第一篇:变电站接地网整改:商业竞争还是技术纷争?
变电站接地网整改:商业竞争还是技术纷争?
2011-05-09 不久前,本刊记者在防雷接地工程质量的调研采访中获悉,今年上半年,广西电网公司曾下发紧急通知,要求所属各供电局,电力开发有限公司对变电站接地网质量进行监督检查,并责令工程承包方在6月30日前完成整改。
7月中旬,编辑部收到读者提供的整改文件图片共7页。这份由广西电网公司生技部便函发出的《关于加强变电站接地网质量监督检查的紧急通知》涉及到两家承包单位:广西南宁迪祥雷防雷工程有限责任公司和广西南宁雷电防护有限公司(南宁地凯科技有限公司)。
起初我们认为,广西电网公司的整改体现了抓安全生产、重工程质量的积极姿态,也正好契合了本刊正在着手进行的防雷接地工程质量的调研采访。为此,我们先后查询到了广西电网公司的行政事务部、总经办、生技部等部门电话,希望对事情有更直接准确的了解。遗憾的是,我们多次拨通广西电网公司有关部门的电话,大多数无人接听,偶尔有人接听,也对我们想了解的情况茫然不知。无奈之下,我们分别向“通知”中涉及的两家公司了解情况,结果却出乎我们的预料。
地凯:与我无关
广西地凯防雷工程有限公司及时做出了回应,该公司在回函中指出:“通知”中所针对的公司应为广西南宁迪祥雷防雷工程有限责任公司,“提到对我公司曾施工的工程进行测量,曾于2006年进行普查过,在我公司承接的二十多个工程中,只有柳州供电局220kV静兰变电站的电阻出现了回升,我公司已对现场进行勘测,因为地网地面全部种有甘蔗,无法检查地网是否遭受人为破坏或盗窃。我公司针对现场情况已向广西电网公司提交了整改方案。一旦广西电网公司同意该方案,我们将免费整改,直到满足客户要求为止。基于当地施工现场农民较难协调的情况,柳州供电局拟要求将接地电阻降至1Ω即可(原合同要求为接地电阻为R≤0.5Ω)。”
记者查阅了广西电网公司生技部便函“通知”,附件中列举了几个变电站接地网改造工程情况,其中第四项这样表述: “静兰变(电站)的接地网在施工投运前接地电阻为2.5Ω,后经广西南宁雷电防护工程有限公司(与电力开发公司签订协议)加装DK接地棒后,于2002年11月1日进行了接地电阻的测试,接地电阻试验结果为:0.274Ω,测试报告变为符合设计要求。
2004年11月9日,广西电力试验研究院与柳州供电局共同对静兰变接地电阻进行了测试,测试得到的接地电阻为1.4Ω。
静兰变地网降阻协议书中,广西南宁雷电防护工程有限公司保证10年,柳州供电局向开发公司(黄瑜)反映过,但不见回复。
柳州供电局于2006年自行安排资金约20万元对接地网进行了改造。”
迪祥雷:疑遭“暗算”(小题大做?)
记者也与广西南宁迪祥雷防雷工程有限责任公司总经理杨丹取得联系。杨总起初对本刊记者对此事的关注非常吃惊,“这点事情值得在杂志上报道吗?”他怀疑是有人在幕后指使,借题发挥,恶意炒作。他认为,如果仅仅是几个工程质量未达到合同指标而要求整改,事情何至于这么复杂?“一个生技部的便函文件,按理说只针对内部整改,为什么湖南电网公司和海南电网公司也都收到?”杨丹说,“我们做了上百个工程都验收合格了,有两个工程还没验收怎么就叫质量不好?施工质量差?即使是一两个工程有问题,也只占总数的1~2%,何况还没整改!”
