火车车厢重排实验报告五篇范文

时间:2019-05-14 05:54:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《火车车厢重排实验报告》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《火车车厢重排实验报告》。

第一篇:火车车厢重排实验报告

东华理工大学长江学院

数据结构课程设计报告

学号: 09321110

姓名: 刘 曹 杰

指导老师:刘自强

2011年1月3日

队列的应用举例——火车车厢重排

一、实验分析

一列货运列车共有n节车厢,每节车厢将停放在不同的车站。假定n个车站的编号分别为1 ~ n,即货运列车按照第n站至第1站的次序经过这些车站。为了便于从列车上卸掉相应的车厢,车厢的编号应与车站(目的地)的编号相同,使各车厢从前至后按编号1到n的次序排列,这样,在每个车站只需卸掉最后一节车厢即可。所以,给定任意次序的车厢,必须重新排列他们。可以通过转轨站完成车厢的重排工作,在转轨站中有一个入轨、一个出轨和k个缓冲轨,缓冲轨位于入轨和出轨之间。开始时,n节车厢从入轨进入转轨站,转轨结束时各车厢按照编号1至n的次序离开转轨站进入出轨。假定缓冲轨按先进先出的方式运作,因此可将它们视为队列,并且禁止将车厢从缓冲轨移至入轨,也禁止从出轨移至缓冲轨。图中给出了一个转轨站,其中有3个缓冲轨H1,H2和H3。

为了重排车厢,若有k个缓冲轨,缓冲轨Hk为可直接将车厢从入轨移动到出轨的通道,则可用来暂存车厢的缓冲轨的数目为k-1。假定重排9节车厢,其初始次序为5, 8, 1, 7, 4, 2, 9, 6, 3,同时令k=3,如图3-23所示。3号车厢不能直接移动到出轨,因为1号车厢和2号车厢必须排在3号车厢之前,因此,把3号车厢移动至H1。6号车厢可放在H1中3号车厢之后,因为6号车厢将在3号车厢之后输出。9号车厢可以继续放在H1中6号车厢之后,而接下来的2号车厢不能放在9号车厢之后,因为2号车厢必须在9号车厢之前输出。因此,应把2号车厢放在H2的队头。4号车厢可以放在H2中2号车厢之后,7号车厢可以继续放在4号车厢之后。如图3-24(a)所示。至此,1号车厢可通过H3直接移至出轨,然后从H2移动2号车厢至出轨,从H1移动3号车厢至出轨,从H2移动4号车厢至出轨,如图3-24(b)所示。由于5号车厢此时仍在入轨中,所以把8号车厢移动至H2,这样就可以把5号车厢直接从入轨移至出轨。如图3-24(c)所示。此后,可依次从缓冲轨中移出6号、7号、8号和9号车厢。如图所示。

在把车厢c移至缓冲轨时,车厢c应移动到这样的缓冲轨中:该缓冲轨中队尾车厢的编号小于c;如果有多个缓冲轨满足这一条件,则选择队尾车厢编号最大的缓冲轨;否则选择一个空的缓冲轨。

假定重排n个车厢,可使用k个缓冲轨,将每个缓冲轨看成是一个队列,用nowOut表示下一个输出至出轨的车厢编号。火车车厢重排的算法用伪代码描述如下:

1.分别对k个队列初始化;

2.初始化下一个有爱输出的车厢编号nowOut=1; 3.依次取入轨中的每一个车厢编号; 3.1如果入轨中的车厢编号等于nowOut,则

3.1.1输出该车厢;

3.1.2nowOut++;

3.2否则,考虑每一个缓冲轨队列

for(j=1;j<=k;j++)

3.2.1取队列j的对头元素c;

3.2.2如果c=nowOut,则

3.2.2.1将队列j的对头元素出队并输出;

3.2.2.2nowOut++;

3.3如果入轨和缓冲轨的对头元素没有编号为nowOut的车厢,则

3.3.1求小雨入轨中第一个车厢编号的最大队尾元素所在队列编号j;

3.3.2如果j存在,则把入轨中的第一个车厢移至缓冲轨j;

3.3.2 如果j不存在,但有多余一个空缓冲轨,则把入轨第一个车厢移至一个空缓冲轨;否则车厢无法重排,算法结束;

二、程序分析

1.存储结构

本程序采用单链表结构,具体为链队列结构,使用队列结构的先进先出原则可以较好地处理车厢重排问题。链队列结构示意图如下: ……..front a1 a2

...an rear

2.关键算法分析

一、本程序的关键算法主要为处理车厢重排问题的函数TrainPermute(),其伪代码如下:

void TrainPermute(): 1.初始化条件:计数器i=0,与非门aa=1 2.判断是否能入轨while(用i

2.2用for循环,依次取入入轨中的每一个车厢的编号进入合适的缓冲轨 ;

2.2.1如果缓冲轨中尾指针比进入缓冲轨元素小,则

进入该缓冲轨;

计数器i+1;有合适缓冲轨,将aa变为真;跳出for循环并进入while循环; 2.2.2如果缓冲轨中第一个元素为空,则

进入缓冲轨成为第一个元素;

计数器i+1;有合适缓冲轨,将aa变为真;跳出for循环并进入while循环; 2.3 用aa判断是否有进入合适的缓冲轨 ① aa=0即没有合适的缓冲轨,则

输出无法排列;

