第一篇:电阻应变片式传感器测量桥梁应力报告
传感器三级项目报告
项目题目:测量桥梁应力传感
器
指导教师:
仪表三班:
学
号: 一.摘要:
目前,多数桥梁都属于柱形桥,随着时间的推移,桥身桥体会逐渐出现承载过重导致应力不集中甚至出现裂纹等破损,为了保证人民的人身财产安全,就要对桥身桥体进行实时监控,采取及时的补救措施。在现在大多数的监测方案中,几乎都需要传感器技术,本文对传感器在测量桥梁应力的应用做了详细的描述。
传感器技术是利用各种功能材料实现信息检测的一门综合技术学科,是在现今科学领域中实现信息化的基础技术之一。现代测量、控制与自动化技术的飞速发展,特别是电子信息科学的发展,极大地促进了现代传感器技术的发展。同时我们也看到,传感器在日常生活中的运用越来越广泛,可以说它已成为了测试测量不可或缺的环节。因此,学习、研究并在实践中不断运用传感器技术是具有重大意义的。
测量桥梁应力的基本思路是将传感器粘附于桥身柱体部分,通过测量桥在空载和承载时传感器的数值变化,通过数值的转换与计算,得出桥梁承受的应力。因此,此次测量所需传感器属于压力传感器。二.电阻应变片的选择 1电阻应变片类型的选择
电阻应变计简称应变计(亦称为电阻应变片或简称应变片)。它由四个部分组成。
第一是电阻丝(敏感栅),它是应变计的转换元件。第二是基底和面胶(或覆盖层)。基底是将长肝气弹性体表面的应变传递到电阻丝栅上的中间介质,并起到电阻丝与弹性体之间的绝缘作用,面胶起着保护电阻丝的作用。
第三是粘合剂,它将电阻丝与基底粘贴在一起。第四是引出线,它作为联结测量导线之用。电阻应变片主要分为电阻丝式应变片、金属箔式应变片和金属薄膜应变片。由于电阻丝式应变片有横向效应对测量的精度有影响,使灵敏度降低,而且耐疲劳性能不高。金属薄膜应变片尚难控制电阻与温度的变化关系,不常用。故选用金属箔式应变片。箔式应变片的主要优点:
(1)本身性能稳定,受温度变化的影响小;
(2)使用温度范围比较宽,在-269—+350 度范围内稳定工作;
(3)适用于各种弹性体材料及弹性结构形式,粘贴操作简便;
(4)价格便宜。
引线引线 覆盖覆盖层 层基片 基片l电阻丝 式敏感栅电阻丝式敏感栅b 金属电阻应变片的结构
丝式金属应变片的敏感栅由直径0.01~0.05mm的电阻丝平行排列而成。
箔式应变片是利用光刻、腐蚀等工艺制成的一种很薄的金属箔栅,其厚度一般在0.003~0.01mm。其优点是散热条件好,允许通过的电流较大,可制成各种所需的形状,便于批量生产。
薄膜应变片是采用真空蒸发或真空沉淀等方法在薄的绝缘基片上形成0.1μm以下的金属电阻薄膜的敏感栅,最后再加上保护层。它的优点是应变灵敏度系数大,允许电流密度大,工作范围广。
(a)箔式应变片
(b)电阻丝式应变片
(c)丝式应变片
几种常用应变片的基本形式
2.应变计敏感栅的材料
(1)材料的选用原则
应变计敏感栅合金材料的选择对制作应变计性能的好坏起着决定性的作用,因此对制作应变计所用的应变电阻合金有以下的要求: a有较高的灵敏系数; b电阻率高;
c电阻温度系数小,具有足够的热稳定性;
d机械强度高,压碾或拉伸性能好,高温时耐氧化性能要好,耐腐蚀性能强;
e与其它金属接触的热电势小; f与引出线焊接容易。三.测量电路原理分析及设计
1.温度补偿原理
电阻应变片的温度补偿方法通常有线路补偿法和应变片自补偿两大类。1)线路补偿法
电桥补偿是最常用的且效果较好的线路补偿法。电桥输出电压U0与桥臂参数的关系为:
U0=A(R1 R4-RB R3)
式中:A——由桥臂电阻和电源电压决定的常数;
当R3和R4为常数时,R1和RB对电桥输出电压U0的作用方向相反。利用这一基本关系可实现对温度的补偿。2)应变片的自补偿法
这种温度补偿法是利用自身具有温度补偿作用的应变片来补偿的,称之为温度自补偿应变片。
由温度自补偿应变片的工作原理,要实现要实现温度自补偿,必须有
RtR0t[0(gs)]tK0K0
α0=-K0(βg-βs)
上式表明,当被测试件的线膨胀系数βg已知时,如果合理选择敏感栅材料,即其电阻温度系数α0、灵敏系数K0和线膨胀系数βs,使上式成立,则不论温度如何变化,均有ΔRt/ R0=0,从而达到温度自补偿的目的。
四.测量电路原理分析及设计 1.电桥电路原理
应变片将应变的变化转化成电阻的相对变化ΔR/R,还要把电阻的变化再转换成电压或电流的变化,才能用电测量仪表进行测量。