因为这份便函“通知”作怪,导致参与竞标的地凯公司和迪祥雷公司在海南电网公司文昌宝邑110kV变电站地网投标中,双双落马。
与此同时,在与迪祥雷公司合作的广西来宾东糖纸业有限公司也先后六次收到便函“通知”文件(只有正文,没有附件),但并未损害与迪祥雷公司的信任和合作。
东糖公司收到的便函摘录,另一版本的便函摘录
在杨总看来,发函者用意很明显,就是要毁掉信誉,阻碍其业务开展。他说:“我们竞争来的工程已竣工,接地电阻是0.28Ω,而设计要求阻值是1Ω。东糖公司领导认为这个结果是相当好的,历年来均无这样低的阻值。半年来下雨打雷均没有雷害事故。”杨丹认为,良好的接地电阻,给客户带来了经济效益,东糖公司领导表示,“二期工程还是用我们的产品”。杨总坦言,目前在工程中采用的关键产品——离子接地棒是自主专利产品,在许多工程项目中运用,效果非常明显。目前在国内的防雷接地方面,地凯和迪祥雷两家是很好的。
迪祥雷有话要说
8月10日,广西迪祥雷防雷工程有限公司给本刊发来回函“说明”,对“通知”的指责进行了申辩。
“说明”指出,广西电网公司生技部便函[桂电生函(1007)41号]《关于加强变电站接地网质量监督检查的紧急通知》中所列出的“广西南宁迪祥雷防雷工程有限责任公司在公司系统多个变电站接地网建设、改造工程中施工不规范、施工质量差的事实”只有附件中的4个工程,而其中第4个工程是由广西地凯防雷工程公司施工的,“是真正的不合格,是柳州供电局花20万帮他们整改”!
回函对涉及迪祥雷公司的三个变电站接地网改造工程情况一一作了申辩。(1)关于北海供电局110kV翁山变电站接地改造情况 “通知”附件:
翁山变电站是2004年8月投运的110kV变电站,原设计的接地网的接地电阻设计值0.5Ω,实测值1Ω,不符合设计要求。南宁迪祥雷防雷工程有限责任公司在原地网外围采用电解地极组成新的接地网与主地网连接以达到设计要求,但经查,竣工后的接地网没有提供地网改造竣工图。
2006年5月,南宁迪祥雷防雷工程有限责任公司对翁山变电站使用了电解地极的接地网进行了开挖并做了处理,2006年6月申请进行验收。该公司提供的试验数据表明地网接地电阻已低于设计要求的0.5Ω,并要求北海供电局按照其提供的测试方向进行测试,北海供电局测试人员未予以采纳。测试前,北海供电局对整个翁山变电站的防雷设备进行了导通测试,结果发现电解地极与主地网没有连接,反而有两基独立避雷针与主地网连接了。南宁迪祥雷防雷工程有限责任公司随时后再次对地网进行处理,处理后北海供电局组织了接地电阻复测,结果0.95Ω,仍未符合要求。”
迪祥雷公司的说明:
北海翁山110kV变电站2004年8月21日验收测试报告实测接地电阻0.48Ω小于设计要求0.5Ω,合格验收。2006年5月28日北海供电局实测,在验收合格方测试结果为0.463Ω,同时又在电流级与电压极的另一方向测电阻为0.691Ω,他们只认电阻大的方向(的结果),这与验收方向不一致。
2007年7月11日上午9时,由北海供电局测试队测试,结果是在三个方向测了四个点,第一点R=0.375Ω,第二点0.263Ω,第三点0.287Ω,第四点0.6105Ω,他们说他们自己测的不准,请以中试所测量为准。
(2)关于柳州供电局阳和变电站接地网改造情况 “通知”附件:
110kV阳和变接地工程由2个施工单位完成,建筑部分为博阳公司施工,完成后初步测试的接地电阻值为2.5Ω。之后由广西南宁迪祥雷防雷工程有限责任公司进行的DXL离子列阵电解地极深埋施工(与电力开发公司签的合同),施工过程有监理见证,事后迪祥雷公司说没得0.56Ω(未见报告也没有监理人员证明)。
2007年1月20日由广西电力试验研究院、柳州供电局、迪祥雷公司、监理单位共同选择测试路径并进行测试,测得接地电阻值为1.89Ω,和迪祥雷公司自测数据相比差别很大,对此迪祥雷公司认为是测试的方位(向)不同造成的。启委会要求迪祥雷公司合同进行整改施工。