② aa=1即有合适的缓冲轨,则 遍历缓冲轨,输出每个缓冲轨按顺序存储的车厢; 按从小到大的顺序出轨

for(引入输出轨计数器newOut=1;newOut

具体代码如下:

void TrainPermute(int arr[],LinkQueue a[],int n,int k){ int i=0;bool aa=1;while((inext==NULL){ a[m].EnQueue(arr[i]);aa=1;i++;break;} } } if(aa==0)//当无法将入轨中队头车厢移至合适缓冲轨中时,程序结束 { cout<<“车厢无法重排,算法结束”<

{ if(a[j].GetFront()==newOut){ cout<

二、主函数伪代码如下:

1.输入n与k值,若输入值错误,则程序结束; 2.通过循环结构为数组array[]赋值,具体分析见代码; 3.输出入轨中火车车厢号码排列;

4.调用TrainPermute()函数;

三、为array[]随机赋值的基本思想为:设置计数器count=0,设置数组ifmark[]来标记array[]赋值情况,依次将1至n等n个数随机赋给array[],其中,若array[t]未被赋值,即ifmark[t]=0,则将值赋给array[t],计数器加一;若array[t]已被赋值,即ifmark[t]=1,则重新开始循环。

srand((unsigned)time(NULL));

int count=0;

int *array;

array=new int[n];

int *ifmark;

ifmark=new int[n];

while(count!=n)

{

t=rand()%n;

if(ifmark[t]!=1)

{

array[t]=count+1;

ifmark[t]=1;

count++;

}

}

三、实验过程

程序代码及运行结果

#include #include using namespace std;const int QueueSize=1000;template struct Node { T data;Node *next;};template class LinkQueue //链队列模板类 { public: LinkQueue();//构造函数 ~LinkQueue();//析构函数 void Trans();//遍历缓冲轨 void EnQueue(T x);//入队 T DeQueue();//出队

T GetFront()//查找队头元素

{if(front!=rear)return front->next->data;} T GetRear()//查找队尾元素 {if(front!=rear)return rear->data;} bool Empty(){front==NULL?return 1:return 0;} //判断队空 friend void TrainPermute(int arr[],LinkQueue a[],int n,int k);private: Node *front,*rear;};template LinkQueue::LinkQueue(){ Node *s=new Node;s->next=NULL;front=rear=s;} template LinkQueue::~LinkQueue(){ Node *p=front;while(p!=NULL){ Node *q=p;p=p->next;delete q;} } template void LinkQueue::EnQueue(T x){ Node *s=new Node;s->data=x;s->next=NULL;rear->next=s;rear=s;} template T LinkQueue::DeQueue(){ if(rear==front)throw“下溢”;Node *p=front->next;int x=p->data;front->next=p->next;if(p->next==NULL)rear=front;delete p;return x;} template void LinkQueue::Trans(){ Node *p=front->next;while(p){

cout<

data<<' ';p=p->next;};} void main(){ try { int n,k,t;cout<<“请输入火车车厢数n(n请小于1000): nn=”;cin>>n;cout<<“请输入缓冲轨数k:nk=”;cin>>k;cout<<“系统将对”<1000)throw“输入错误!车厢数必须小于1000!”;if(n<=0)throw“输入错误!车厢数必须大于0!”;if(k<=0)throw“输入错误!缓冲轨数必须大于0!”;

srand((unsigned)time(NULL));int count=0;int *array;array=new int[n];int *ifmark;ifmark=new int[n];while(count!=n){ t=rand()%n;if(ifmark[t]!=1){ array[t]=count+1;ifmark[t]=1;count++;} } cout<<“火车车厢入轨顺序为:”< *buffer;buffer=new LinkQueue[k];

TrainPermute(array,buffer,n,k);cout< a[],int n,int k){ int i=0;

bool aa=1;

while((inext==NULL){ a[m].EnQueue(arr[i]);aa=1;i++;break;} } } if(aa==0)//当无法将入轨中队头车厢移至合适缓冲轨中时,程序结束 { cout<<“车厢无法重排,算法结束”<

四、总结

本次数据结构实验主要是练习使用队列的思想,我做的是火车重排问题的实验,此实验在课本上有一些讲解,也给出来主要函数TrainPermute()的主要编写思路,减轻了自己的工作量,不过由于此程序的代码比较复杂,在编译调试过程中也很耗费时间,通过设置断点,分步调试,才使得程序没有了bug。例如,由于程序用了较多的循环,包括多重循环,在刚刚写出代码的时候常常陷入死循环,而因为代码冗长,仅仅通过看代码很难找出逻辑上的错误。功夫不负有心人,最后终于用与非门的思想解决了这个死循环问题,并简单优化程序。

总的来说,本程序由于使用了模板类结构,扩展性还算比较好。但是代码部分有些冗长,可读性不算太好。如果要做下一步工作的话,应该是尽量精简代码,使得程序更加具有实用性和可读性。

第二篇:有机化学重排反应 总结

有机化学重排反应

总结

1.Claisen克莱森重排

烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。

当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。

交叉反应实验证明:Claisen重排是分子内的重排。采用

g-碳

14C

标记的烯丙基醚进行重排,重排后

g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。

反应机理

Claisen

重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。

从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s

迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s

迁移到邻位(Claisen

重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s

迁移(Cope

重排)到对位,然后经互变异构得到对位烯丙基酚。

取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。

反应实例

Claisen

重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen

重排。

2.Beckmann贝克曼重排

肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:

反应机理

在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:

反应实例

3.Bamberger,E.重排

苯基羟胺(N-羟基苯胺)和稀硫酸一起加热发生重排成对-氨基苯酚:

在H2SO4-C2H5OH(或CH3OH)中重排生成对-乙氧基(或甲氧基)苯胺:

其他芳基羟胺,它的环上的o-p位上未被取代者会起类似的重排。例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:

反应机理

反应实例

4.Cope库伯重排

1,5-二烯类化合物受热时发生类似于

O-烯丙基重排为

C-烯丙基的重排反应(Claisen

重排)反应称为Cope重排。这个反应30多年来引起人们的广泛注意。1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。

Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是(Z,E)-2,6辛二烯:

反应机理

Cope重排是[3,3]s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:

在立体化学上,表现为经过椅式环状过渡态:

反应实例

5.Favorskii法沃斯基重排

a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小。

如用醇钠的醇溶液,则得羧酸酯:

此法可用于合成张力较大的四员环。

反应机理

反应实例

6.Fries弗里斯重排

酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物。重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行。

邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等。例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物。反应温度对邻、对位产物比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产物(动力学控制),较高温度下重排有利于形成邻位异构产物(热力学控制)。

反应机理

反应实例

7.Hofmann 霍夫曼重排(降解)

酰胺用溴(或氯)在碱性条件下处理转变为少一个碳原子的伯胺:

反应机理

反应实例

8.Martius,C.A.重排

N-烷基苯胺类的卤氢酸在长时间加热时(200~300),则烷基易起重排(转移到芳核上的邻或对位上)而生成收率极高的C-烷基苯胺的卤酸盐类(C-alkyl-aniline

hydrochlorides).本反应在理论和实际上均属重要:

反应机理

米契尔(Michael)认为N-烷基苯胺-盐酸盐在加热时离解成卤代烷类及苯胺,然后在氨基的对位起烷基化(分子间重排)。郝金勃登反对此说:

反应实例

9.Orton,K.J.P 重排

将乙酰苯胺的冷却饱和水溶液用HOCl处理时得N-氯代乙酰苯胺,后者在干燥状态及避光的条件下可以长期放置。N-氯代乙酰苯胺的水溶液在低温时暗处放置时也是稳定的,如果将溶液暴露于光线下则慢慢地转变为p-邻氯代乙酰苯胺,两种异构体的产率比为60-80%;40-20%。如果将N-氯代物和盐酸一起加热,则几乎定量地转变成p-氯代物及少量o-氯代物的混合物。

又如将N-溴代-2,6-二甲基-乙酰苯胺溶于醋酸、氯苯等溶液中也会发生重排成p-位及m-位溴代异构体:

反应机理

10.Pinacol片呐醇重排

连二醇类化合物在酸催化下,失去一分子水重排生成醛或酮的反应,称为Pinacol重排反应。

机理:

基团迁移能力:

(2)不对称的连二乙醇

重排的方向决定于羟基失去的难易

羟基离去后碳正离子的稳定性:叔碳>仲碳>伯碳

11.Semipinacol重排

酸性介质:

碱性介质:

Tiffeneau-Demjanov蒂芬欧-捷姆扬诺夫环扩大反应

1-氨基甲基环烷醇用亚硝酸处理,经重排形成多一个碳的环烷酮的反应,称为Tiffeneau环扩大反应。

12.联苯胺重排

氢化偶氮苯在酸催化下发生重排,生成4,4'-二氨基联苯的反应称为联苯胺重排。

反应中还可以生成如下结构的副产物:

(iii)、(iv)两个化合物又叫半联胺。

许多化学家为阐明联苯胺的重排过程做了很多工作,利用放射性碳原子和交叉实验证明:此重排反应是分子内的。具体做法是:用性质相近,反应速率差不多的2,2'-二甲基氢化偶氮苯(v)与

2,2'-二乙基氢化偶氮苯(vi)一起进行重排。如果重排是分子间的反应,则应得下式所示的(vii)、(viii)、(ix)三种重排产物:

如果重排是分子内的反应,则只能得(vii)、(viii)两种产品。若反应物中有交叉产物(ix)生成,说明反应是或者至少有一部分是分子间的重排,即原分子的氮氮键(N-N)断开,形成独立的两部分,然后再重新结合,结合可以有三种方式,其中一种即交叉产物(ix)。但实验结果表明,只得到(vii)、(viii)

两种产物,没有交叉产物。为了进一步验证实验结果,采用甲基以

14C

标记的2-甲基氢化偶氮苯(x)与未标记的(v)一起进行重排,结果只得到(vii)和

4,4'-二甲基-3-14C甲基联苯:

反应机理

13.Wolff乌尔夫重排

重氮酮在银、银盐或铜存在条件下,或用光照射或热分解都消除氮分子而重排为烯酮,生成的烯酮进一步与羟基或胺类化合物作用得到酯类、酰胺或羧酸的反应称为Wolff重排反应。

例:

下述两反应你能写出机理吗?

