为67%;陈和等在230℃,醇油物质量比12:1,催化剂用量为棉籽油油重的2%条件下,反应3 h后甲酯收率达到90%以上;Chawalit N等以Ca—Zn复合氧化物为催化剂,在60℃,101.325 kPa,醇油物质量比30:1,催化剂用量为油重的10%,反应1h后甲酯收率达94%;颜姝丽等将Zn/A1类水滑石的煅烧产物用于菜籽油一甲醇酯交换反应,发现具有较好的催化活性;齐涛等通过调节Zn/Al类水滑石中Zn/Al物质的量比,在200℃,2.5 MPa,醇油物质的量比为42:1,催化剂用量为油重的1.4%条件下用于催化菜籽油甲醇酯交换反应,菜籽油转化率达到80%。以水滑石煅烧制备的复合氧化物作为碱催化剂应用于生物柴油酯交换反应具有较高活性,但较大醇油比和较长反应时间限制了其在工业的应用。在前期研究基础上,通过共沉淀法,合成Zn/Al=4的复合氧化物,考察并优化了该固体催化剂在亚临界条件下催化菜籽油一甲醇酯交换反应的工艺条件以及高FFA和水含量对其催化反应的影响。Zn/A1复合氧化物催化生物柴油酯交换反应(齐涛 鲁厚芳 蒋炜 梁斌;四川大学化工学院)所得结论:1.用共沉淀法合成了Zn/A1为4的LDH,XRD分析表明样品具有较好的单一类水滑石结构。样品于400℃煅烧处理8 h后,对亚临界条件下菜籽油一甲醇的酯交换反应具有较好的催化活性。2.以Zn/A1复合氧化物为催化剂,在反应温度200℃,醇油物质量的比为24:1,搅拌转速为400 r/min,压力为2.5 MPa,催化剂用量为菜籽油油重的1.4%条件下,反应90min,菜籽油转化率可达84.25%。在催化酯交换反应中,该催化剂对FFA和水分具有一定的耐受能力。在FFA含量为油重的6%,水质量分数为10%时,油脂转化率仍在80%以上。
除此之外,下面有两例有关“复合氧化物催化剂”的研究进展。
Ca/Al复合固体碱催化剂用于生物柴油的制备(孙广东 李瑞娇 吴谋成;华中农业大学生物质能研发中心,食品科学技术学院)所得结论: 1.采用菜籽油为原料.自制固体碱催化剂制备生物柴油的试验条件为醇油摩尔比为12:1。催化剂用量为原料油质量的10%。反应时间9h,反应温度65℃,在此条件下收率90%以上。2.由于采用固体催化剂,非均相反应所需时间比传统采用液体酸或碱的时间长.但后处理大大简化.副产物甘油极易分离.避免了环境污染和有用化学品的流失。3.自制固体碱催化剂经过简单的处理后可重复使用。其生物柴油的主要指标达到了相关标准。
固体碱SrO—La203催化大豆油合成生物柴油(淳宏 谢文磊;河南工业大学化学化工学院)的研究:用共沉淀法制备了SrO—La2O3,复合氧化物固体碱催化剂,用于催化大豆油与甲醇的酯交换反应,并考察了催化剂制备方法及制备条件对大豆油转化率的影响。结果表明,采用共沉淀法、以氨水为沉淀剂,催化剂中Sr与La摩尔比1.5:1,催化剂焙烧温度973 K条件下显示出固体碱催化剂的最佳催化活性和稳定性。考察了酯交换反应条件对大豆油转化率的影响,结果表明,在甲醇沸点温度下,醇油摩尔比15:
1、催化剂用量占反应物总量3%、反应时问4 h的最佳条件下,大豆油转化率最高达92.63%。考察了SrO—La203,固体碱催化剂重复使用性能,结果表明,当催化剂重复使用3次后,再用773 K温度活化2h,催化剂活性仍保持90%以上,经5次重复利用后大豆油转化率仍能保持在90%左右。SrO—La203固体碱催化剂用于催化大豆油酯交换反应合成生物柴油,考察了反应条件、催化剂制备方法对大豆油转化率的影响,最后还考察了催化剂的稳定性能、在极性溶剂中活性组分的流失以及失活原因等方面问题。而且还考察了金属锶与镧摩尔比对固体碱催化剂的催化活性有较大影响。锶与镧摩尔比由0增大到2.0时,SrO—La203,固体碱催化大豆油酯交换反应的催化活性呈先增大后减小的趋势。在Sr/La摩尔比为1.5:1时,SrO—La203,催化剂对大豆油的转化率达到最大,为87.42%。原因是在SrO—La203系列固体碱中,金属锶与镧摩尔比较低时,经高温焙烧后形成的活性中心能够裸露在催化剂表面,并且随摩尔比增加有越多的碱性中心形成,催化活性不断增加;但过多增加锶含量,高温煅烧后不但不能完全分解形成的碱性中心,而且聚集在担体的表面和孔道内,堵塞孔道,使催化剂比表面积下降,固体碱催化活性降低。实验结果表明,SrO—La203,固体碱催化剂在催化大豆油与甲醇酯交换反应过程中Sr/La摩尔比选择1.5:1较合适。