几天后迪祥雷公司说已整改完毕复测,监理人员询问迪祥雷公司进行了什么内容的整改,是如何进行的。回答是对DXL离子列阵电解地极进行了浇水。监理人员认为整改不力,没必要安排复测。但柳州供电局和试研院还是在2007年2月8日再进行测试,测试结果与20日数据没有实质性的变化。启委会要求迪祥雷公司与设计部门联系后按设计修改意见进行整改施工。
迪祥雷公司的说明:
阳和110kV变电站6月26日测得接地电阻0.86Ω、0.87Ω、0.88Ω。他们没再组织测量。
(3)关于河池供电局100kV寻田变电站接地网改造情况 “通知”附件:
“河池供电局进行新建110kV寻田变电站常规地网的中间验收及调试时发现主地网及独立避雷针接地网敷设均满足有关要求,变电站接地电阻2.1Ω,随后南宁迪祥雷防雷工程有限责任公司对该站进行电解地极的安装(其隐蔽工程及接地网测量均未通知河池供电局参加验收)。
2007年3月12日,河池供电局在进行寻田变电站的竣工验收时发现变电站的四基独立避雷针针均与主地网接通,检查发现电解地极安装单位(南宁迪祥雷防雷工程有限责任公司)没有按照主地网设计图纸施工,擅自将四基独立避雷针接地网与主地网接通,施工前未将设计施工方案报送有关单位审查确认。”
迪祥雷公司的说明:
6月27日,我们对寻田110kv变电站进行接地电阻自测,两个方向分别测得0.91Ω、0.84Ω。他们朝第三个方向测出1.7Ω,因为第三方向是上坡而且加大了对角线长度由100m→135m,电流极是650m,电压极400m,增大了n值(n = 0.615 > 0.5~0.6)。
是有意刁难还是方法差异?
迪祥雷公司的“说明”中还表达了对广西电网公司在地网验收测试中的不满。“电流极长度,电压极长度,上坡方向并没有征求我们意见,……我们认为这样挑剔是很难共事的”,迪祥雷公司主张验收时只测一个方向,也就是验收报告中所提到的方向,或是建设时甲方测的接地电阻方向,也就是接地工程中土壤改良方向。在一个地网工程中,四周的土壤电阻率不一样,为了降低工程造价,必然选择土壤电阻率较低的地方进行地网改造。
从上面的对照中不难发现,双方的分歧主要集中在接地电阻的测量方法和接地电阻的数值选取上。迪祥雷公司认为,接地电阻的测量,应该在地网改造的方向进行,不应该四个方向都测量……如果在地网改造的方向测量是合格的,就应该验收合格。但广西电网公司在测量上要求在不同的方向进行,“接地电阻测量时不要按照……指定的方向进行测量,宜进行两个以上不同方向布线的测量”。
为此,记者请教了几位在防雷接地方面的资深人士。专家评述
梅忠恕(云南电力公司原副总工程师):
甲方的要求是有点不合情理。要在四个方向上测量,不知这四个方向是指东南西北四方?是90度正方向,还是允许小于90度或大于90度?如果某一方向由于地质原因无法打辅助接地极,又如何办?因此,我认为,这样的要求是不切实际的,不能接受的。我从来也没有见到过如此要求的。
如果严格按测量接地电阻的要求测量,应该说,在任何方向的测量结果的误差都是在允许范围以内的。
对于使用三极直线法的测量方法和数值选取,我们摘取梅忠恕先生在《如何准确测量接地电阻》一文中有关论述:
三极直线法是接地电阻测试中使用最多和最普遍的方法,测试时被测接地网
1、电压辅助极
2、电流辅助极3三点(极)按一直线布置,如图1所示。
E 测试电源 A 电流表 V 电压表 1 被测接地装置,2 电压极,3 电流极 D 接地网最大对角尺寸,d13 接地网到电流极的距离 d12 接地网到电压极的距离,d23 电压极与电流极的距离
图1 三极直线法测量接地电阻的接线
怎样获得准确的零电位点,是测准接地电阻的关键。
通常是采用试探法找寻大地零电位点的准确位置。其方法就是在三极连成的直线上,在比表1所列α的范围稍大的区域内,例如(0.5~0.7)d13范围内,以d13的3%为间距,连续打5~7个电压辅助极,进行5~7个点的测量。在具体操作上,可以打一点测一点,拔起电压极再打下一点位,测下一个数据。对于电压极的每一个点位,可以测得一个接地电阻值。
表1 在不同的d13距离下满足测量允许误差的α值范围 允许测量误差δ%下列d13距离下的α值范围 5D
3D