反应机理

Arndt-Eistert同系列羧酸的合成反应

Arndt-Eistert合成是将一个酸变成它的高一级同系物或转变成同系列酸的衍生物,(如酯或酰胺)的反应。该反应可应用于脂肪族酸和芳香族酸的制备。

反应包括下列三个步骤:

1.酰氯的形成;

2.酰氯和重氮甲烷作用生成重氮酮;

3.重氮酮经Wolff重排变为烯酮,再转变为羧酸或衍生物。

14.Curtius库尔提斯重排

15.Lossen罗森重排

RNCO

异羟肟酸重排为少一个碳的胺通过中间体

反应机理

16.Schmidt施密特重排

Schmidt羰基化合物的降解反应

包括三类反应:

对比:

17.Baeyer-Villiger贝耶尔-维勒格氧化重排

酮类用过氧酸(如过氧乙酸、过氧三氟醋酸等)氧化,在烃基与羰基之间插入氧原子而成酯的反应称为Baeyer-Villiger反应。

18.Stevens斯蒂文重排

季铵盐分子中连于氮原子的碳原子上具有吸电子的基团取代时,在强碱性条件下,可重排生成叔胺的反应称为Stevens重排反应。

反应机理

实用举例

19.Sommelet-Hauser萨姆勒特-霍瑟苯甲基季铵盐重排

苯甲基季铵盐经氨基钠或钾处理后,重排生成邻甲基苯甲基叔胺的反应称为Sommelet-Hauser苯甲基季铵盐重排反应。

反应机理

实用举例:

制备邻甲芳基化合物

20.Wittig魏悌息醚重排

醚类化合物和烷基锂或氨基钠作用重排生成醇的反应,称为Wittig醚重排反应。

反应机理

烃基构型可发生改变;

基团的迁移能力:CH2=CH-CH2,C6H5CH2->

CH3-,CH3CH2-,p-NO2C6H4>Ph-

21.Wagner-Meerwein瓦格内尔-梅尔外因重排

终点碳原子上羟基、卤原子或重氮基等,在质子酸或Lewis酸催化下离去形成碳正离子,其邻近的基团作1,2-迁移至该碳原子,同时形成更稳定的起点碳正离子,后经亲核取代或质子消除而生成新化合物的反应称为Wagner-Meerwein重排。

例3

22.Benzil乙醇酸型:苯偶酰-二苯乙醇酸型重排

二苯基乙二酮(苯偶酰)类化合物用碱处理,生成二苯基α-羟基酸(二苯乙醇酸)的反应称为苯偶酰-二苯乙醇酸型重排反应。

迁移能力:吸电子基取代的芳环>供电子基取代的芳环;迁移的R-吸电子稳定负离子

23.基本反应中的碳正离子转移

加成:

迁移基团带着一对成键电子从一个原子迁移到缺电子的另一个原子上的重排。其中,1,2-重排最为重要

消除:

·重排机理

24.Fischer吲哚合成法

醛或酮的苯腙和ZnCl2共热时,则失去一分子氨而得到吲哚的反应称为Fischer引哚合成法,是合成吲哚衍生物的重要法。

第三篇:有机化学重排反应 总结

有机化学重排反应 总结

1.Claisen克莱森重排

烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。

当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。

交叉反应实验证明:Claisen重排是分子内的重排。采用 g-碳C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。反应机理

Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。

从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。

取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。

反应实例

Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。

2.Beckmann贝克曼重排

肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:

反应机理

在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:

反应实例

3.Bamberger,E.重排

苯基羟胺(N-羟基苯胺)和稀硫酸一起加热发生重排成对-氨基苯酚:

在H2SO4-C2H5OH(或CH3OH)中重排生成对-乙氧基(或甲氧基)苯胺:

其他芳基羟胺,它的环上的o-p位上未被取代者会起类似的重排。例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:

反应机理

反应实例

4.Cope库伯重排

1,5-二烯类化合物受热时发生类似于 O-烯丙基重排为 C-烯丙基的重排反应(Claisen 重排)反应称为Cope重排。这个反应30多年来引起人们的广泛注意。1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。

Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是(Z, E)-2,6辛二烯:

反应机理

Cope重排是[3,3]s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:

在立体化学上,表现为经过椅式环状过渡态:

反应实例

5.Favorskii法沃斯基重排

a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小。

如用醇钠的醇溶液,则得羧酸酯:

此法可用于合成张力较大的四员环。反应机理

反应实例

6.Fries弗里斯重排

酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物。重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行。

邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等。例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物。反应温度对邻、对位产物比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产物(动力学控制),较高温度下重排有利于形成邻位异构产物(热力学控制)。

反应机理

反应实例

7.Hofmann 霍夫曼重排(降解)

酰胺用溴(或氯)在碱性条件下处理转变为少一个碳原子的伯胺:

反应机理

反应实例

8.Martius,C.A.重排

N-烷基苯胺类的卤氢酸在长时间加热时(200~300),则烷基易起重排(转移到芳核上的邻或对位上)而生成收率极高的C-烷基苯胺的卤酸盐类(C-alkyl-aniline hydrochlorides).本反应在理论和实际上均属重要:

反应机理

米契尔(Michael)认为N-烷基苯胺-盐酸盐在加热时离解成卤代烷类及苯胺,然后在氨基的对位起烷基化(分子间重排)。郝金勃登反对此说:

反应实例

9.Orton,K.J.P 重排

将乙酰苯胺的冷却饱和水溶液用HOCl处理时得N-氯代乙酰苯胺,后者在干燥状态及避光的条件下可以长期放置。N-氯代乙酰苯胺的水溶液在低温时暗处放置时也是稳定的,如果将溶液暴露于光线下则慢慢地转变为p-邻氯代乙酰苯胺,两种异构体的产率比为60-80%;40-20%。如果将N-氯代物和盐酸一起加热,则几乎定量地转变成p-氯代物及少量o-氯代物的混合物。

又如将N-溴代-2,6-二甲基-乙酰苯胺溶于醋酸、氯苯等溶液中也会发生重排成p-位及m-位溴代异构体:

反应机理

10.Pinacol片呐醇重排

连二醇类化合物在酸催化下,失去一分子水重排生成醛或酮的反应,称为Pinacol重排反应。

机理:

基团迁移能力:

(2)不对称的连二乙醇

重排的方向决定于羟基失去的难易

羟基离去后碳正离子的稳定性:叔碳>仲碳>伯碳

11.Semipinacol重排

酸性介质:

碱性介质:

Tiffeneau-Demjanov蒂芬欧-捷姆扬诺夫环扩大反应

1-氨基甲基环烷醇用亚硝酸处理,经重排形成多一个碳的环烷酮的反应,称为Tiffeneau环扩大反应。

12.联苯胺重排

氢化偶氮苯在酸催化下发生重排,生成 4,4'-二氨基联苯的反应称为联苯胺重排。

反应中还可以生成如下结构的副产物:

(iii)、(iv)两个化合物又叫半联胺。

许多化学家为阐明联苯胺的重排过程做了很多工作,利用放射性碳原子和交叉实验证明:此重排反应是分子内的。具体做法是:用性质相近,反应速率差不多的 2,2'-二甲基氢化偶氮苯(v)与 2,2'-二乙基氢化偶氮苯(vi)一起进行重排。如果重排是分子间的反应,则应得下式所示的(vii)、(viii)、(ix)三种重排产物:

如果重排是分子内的反应,则只能得(vii)、(viii)两种产品。若反应物中有交叉产物(ix)生成,说明反应是或者至少有一部分是分子间的重排,即原分子的氮氮键(N-N)断开,形成独立的两部分,然后再重新结合,结合可以有三种方式,其中一种即交叉产物(ix)。但实验结果表明,只得到(vii)、(viii)两种产物,没有交叉产物。为了进一步验证实验结果,采用甲基以 14C 标记的 2-甲基氢化偶氮苯(x)与未标记的(v)一起进行重排,结果只得到(vii)和 4,4'-二甲基-3-14C甲基联苯:

反应机理

13.Wolff乌尔夫重排

重氮酮在银、银盐或铜存在条件下,或用光照射或热分解都消除氮分子而重排为烯酮,生成的烯酮进一步与羟基或胺类化合物作用得到酯类、酰胺或羧酸的反应称为Wolff重排反应。例:

下述两反应你能写出机理吗?

反应机理

Arndt-Eistert同系列羧酸的合成反应

Arndt-Eistert合成是将一个酸变成它的高一级同系物或转变成同系列酸的衍生物,(如酯或酰胺)的反应。该反应可应用于脂肪族酸和芳香族酸的制备。

反应包括下列三个步骤:

1.酰氯的形成;

2.酰氯和重氮甲烷作用生成重氮酮;

3.重氮酮经Wolff重排变为烯酮,再转变为羧酸或衍生物。

14.Curtius库尔提斯重排

15.Lossen罗森重排

RNCO 异羟肟酸重排为少一个碳的胺通过中间体

反应机理

16.Schmidt施密特重排

Schmidt羰基化合物的降解反应 包括三类反应:

对比:

17.Baeyer-Villiger贝耶尔-维勒格氧化重排

酮类用过氧酸(如过氧乙酸、过氧三氟醋酸等)氧化,在烃基与羰基之间插入氧原子而成酯的反应称为Baeyer-Villiger反应。

18.Stevens斯蒂文重排

季铵盐分子中连于氮原子的碳原子上具有吸电子的基团取代时,在强碱性条件下,可重排生成叔胺的反应称为Stevens重排反应。

反应机理

实用举例

19.Sommelet-Hauser萨姆勒特-霍瑟苯甲基季铵盐重排

苯甲基季铵盐经氨基钠或钾处理后,重排生成邻甲基苯甲基叔胺的反应称为Sommelet-Hauser苯甲基季铵盐重排反应。

反应机理

实用举例:

制备邻甲芳基化合物

20.Wittig魏悌息醚重排

醚类化合物和烷基锂或氨基钠作用重排生成醇的反应,称为Wittig醚重排反应。

反应机理

烃基构型可发生改变;

基团的迁移能力:CH2=CH-CH2,C6H5CH2-> CH3-,CH3CH2-,p-NO2C6H4>Ph-

21.Wagner-Meerwein瓦格内尔-梅尔外因重排

终点碳原子上羟基、卤原子或重氮基等,在质子酸或Lewis酸催化下离去形成碳正离子,其邻近的基团作1,2-迁移至该碳原子,同时形成更稳定的起点碳正离子,后经亲核取代或质子消除而生成新化合物的反应称为Wagner-Meerwein重排。