综合上述前人的研究,利用复合氧化物固体碱催化剂来制备生物柴油的技术已经相当成熟,但仍存在一些问题。例如,如何保持它的高活性一直不变;如何寻找到最佳的二价金属和三价金属离子来制备复合氧化物固体碱;如何提高复合氧化物固体碱的催化活性及稳定性等等。尽管如此,但我相信随着化工技术的发展,采用此技术来制备生物柴油将不断被完善,形成化工生产规模。
4.固体碱KF/CaO-MgO-Fe3O4的设想
本课题拟通过一定的方法,将固体碱材料多功能化,即将磁性纳米固体碱与复合氧化物固体碱组合制备成KF/CaO-MgO-Fe3O4,赋予固体碱催化剂以磁性﹑稳定性﹑强碱性,制备出磁性纳米复合氧化物固体碱多功能催化剂,比较不同制备条件下催化剂的催化性能,筛选出催化效果较好的催化剂,并研究其在生物柴油制备中的应用。主要研究内容如下:(l)该固体碱催化剂的制备采用沉淀法和等体积浸渍法(本实验由于时间有限而且药品供给齐全,所以直接称取一定量CaO﹑MgO﹑Fe3O4粉末和KF·2H2O晶体进行搅拌混匀,然后高温煅烧),研究了该催化剂制备条件的优化(KF/(CaO-MgO)的质量比、焙烧温度、焙烧时间和后期对氧化钙和氧化镁的质量比),并采用X一射线粉末衍射(XRD)和Hanunett指示剂等手段对催化剂进行表征。(2)筛选出催化效率较好的催化剂,进一步研究其在生物柴油制备中的应用,包括优化酯交换反应条件(催化剂用量、醇/油摩尔比、反应温度、反应时间和原料油的酸值及水含量),催化剂耐酸耐水性能和催化剂回收、重复使用和再生。(3)初步探讨催化反应机理。
5.固体碱KF/CaO-MgO-Fe3O4的制备与酯交换反应
称取现成的CaO 9g﹑MgO 1g﹑Fe3O4 0.4g粉末以及一定量KF·2H2O晶体,并加入少许蒸馏水,在烧杯中用玻璃棒进行搅拌混匀,然后转移到坩埚里,再在马弗炉中一定温度下焙烧一段时间,待冷却后用坩埚钳取出,并装袋贴标签,放入干燥器中备用。
由于我们组的实验重点在于固体碱催化剂的制备与研究,因此酯交换反应时,参考文献中理论数据取菜籽油25g﹑无水甲醇 10.5g﹑催化剂 1g和磁石两粒 置于圆底二颈烧瓶,然后放在集热式恒温加热磁力搅拌器中反应三小时(67℃),待反应完全后进行减压过滤,去除混合物中的催化剂;再进行减压蒸馏,去除多余的甲醇,最后将混合液倒入分液漏斗中置于铁架台上进行静置,待分层明显后,从下放出甘油,从上收集粗生物柴油,称量甘油的质量和量取粗生物柴油的体积,并将粗生物柴油密封保存在贴好标签的药瓶里,以待后期气相色谱分析。
6.影响固体碱KF/CaO-MgO-Fe3O4的催化活性的因素分析
6.1 KF的用量
查阅相关文献资料,在催化剂制备过程中,25%KF用量(占载体CaO-MgO质量的百分数)作为理论最佳参考用量,另外我们组为研究不同KF用量对该固体碱催化活性的影响再取两组不同值(20%和30%)作为比较对象来研究。6.2 反应温度和焙烧时间 对于大多数催化反应来说,催化反应温度是一个必须考虑的因素,然而在催化剂制备过程中反应温度仍是一个重要的影响因素。纳米固体碱催化剂KF/CaO—MgO制备生物柴油的研究(李斌,段学友,王运,文利柏,韩鹤友)结果表明,在m(CaO):m(MgO)=9:
1、KF负载量为载体质量的25%和600℃焙烧3 h制备的催化剂具有较好的催化活性,酯化率达95%以上。因此,我们组把600℃和3h作为最佳反应温度和焙烧时间,然后仍各取两组不同值500℃和700℃,2h和4h作为参照来进行实验探。
气象色谱分析前生物柴油的产率估计
气象色谱分析后生物柴油的实际产率
6.4 CaO﹑MgO质量比
基于实验时间有限,我们组积极听取老师意见,先将CaO﹑MgO质量比定为9:1,然后再综合上面所考虑的因素设计正交试验表进行实验,再根据所得甘油的质量来对产率进行初步估计,竟而选择出比较合适的反应温度﹑KF用量和焙烧时间,再在这三者一定的条件下探讨研究钙镁比对固体碱催化活性的影响,这样既节约时间,又合理可行。根据以上数据,我们选择第七组﹑第九组和理论最佳组所对应的上面三个条件来研究三组不同钙镁比8:2,7:3,9:1对催化活性和产率的影响,从而选出制备固体碱催化剂的最佳反应条件来催化制备生物柴油。7.探讨制备生物柴油的最佳反应参数