2D 50.56~0.670.59~0.650.59~0.63 100.50~0.710.55~0.680.58~0.66 注:D为接地装置最大对角长度。接地电阻测试结果的判断方法是:以接地电阻为纵坐标,以距离为横坐标,将测得的几个接地电阻值描绘在一张坐标图上,形成一条接地电阻的曲线。如果其中有至少三个电阻值的连线趋势走平,那这个位置对应的接地电阻值就是其准确值。不绘图也可直接判断,在所有测得值中,如果有三个以上电阻值之间相对误差小于3%时,就取这几个值的平均值为最后的测量结果。
要准确测量接地电阻,辅助电流极距被测接地装置的距离d13不能太小,至少应大于接地装置最大对角尺寸的3倍以上。电压极的位置在0.618倍d13处,但测量时应前后移动电压极5~7个点位,测得5~7个接地电阻的数值,选择其中至少三个相互误差小于3%的数据,取其平均值为最后的测量结果。
潘忠林(福州大学客座教授、硕士导师):
接地电阻的测量,在条件许可的情况下,宜进行多点测试,然后取几个点的测试结果平均值作为接地电阻的值。“如果是真正合格的地网,正常情况下,无论从哪个方向测试,测试结果的误差都应该在允许范围之内。至于地网外的土壤电阻率高低对地网的接地电阻影响不会太大,因为我们测量的是改造过的接地网的接地电阻。在多点测量中,对于某个测试点偏差很大的特殊情况,可能是测试方法(仪表)、地下有异物等因素造成,解决的办法是在该点附近重新测量一次”。
测量应该避开附近的电磁干扰,尽可能在夜深人静的时候测量。谢琦(湖南电信电磁防护支撑中心主任):
接地电阻的测量没有绝对的实际意义。在实际工作中。测量接地电阻值只是作为每年的测试比对数据,如果没有突变,认为地网是可靠的。因此,在测量接地电阻时,没有必要斤斤计较从几个方向测试。
对于接地电阻值较小(小于1欧)的地网测试,利用通信现有的摇表、钳表都不能测试其准确值,必须采用大电流注入法。如果是要我来评判,我会先利用数学计算的办法进行评估,如果评估结果在任何一个方向上得到测试验证,则认为是符合要求的。
另外还有一个折中的办法,就是在地网的几个不同方向分别测试,将其算术平均值作为地网的接地电阻值也是可行的。
后记
广西电网公司生技部便函《关于加强变电站接地网质量监督检查的紧急通知》不仅对接地网工程承包方提出了严厉的指责,而且宣布暂停这两家单位在广西电网公司所属系统承包防雷接地工程资格。作为当事者,迪祥雷公司认为:即使取消其承包资格,也是迪祥雷公司与电网公司之间的事情;但电网公司内部下发的便函,按理只能在本公司内部发行,那么是谁将这一便函(甚至篡改)到处传播发布,把一件小事的负面影响甚至扩大到了省外?迪祥雷公司感到非常不解,并希望通过第三方检测机构对整改通知中提到的有关变电站地网改造工程进行检测,以求得客观公正的结论。
这场由广西电网公司生技部变电站接地网整改通知所牵扯出的纠葛,究竟是利益驱动下的势力排挤,还是因技术分歧导致的矛盾升级,我们不得而知。作为技术刊物,我们更关注技术层面的探讨和交流,因此,我们希望有更多的专家、学者和工程技术人员参与讨论,以达到加强学术交流,着力工程应用的目的。这才是我们本次调查的出发点和立足点。
第二篇:先进制造技术导论论文变电站防雷接地技术探究
先进制造技术导论作业
题目:变电站防雷接地技术探究
作者:
学院:电气工程学院
专业:电气工程及其自动化
学号:
时间:2013-06-
21变电站防雷接地技术探究
(贵州省贵阳市 贵州大学 电气工程学院 550025)
**
Substation lightning protection and grounding techniques to explore
(Guiyang, Guizhou University School of Electrical Engineering 550025)**
摘要: 变电站的防雷接地对电力系统的稳定运行,以及人类的生产生活有着十分重要的意义。本文分析了变电站防雷与接地的种类,针对各个类型的防雷与接地提出了相应的保护措施,以保证电力系统的正常运转。