例3

22.Benzil乙醇酸型:苯偶酰-二苯乙醇酸型重排

二苯基乙二酮(苯偶酰)类化合物用碱处理,生成二苯基α-羟基酸(二苯乙醇酸)的反应称为苯偶酰-二苯乙醇酸型重排反应。

迁移能力:吸电子基取代的芳环>供电子基取代的芳环;迁移的R-吸电子稳定负离子

23.基本反应中的碳正离子转移

加成:

迁移基团带着一对成键电子从一个原子迁移到缺电子的另一个原子上的重排。其中,1,2-重排最为重要

消除:

·重排机理

24.Fischer吲哚合成法

醛或酮的苯腙和ZnCl2共热时,则失去一分子氨而得到吲哚的反应称为Fischer引哚合成法,是合成吲哚衍生物的重要法。

第四篇:有机重排反应总结

Claisen

重排

烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。

当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。

交叉反应实验证明:Claisen重排是分子内的重排。采用

g-碳

14C

标记的烯丙基醚进行重排,重排后

g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。

反应机理

Claisen

重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。

从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s

迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s

迁移到邻位(Claisen

重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s

迁移(Cope

重排)到对位,然后经互变异构得到对位烯丙基酚。

取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。

Beckmann 重排

肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:

反应机理

在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:

反应实例

反应实例

Claisen

重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen

重排。

Bamberger,E.重排

苯基羟胺(N-羟基苯胺)和稀硫酸一起加热发生重排成对-氨基苯酚:

在H2SO4-C2H5OH(或CH3OH)中重排生成对-乙氧基(或甲氧基)苯胺:

其他芳基羟胺,它的环上的o-p位上未被取代者会起类似的重排。例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:

反应机理

反应实例

Cope

重排

1,5-二烯类化合物受热时发生类似于

O-烯丙基重排为

C-烯丙基的重排反应(Claisen

重排)反应称为Cope重排。这个反应30多年来引起人们的广泛注意。1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。

Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是(Z,E)-2,6辛二烯:

反应机理

Cope重排是[3,3]s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:

在立体化学上,表现为经过椅式环状过渡态:

反应实例

Favorskii 重排

a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小。

如用醇钠的醇溶液,则得羧酸酯:

此法可用于合成张力较大的四员环。

反应机理

反应实例

Fries 重排

酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物。重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行。

邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等。例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物。反应温度对邻、对位产物比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产物(动力学控制),较高温度下重排有利于形成邻位异构产物(热力学控制)。

反应机理

反应实例

Hofmann

重排(降解)

酰胺用溴(或氯)在碱性条件下处理转变为少一个碳原子的伯胺:

反应机理

反应实例

Martius,C.A.重排

N-烷基苯胺类的卤氢酸在长时间加热时(200~300),则烷基易起重排(转移到芳核上的邻或对位上)而生成收率极高的C-烷基苯胺的卤酸盐类(C-alkyl-aniline

hydrochlorides).本反应在理论和实际上均属重要:

反应机理

米契尔(Michael)认为N-烷基苯胺-盐酸盐在加热时离解成卤代烷类及苯胺,然后在氨基的对位起烷基化(分子间重排)。郝金勃登反对此说:

反应实例

Orton,K.J.P 重排

将乙酰苯胺的冷却饱和水溶液用HOCl处理时得N-氯代乙酰苯胺,后者在干燥状态及避光的条件下可以长期放置。N-氯代乙酰苯胺的水溶液在低温时暗处放置时也是稳定的,如果将溶液暴露于光线下则慢慢地转变为p-邻氯代乙酰苯胺,两种异构体的产率比为60-80%;40-20%。如果将N-氯代物和盐酸一起加热,则几乎定量地转变成p-氯代物及少量o-氯代物的混合物。

又如将N-溴代-2,6-二甲基-乙酰苯胺溶于醋酸、氯苯等溶液中也会发生重排成p-位及m-位溴代异构体:

反应机理

Pinacol-Pinacolone

Rearrangement

重排

当片呐醇类在稀H2SO4存在下加热脱水时发生特殊的分子内部的重排反应生成片呐酮。如用盐酸、草酸、I2/CH3COOH、CH3COOH等脱水-转位剂以代替H2SO4可得相同的结局:

反应机理

反应的关键是生成碳正离子:

反应实例

第五篇:有机重排反应及机理小结

本科生2010—2011学年第一学期 有机化学课程期末论文

:

专业:

年级:学号:

姓名:成绩

化学

2009级

有机化学中的分子重排反应小结

在一些有机反应中,反应底物分子在进攻试剂或反应介质的影响下,其中的一个原子或基团在分子中发生移位或碳骨架发生改变,从而生成与原反应物分子的组成相同但结构不同的新分子,这类反应成为分子重排反应。