电桥电路的原理是:如下图的四臂电桥所示,因为应变片电阻值变化很小,可以认为电源供电电流为常数,即加在电桥上的电压也是定值,假定电源为电压源,内阻为零。当电桥平衡时,即电桥输出电压V0为零的条件是:R1R3=R2R4。
图2 当电桥后面接放大器时,放大器的输入阻抗都很高,比电桥的输出电阻大很多,因此可以把电桥输出端看成是开路。若电桥不平衡时,即R1R3≠R2R4时,电桥输出:
U0R1R3R2R4(R1R2)(R3R4)U
单臂电桥时,令R1=R2,R3=R4,R2,R3,R4为定值电阻,在应变片R1工作时,其电阻R1变化△R,此时电桥的灵敏度为:ku=U/4 电压输出为:
UO=(U/4)(△R1/R1)2.非线性误差
为减少非线性误差,电桥电路常用的措施为:①采用差动电桥;②采用恒流源电桥。为了提高电桥灵敏度或进行温度补偿,在桥臂中往往安置两个应变片,电桥也可采用四臂差动电桥,其输出电压为:
UO=U△R/R 所以,本设计所选用的是全桥形式的差动电桥,且为提高电桥灵敏度或进行温度补偿,每个桥臂都安置两个应变片。3.转换电路和信号放大电路
来自传感器的信号通常都伴随着很大的共模电压(包括干扰电压)。一般采用差动输入集成运算放大器来抑制它,但是必须要求外接电阻完全平衡对称,运算放大器才具有理想特性。否则,放大器将有共模误差输出,其大小既与外接电阻对称精度有关,又与运算放大器本身的共模抑制能力有关。一般运算放大器共模抑制比可达80dB,而采用由几个集成运算放大器组成的测量放大电路,共模抑制比可达100~120dB。
结合以上几点,采用了低漂移运算放大器构成的三运放高共模抑制比放大电路。具体的电路如图所示
本电路主要分为三个部分,第一就是调理调幅电路,二就是电桥转换电路,三就是增益放大电路,这里面还包括共模抑制电路。
4.电桥转换电路
电阻应变片的电阻R1,R2,R3,R4的电阻都为350欧。由这四个电阻组成一个全桥放大电路。
5.放大电路和共模补偿电路
它由三个集成运算放大器组成,其中N1,N2为两个性能一致(主要指输入阻抗,共模抑制比和增益)的同向输入通用集成运算放大器,构成平衡对称(或称同向并联型)差动放大输入级,N3构成双端输入单端输出的输出级,用来进一步抑制N1,N2的共模信号,并适应接地负载的需要。
由输入级电路可写出流过R6,R7和R14都电流IR为
IR=(U02-Ui2)/R7=(Ui1-U01)/R6=(Ui2-Ui1)/R14
由此求得 U01 =(1+R6/ R14)Ui1-R6 Ui2/ R14 U02 =(1+R7/ R14)Ui2-R7Ui1/ R14
于是,输入级的输入电压,即运算放大器N2与N1输出之差为
U02-U01 =[1+(R6+R7)/ R14](Ui2-Ui1)
其差模增益Kd为 Kd=(U02-U01)/(Ui2-Ui1)=1+(R6+R7)/ R14
它的原理是由运放U1,U2组成第一级差分式电路,U3组成第二级差分式电路。在第一级电路中,V1,V2分别加到U1和U2的同相端,R6,R7和R14组成的反馈网络,引入了深度的电压串联负反馈,两运放U1,U2的两输入端形成虚短和虚断,按照上面的分析,可以计算出: 差模增益Kd为
Kd1R6R7 R14R12 R10R12RR7(16)R10R14运算放大器U3的差模增益:Kd3电路的放大增益为:AKdKd3所以设计的放大电路的放大倍数为:ARR7R12(16),试验中,这个实验可以调节R14,R15R10R14同时改变,达到调节增益的目的。而且放大增益很大,有很宽的调节范围。
6.电路调零调幅电路
如图所示,通过调节R5可以调节电桥的供电电压,并且可以在任何时候把电路调零,所以该电路称为调零调幅电路。电路图如下:
此电路灵敏度很大。五.总结与心得
经过本次三级项目的学习与设计,不仅对电阻应变式传感器有了更深入的了解,还锻炼了我们的动手能力,对本方向上的专业知识掌握的更系统化更全面;在组内我们几个人分工明确,互相学习,充分培养了个人沟通能力和团队协作能力相信对以后的工作会有很大的益处。
第二篇:电阻应变式称重传感器等工作原理
电阻应变式称重传感器等工作原理
电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。