关键词: 防雷 接地 直击雷防护 避雷器 回路接地Abstract:Substation lightning protection and grounding the stable operation of the power system, as well as the production of human life has a very important significance.This paper analyzes the substation lightning protection and grounding type, for each type of lightning protection and grounding proposed appropriate protective measures to ensure the normal operation of the power system.Key word:LightingGroundLighting protectionLightning arresterGround Loop1 前言 起,并向雷云方向发起的。变电站是电力系统重要组成部分,如果2.2变电站遭受雷击来源 变电站发生雷击事故,将造成大面积的停变电站遭受的雷击是下行雷,主要来自电,给社会生产和人民生活带来不便,这就两个方面:一是雷直击在变电站的电气设备
[2]
要求防雷措施必须十分可靠。由于接地装置上;二是架空线路的感应雷过电压和直击的一些问题会引起主设备的损坏,变电站一雷过电压形成的雷电波沿线路侵入变电站。度停止运行,给电网的稳定运行造成了很大因此,直击雷和雷电波对变电站进线及变压的麻烦,因此变电站的接地措施必须要高度器的破坏的防护十分重要。的重视起来。变电站的接地系统是保护电力2.3 防雷措施 系统的正常运行,保障设备及人身安全的措(1)变电站的直击雷防护。装设避雷针
[3]
施之一。是直击雷防护的主要措施,避雷针是保护 电气设备、建筑物不受直接雷击的雷电接受2 变电站的防雷保护 器。它将雷吸引到自己的身上,并安全导入
[4]
2.1雷电的形成地中,从而保护了附近绝缘水平比它低的【1】
雷电放电是带电荷的雷云引起的放设备免遭雷击。电现象,在某种大气和大地条件下,潮湿的装设避雷针时对于35kV变电站必须装热气流进入大气层冷凝而形成雷云,大气层有独立的避雷针,并满足不发生反击的要中的雷云底部大多数带负电,它在地面上感求;对于110kV及以上的变电站,由于此类应出大量的正电荷,这样,雷云和大地之间电压等级配电装置的绝缘水平较高,可以将就形成了强大的电场,随着雷云的发展和运避雷针直接装设在配电装置的架构上,因动,当空间电场强度超过大气游离放电的临此,雷击避雷针所产生的高电位不会造成电界电场强度时,就会发生雷云之间或雷云对气设备的反击事故。
[5]
地的放电,形成雷电。按其发展方向可分为(2)变电站对侵入波的防护。变电站下行雷和上行雷。下行雷是在雷云产生并向对侵入波防护的主要措施是在其进线上装
[6]
大地发展的,上行雷是接地物体顶部激发 设阀型避雷器。阀型避雷器的基本元件为
火花间隙和非线性电阻,目前,FS系列阀型
避雷器为火花间隙[7[和非线性电阻[8],其主要用来保护小容量的配电装置SFZ系列阀型避雷器,主要用来保护中等及大容量变电站的电气设备;FCZ1系列磁吹阀型避雷器,主要用来保护变电站的高压电气设备。
(3)变电站的进线防护。对变电站进线实施防雷保护,其目的就是限制流经避雷器的雷电电流幅值和雷电波的陡度[9]
。当线路上出现过电压时,将有行波沿导线向变电站运动,其幅值为线路绝缘的50%冲击闪络电压[10],线路的冲击耐压比变电站设备的冲击耐压要高很多。因此,在接近变电站的进线上加装避雷线是防雷的主要措施。如果没架设避雷线,当接近变电站的进线上遭受雷击时,流经避雷器的雷电电流幅值可超过5kA,且其陡度也会超过允许值,势必会对线路造成破坏。
(4)变压器的防护。变压器的基本保护措施是接近变压器安装避雷器,这样可以防止线路侵入的雷电波损坏绝缘。
装设避雷器时,要尽量接近变压器,并