查阅相关文献,取理论最佳酯交换反应条件:醇油摩尔比为12:1(菜籽油 25g﹑无水甲醇 10.5g),催化剂用量 1g,反应温度67℃,反应时间3h。确定上述因素后,我们组重点考察了制备三组不同CaO﹑MgO质量比(8:2,7:3,9:1)的固体碱催化剂对酯交换的影响,相关数据如下:
注:理论最佳组中钙镁比为9:1的一组由于产率高于百分之百,故而舍去,经分析有以下可能原因:1.在做气象色谱分析时,水杨酸甲酯或生物柴油的加入量不符合标准;2.这组固体碱是我们组制备的第一组催化剂,由于试验经验不足等问题,在实验操作过程中可能存在一些错误;3.气象色谱分析时操作过程可能出现错误等。
8.结论与后期实验
综合上述实验操作与数据,可以得到以下结论:
(1)经浸渍法制备的磁性纳米固体碱KF/CaO-MgO-Fe3O4催化剂用于菜籽油酯交换反应中,具有较高的催化活性,菜籽油转化率最高达98.4%,最低达62.8%,从此可看出催化剂的制备方式不同对生物柴油产率的影响。
(2)在甲醇沸点温度下,醇油摩尔比12:1(菜籽油25g﹑无水甲醇10.5g),催化剂用量1g,反应时间3h时,固体碱KF/CaO-MgO-Fe3O4在m(CaO):m(MgO)=9:
1、KF负载量为载体质量的20%、焙烧温度500℃和焙烧时间2h的最佳制备条件下菜籽油转化率可达98.4%。但考虑钙镁比对产率的影响,我们可以初步总结出8:2是一个比较稳定合适的比例,但仍需后期实验考察与分析。
(3)从以上数据可知,根据甘油的质量来进行产率的初步估计时存在巨大偏差,因此我们组根据估计的产率选择适当的固体碱制备条件来探讨钙镁比对产率的影响时没有预测的合理,这也是后期实验必须解决的问题。对于钙镁比的影响,除以上研究过的三组,再可选取实验序号为1﹑3﹑4和9所对应的固体碱制备条件来考察研究。(4)针对理论最佳组,在后期实验中也应重新试验,再综合上述所有数据进行对比判断,从而得出在酯化反应条件一定的情况下,针对固体碱的制备条件不同来选择最佳制备方案的结论。
参考文献:
1.李斌,段学友,王运,文利柏,韩鹤友,纳米固体碱催化剂KF/CaO—MgO制备生物柴油[期刊论文]——工业催化 2009(17)
2.齐涛,鲁厚芳,蒋炜,梁斌,Zn/A1复合氧化物催化生物柴油酯交换反应[期刊论文]——中国粮油学报2010(25)
3.孙广东,李瑞娇,吴谋成,Ca/AI复合固体碱催化剂用于生物柴油的制备[期刊论文]——粮油加工2007(11)
4.淳宏,谢文磊,固体碱SrO—La203催化大豆油合成生物柴油[期刊论文]——精细石油化工进展2009(10)5.赵军英,生物柴油磁性固体催化剂的制备及评价—中围农业科学院硕士学位论文2008 6.陈文伟,高荫榆,林向阳,谢何融,阮榕生,磁性固体催化剂催化制备生物柴油的研究[期刊论文]——福建林业科技2006(09)
7.蔡钒,张彬彬,林静,张国玉,方维平,杨乐夫,酯交换制生物柴油的CaO 固体碱催化剂,理化学学报2008 8.张世敏,张无敌,尹芳,制备生物柴油所用催化剂的研究进展 节能技术2007 9.钮劲涛,陶梅,金宝丹,生物柴油的合成技术,辽宁工程技术大学学报(自然科学版))2009(28)
10.范宝磊,曾彦飞,制备生物柴油过程中催化剂的研究进展,化工进展2008 11.汤颖,马超,顾雪凡,刘炜,制备生物柴油的固体碱催化剂研究进展,海南师范大学学报(自然科学版)2009(22)12.黄彩霞,刘荣厚,菜籽油碱催化法制备生物柴油的工艺参数,农业工程学报,2009(25)
13.姜绍通,刘新新,张福建,菜籽油脚制备生物柴油的原料预处理研究,CH INA O ILS AND FATS,2010(35)14.褚鸿博,赵红,菜籽油制备生物柴油适宜工艺条件及粘度与产率关系的探讨,天然气化工,2010(35)15.,徐伟,沈春红,柴油微乳化技术中乳化剂的选择及配方的研究,化工中间体,2006(09)
16.李为民,郑晓林,徐春明,徐鸽,邬过英,固体碱法制备生物柴油及其性能,化工学报,2005(56)
17.黄慨,颜涌捷,陈晴,张素萍,任铮伟, 钙镁负载型固体碱制备生物柴油的研究, 太阳能学报[J], 2009(20)18.王浚,制备生物柴油催化剂的研究和应用[D],贵州大学2008届硕士研究生学位论文,分类号: 2005221296,论文编号: O643.36。