由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。下面就这三方面简要论述。
一、电阻应变
电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。
设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R:
R = ρL/S(Ω)(2—1)
当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有:
ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2(2—2)
用式(2--1)去除式(2--2)得到
ΔR/R = Δρ/ρ + ΔL/L – ΔS/S(2—3)
另外,我们知道导线的横截面积S = πr2,则 Δs = 2πr*Δr,所以
ΔS/S = 2Δr/r(2—4)
从材料力学我们知道
Δr/r =-μΔL/L(2—5)
其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。把式(2—4)(2—5)代入(2--3),有
ΔR/R = Δρ/ρ + ΔL/L + 2μΔL/L
=(1 + 2μ(Δρ/ρ)/(ΔL/L))*ΔL/L
= K *ΔL/L(2--6)
其中
K = 1 + 2μ +(Δρ/ρ)/(ΔL/L)(2--7)
式(2--6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。
需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在1.7—3.6之间;其次K值是一个无因次量,即它没有量纲。在材料力学中ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便
常常把它的百万分之一作为单位,记作με。这样,式(2--6)常写作:
ΔR/R = Kε(2—8)
二、弹性体
弹性体是一个有特殊形状的结构件。它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变棗电信号的转换任务。
第三篇:大三暑期传感器原理实习报告-应变式加速度传感器设计
文章标题:大三暑期传感器原理实习报告-应变式加速度传感器设计
应变式加速度传感器设计
——大三暑期传感器原理实习报告
(西南交大机械制造及自动化张其美19990780)
1、设计任务及技术指标
应变式加速度传感器的结构设计、特性曲线绘制等。
测量范围:20g;精度:1;尺寸:不大于;频响:0.1~100HZ;重量:不大于20g;共桥电压:5V~24V(DC)。
2、结构设计
(1)采用等强度梁结构;
(2)材料选择及尺寸确定;
a、壳体及质量块选用碳钢
弹性模量:(与疲劳破坏有关)
泊松比:
b、弹性元件(梁)选用铍青铜(或硅梁)
弹性模量:
密度:
抗拉强度:
c、许用应力:(简单梁)取
(3)设计计算;
设计原则:
a、在最小载荷F和相应的最大绕度或位移为已知时,可先根据结构要求确定长度,然后在计算和。
b、设计时先保证有足够的灵敏度,然后在尽可能提高(固有频率)
c、质量块相对于基座的位移可按下列原则确定:
当时,其中a为被测加速度。
设计步骤:
A、先估计,忽略,确定。
取,则
B、估计和
取
C、确定
D、求
则,E、计算参数;
取,1、梁根部应变:
3、静态灵敏度:(与应变片布置有关)双臂工作时,4、动态灵敏度:
5、梁自由端的静绕度:
6、梁自由端的动绕度:
7、传感器的固有频率:
8、可测最大加速度:
(4)幅频特性计算:要求绘制幅频曲线
a、刚度:
b、质量;
c、阻尼比:,取0.6~0.7内。
d、有阻尼固有频率:
e、幅频曲线:
f、相频曲线:
(五)应变片的选择:
1、应变片的选择:选用小型硅应变片,参考规格:额定电阻:120;
灵敏度系数:;尺寸:;
最大工作电流:。
2、电桥输出灵敏度:(1)电桥的结构;等臂、差动。
A、单臂:
B、双臂差动:
C、四臂差动::
《大三暑期传感器原理实习报告-应变式加速度传感器设计》来源于范文搜网,欢迎阅读大三暑期传感器原理实习报告-应变式加速度传感器设计。