尽量减少连线的长度,以便减少雷电电流
【11】
在连接线上的压降【12】
。同时,避雷器的接线应与变压器的金属外壳及低压侧中性点连接在一起,这样,当侵入波使避雷器动作时,作用在高压侧主绝缘上的电压就只剩下
避雷器的残压【13】
了(不包括接地电阻上的电压压降),就减少了雷电对变压器破坏的机会。
(5)变电站的防雷接地。变电站防雷保护满足要求以后,还要根据安全和工作接地的要求敷设一个统一的接地网,然后避雷针和避雷器下面增加接地体以满足防雷的要求,或者在防雷装置下敷设单独的接地体。变电站接地保护3.1接地的概述
接地就是将电力或建筑电气装置、设施
中某些导电【14】部分,经接地线【15】
接至接
地极【16】
。接地根据工作内容划分为以下几种:1.工作接地工作接地是为系统正常工作而设置的接地。如为了降低电力设备的绝缘水平,在及以上电力系统中采用中性点
接地的运行方式,在两线一地的双极高压直
流输电中也需将其中性点接地。除主设备的接地外,在微电子电路中,根据电路性质不同,还有各种不同的工作接地比如直流地、交流地、数字地、模拟地、信号地、功率地、电源地等。2.防雷接地【17】
为了避免雷电的危害,避雷针、避雷线和避雷器等防雷设备都必须配以相应的接地装置以便将雷电
流引入大地。3.安全接地【18】
为了保证人
身的安全,将电气设备外壳【19】
设置的接地。任何接地极都存在着接地电阻,正因为如此,当有电流流过接地体时,在接地电阻上的压降将引起接地极电位的升高电流在地中扩散时,地面会出现电位梯度。3.2变电站的接地原则
变电站接地网设计时应遵循以下原则: 1.尽量采用建筑物地基的钢筋和自然金属接
地物统一连接地来作为接地网【20】;
2.尽量以自然接地物为基础,辅以人工接地体补充,外形尽可能采用闭合环形;
3.应采用统一接地网,用一点接地的方式接地。
3.3变电站接地方式
目前,变电站的接地方式有许多种,比如单点的接地、多点的接地和混合类型的接地等。单点的接地还分为串联单点的接地及并联单点的接地。一般来讲,单点的接地常常用于简单线路,、以及频率较低(f<2MHz)的电子线路【21】
。而当涉及到高频(f>20MHz)的电路时,我们应该采用多点的接地或者多
层板【22】的方式。(1)保护的接地
防雷接地是受到雷电袭击(直击、感应或线路引入)时, 为防止造成损害的接地系统.常有信号(弱电)防雷地和电源(强电)防雷地之分, 区分的原因不仅仅是因为要求接地电阻不同, 而且在工程实践中信号防雷地常附在信号独立地上, 和电源
防雷地【23】
分开建设.机壳安全接地是将系统中平时不带电的金属部分(机柜外壳, 操作台外壳等)与地之间形成良好的导电连接, 以保护设备和人身安全.原因是系统的供电是强电供电(380、220、或110V), 通常情况下机壳等是不带电的, 当故障发
生(如主机电源故障或其它故障)造成电源的供电火线【24】
与外壳等导电金属部件短路时, 这些金属部件或外壳就形成了带电体.如果没有很好的接地, 那么这带电体和地
之间就有很高的电位差【25】
.如果人不小心
触到这些带电体【26】, 那么就会通过人身形成通路, 产生危险.因此, 必须将金属外壳和地之间作很好的连接, 使机壳和地等电位.此外, 保护接地还可以防止静电的积聚.(2)工作的接地
工作接地的目的是使变电站电网和其中的仪器都能够可靠地运行并且保证系统
量测和控制信息精度【27】
而设置的接地方法.它又分成机器的逻辑地【28】、信号的回路接地、屏蔽的接地。机器的逻辑地, 同时也称
为主机的电源地[29], 它是控制中心内部逻辑的电平正端, 即+ 6V 等低压电源的电流输出地.信号的回路接地, 比如各个变送器的负端要同时接地, 开关量的信号负端接
地等方式.屏蔽的接地(包括模拟信号【30】
中屏蔽层面的接地).除了上述几种工作的接地外, 在很多系统运行场情况下容易发生混乱的还有一种特殊供电系统地, 即交流电源工作地.它也是电力系统内为了正常
运行所需要设的接地(比如中性点【31】的接地).4 结束语
根据防雷设计【32】