根据反应历程不同,重拍反应可分为亲核重排、亲电重排、芳香重排及自由基重排。

一、亲核重排

亲核重排是指反应物在亲电试剂的作用下,迁移基团带着成键电子对从一个原子迁移到另一个缺电子(带正电荷)的电子上,其反应过程为: a、反应底物在亲电试剂的作用下形成缺电子中心;

b、该中心邻位碳原子上的基团带着成键电子对迁移到这个缺电子中心上,形成新的比较稳定的缺电子中心;

c、缺电子中心与反应体系的负性部分结合生成重排取代产物或失去质子生成重排消除产物。

(一)涉及碳正离子的重排反应

1、Pinacol重排

邻二醇在无机酸作用下,发生脱水和碳骨架重排,生成不对称的醛或酮,此类反应称为Pinacol重排。

反应历程:醇羟基质子化后先失去一分子水形成一个缺电子中心——碳正离子,引起分子中烃基的亲核重排,然后失去一个质子形成羰基:

在反应过程中,凡是能生成类似的碳正离子者,都能发生此类重排。例如,α,β–卤代烃氨基醇和环氧化物、α-羟基酮等在相应的条件下的类似重排反应,该类反应称为半Pinacol重排。例如:

在Pinacol重排中,如果分子中四个R都相同,重排产物比较简单;当分子中四个R不相同时,重排产物不止一种,实际取得的产物取决于:反应过程中哪一个羟基脱掉后形成比较稳定的碳正离子,则该羟基优先被质子化。形成的碳正离子的稳定性顺序为:

p-CH3OC6H4 > C6H5 > 烷基 > 氢

当可迁移的集团为芳基、烷基或氢时,芳基优先于烷基优先于氢迁移,且芳基上有给电子集团时更有利于迁移。例如:

迁移基团的相对活性为:

2、Wagner-Meerwein重排

通过生成碳正离子中间体进行取代、消除和加成,并伴有碳骨架重排的反应称为Wagner-Meerwein重排。在这类重排反应中,β-位上的烃基或氢向碳正离子迁移。例如:

Wagner-Meerwein重排反应属于分子内的C→C的1,2-迁移,其重排趋势是形成最稳定的碳正离子:

通过比较可知,Wagner-Meerwein重排时碳骨架的改变与Pinacol重排时相反,可看作是其逆反应。

3、Demyannov重排

Demyannov重排是指脂肪族伯胺或脂环族伯胺通过重氮化作用性成碳正离子中间体进行的重排反应。该反应可看做是Wagner-Meerwein重排的一种。

该类反应的动力为生成更为稳定的碳正离子中间体。

(二)涉及碳卡宾的Wolff重排

α–重氮酮在氧化银、光或热的作用下,失去氮而重排成为烯酮类化合物的反应称为Wolff重排。

该反应历程为: a、α–重氮酮被氧化银催化失去N2形成缺电子的酮碳烯; b、该酮烯通过R的迁移生成烯酮。

生成的烯酮反应活性很高,能与体系中的亲核体作用。

需要注意的是,该反应必须在过量的重氮甲烷中进行,否则生成的HCl将与重氮酮进一步反应生成α–卤代酮:

RCOCHN2 + HCl → RCOCH2Cl + N2

(三)涉及缺电子氮的重拍

1、Hofmann重排

当酰胺用溴的碱溶液处理时,生成比原来少一个碳原子的胺,这个反应叫做Hofmann重排。

该反应历程为: a、在碱的催化下,酰胺发生卤代,生成N-卤代酰胺;

b、碱夺取N-卤代酰胺中的质子,再脱去卤素离子,形成酰基氮烯; c、酰基氮烯的烷基带着成键电子对作为亲核试剂进攻缺电子的氮原子,同时把作为离去集团的卤素离子推出,生成异氰酸酯; d、异氰酸酯在水溶液中水解、脱羧,生成伯胺和二氧化碳。

Hofmann重排反应和碳正离子重排反应一样,包含一个1,2—迁移,迁移基团带着成键电子对迁移到缺电子的氮原子上。Cutius重排、Schmidt重排及Lossen重排等也会发生由C→N的分子内1,2-迁移生成异氰酸酯。

2、Beckman重排

酮肟在酸性催化剂如硫酸、五氯化磷等作用下重排成取代酰胺的反应称为Beckman重排。

Beckman重排特点不在于迁移基团的性质,而在于决定它们的立体化学结构。在不对称酮肟的重排中只有与羟基处于反位的基团才能迁移到氮上,并且迁移基团从离去集团的背面进行重排:

在该反应中,迁移基团具有手性时,其构型再重拍过程中不发生变化。

(四)涉及缺电子氧的重排

1、Baeyer-Villiger重排

酮在过氧酸如过氧苯甲酸、过氧乙酸等的作用下转变成酯的过程,称为Baeyer-Villiger重排。

其反应过程为:过氧酸对质子化的羰基亲核加成,然后迁移基团向缺电子的氧迁移,同时分解出羧酸。

在反应过程中,当离去集团上有吸电子基或迁移基团上有给电子基时,反应加速,说明基团的离去和迁移是同时发生的。

2、羟基氢过氧化物重排

烃类化合物用空气或过氧化氢氧化生成羟基氢过氧化物。羟基氢过氧化物在Lewis酸的作用下,发生O—O键断裂,同时羟基从碳原子迁移到氧原子上,这种反应称为羟基氢过氧化物重排。

其反应历程为:酸使羟基氢过氧化物质子化,随后失去一分子水形成一个缺电子的氧中间体,然后迁移基团带着一对成键电子从迁移到氧,形成碳正离子,在与水加成形成半缩醛,后者在反应条件下形成醇(酚)和酮。

二、亲电重排

亲电重排是指反应物在亲核试剂(碱)的作用下,迁移基团以正离子形式迁移到带有负电荷的原子上。该类重排反应是包含负离子的重排。

(一)Stevens重排

季铵盐在强碱如氢氧化钠、醇钠等作用下,烃基由氮原子迁移到邻近的碳负离子上生成叔胺的反应,称为Stevens重排。

反应历程为:OH— 强行拉出酸性氢,形成共振稳定的碳负离子,苄基以正离子形式由氮向碳负离子迁移,生成叔胺。

当迁移基团具有手性碳原子时,其重排结果是手性碳原子构型不变。并且,在有两种不同的季铵盐混合时,没有交叉重排产物产生,这说明Stevens重排是分子内重排。

(二)Wittig重排

醚在醇溶液中与烷基锂、苯基锂等强碱作用,分子中的烷基或苯基发生移位迁移到碳原子上生成醇的反应,称为Wittig重排反应。

由于醚中α-碳氢键的酸性较弱,所以反应需要用较强的碱。其反应历程为:强碱移去一个酸性氢,形成一个较稳定的碳负离子中间体,然后迁移基团从氧移到碳负离子上,重排成烷氧负离子,然后水解得到醇。

当迁移基团具有手性时,经重排后仅有一部分保持旋光性,另一部分发生外消旋化。

三、芳香重排

芳香重排是一类用酸或Lewis酸催化的重排反应。在该类反应中,O—取代酚和N—取代芳胺中与杂原子相连的集团重排到芳基的邻位或对位。

(一)Fries重排

酚类的羧酸酯与AlCl3、ZnCl2等共热,酰基从与苯环相连的氧迁移到芳环上,形成邻位或对位酚酮,该反应称为Fries重排。

该反应的反应历程尚不清楚。

(二)Claisen重排

Claisen重排是分子内的重排,重排后α-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是α-碳原子与苯环相连。

(三)联苯胺重排

氢化偶氮苯在酸的作用下发生重排生成联苯胺的反应称为联苯胺重排。

该反应是分子内重排反应。反应过程是氨基氮接受质子后,由于正电荷间的排斥作用使N—N键变弱并发生断裂生成不稳定的双正离子,同时两个环上的π-轨道发生一定程度的络合;在电子效应的影响下,一个苯环的邻、对位显正电性,另一个苯环的邻、对位显负电性;由于静电吸引,一个苯环对另一个苯环旋转,形成新键。

四、自由基重排

自由基是活性很高的中性中间体,该类反应必须在一定条件下产生一个自由基,然后迁移基团带着一个孤电子迁移到终点形成一个更稳定的自由基,进一步反应形成最终产物。

该类反应和亲核反应、亲电反应的基本原理相似。主要有1,2-芳基重排和1,2-卤重排。

重排反应是有机化学中一类非常重要的反应,鉴于所学知识及参考资料有限,总结的不是十分全面。

主要参考资料:

有机化学

王积涛等,南开大学出版社;

有机化学反应类型概论

张湛赋等,海洋出版社。

下载火车车厢重排实验报告五篇范文word格式文档
下载火车车厢重排实验报告五篇范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2018年考研1575男哥重排2017暑假专用

    必考词汇1575 助记重排, 2017-7 月,双栏打印,不要单栏,你背单词千百遍,就差男哥这一遍, 十晚直播,两月重播,搞定考研词汇—— 声音(自然之声)tame[teɪm]vt.驯服a.驯服的timida.胆怯的......

    实验报告

    《体育测量与评价》实验报告模板 课程名称:体育测量与评价 实验名称:ISAK全套人体测量指标(共39项)测试 一、预习报告 1.实验目的 ①通过实验强化体格及身体成分测量的有关知......

    实验报告

    西华大学学生上机实践报告 西华大学上机实践报告课程名称:网络程序设计方法 指导教师:陈克力 上机实践名称:根据实验指导书填写实验名称 上机实践编号:填写第几个实验(如实验1) 年......

    实验报告

    南通职业大学 医药商品经营与管理实验报告 系 科: 化学工程系专业: 生物技术及应用班级: 生物101 姓名:赵如刚指导教师:张春美完成日期: 2011-10-9 药品经营与管理实验报告 华润......

    实验报告

    中国地质大学(武汉) 现代交换原理实验报告 姓名:刘春雨 班级:075131 学院:机电学院 指导老师:郭金翠 实验一 一、 实验目的 通过现场实物讲解,了解CC08交换机的构造以及程控交......

    实验报告

    实验一AutoCAD绘图基础(1) 1、谈谈你对CAD的理解。 CAD即计算机辅助设计(CAD-Computer Aided Design) 利用计算机及其图形设备帮助设计人员进行设计工作的软件 。简称cad。 在......

    实验报告

    嘉 兴 学 院 实 验 报 告(实验 一 ) 班级姓名学号 成绩一、 实验目的 熟悉常用中文数据库CNKI、万方数据资源、维普及各种电子图书馆的资源。 熟练掌握中文数据库及......

    实验报告

    实验名称:选址问题 实验目的与要求: 目的:掌握最短路距离的两个算法:Dijkstra算法与Floyd算法的Matlab编程。 要求:能够在实际问题中利用上述算法解决问题。 实验内容:选址问题......