整体的性能、结构的性能、层次的性能和整个变电站所处的环境、变电站地基的土质条件和设备性能的用途,分别采取了相应的雷电的保护措施。对于处在不同区域的电力设备,系统将采取等电位的连接及安装新型的电源防雷装置和浪涌电压的保护等方法,从而保证处在不同层次的电力设备可以达到良好的防雷能力。接地时的防雷技术,伴随着大型变电站需求的提高和科技水平的发展,更加合理有效的办法则是使用现代的建筑基础钢筋作为地级。防雷技术是一个传统的话题,在防雷的技术领域,目前还存在着许多可供探索的新课题,比如雷云的起电机理目前还不清楚,雷电流的定量感性研究也十分薄弱,防
雷的设备也在不断地发展之中。
参考文献:
[1] 冯建元.冯全福 高山发射台防雷研究与实践[J]-电视技术2011(14)
[2] 施围, 郭洁.电力系统过电压计算[M].西安交通大学出版社, 1988.[3] 电管局, 包建强.500kV 线路直击雷典型事故调查研究[J].高电压技术, 1997, 23(2): 73.[4] GB1094_3—2003,电力变压器 第三部分:绝缘水平、绝缘试验和外绝缘空气问隙[S]
[5] 刘渝根, 刘纬, and 陈先禄.“500kV 变电站雷电侵入波研究 [J].” 重庆大学学报: 自然科 学版 23.3(2000): 17-19.[6] 程学启, 杨春雷, 咸日常, 等.线路避雷器在输电线路防雷中的应用[J].中国电力, 1999, 32(8): 66-67.[7] 何孟兵, 王清玲, 贺臣, 等.旋转电弧对火花间隙开关电极烧蚀的影响[J].强激光与粒子束, 2004, 16(11): 1468-1472.[8] 李世振.“非线性电阻灭磁的动态过程及其定量分析.” 东方电机 3(1996): 61-65.[9] 王巨丰, 齐冲, 车诒颖, & 范李莉.(2007).雷电流最大陡度及幅值.中国电机工程学报, 27(3).[10] 孙才新, 舒立春, 蒋兴良, 等.高海拔, 污秽, 覆冰环境下超高压线路绝缘子交直流放电 特性闪络电压校正研究[J].中国电机工程学报, 2002, 22(11).[11] 石光其, 方厚辉.雷电电流数学模型的仿真分析[J].湖南工程学院学报(自然科学版), 2004, 2: 006.[12] 刘想平, 张兆顺, 刘翔鹗, 等.水平井筒内与渗流耦合的流动压降计算模型[J].西南石油学院学报, 2000, 22(2): 36-39.[13] 高吉增, 杨玉磊, 崔学深.感应电动机失电残压的研究及其对重合过程的影响[J].电力系统保护与控制, 2009.[14] 王利祥, 王佛松.导电聚合物——聚苯胺的研究进展——Ⅱ.电子现象, 导电机理, 性质和应用[J].应用化学, 1990, 7(6): 1-8.[15] 吴国跃, 谭进, 王军.变电站设备接地
线导通检查[J].高电压技术, 2002, 28(5): 53-54.[16] 王明新, 张强.直流输电系统接地极电流对交流电网的影响分析[J].电网技术, 2005, 29(3): 9-14.[17] 潘家利, 侯安, 李敏.等电位连接网络在信息系统防雷接地工程中的应用[J].气象研究与应用, 2008, 29(3): 51-53.[18] 张爱全.电子系统设计中的接地技术[J].山西电子技术, 2003, 5: 011.[19] 崔学莹.矿用本安型电气设备外壳防护性能的提高[J].煤矿自动化, 1998(2): 66-67.[20] 张波, 崔翔, 赵志斌, 等.大型变电站接地网的频域分析方法[J].中国电机工程学报, 2002, 22(9): 59-63.[21] 陈其纯.电子线路[M].高等教育出版社, 1998.[22] 佟景伟, 谢马岳, 沈珉, 等.复合材料多层板边缘效应起因分析[J].天津大学学报(自然科学与工程技术版, 2001, 34(2).[23] 潘家利.建筑物防雷设计方法探讨[J].广西气象, 2003, 24(2): 38-40.[24] 谈恩民, 邵根富, 陈尚松.火线(IEEE-1394)用于虚拟仪器的研究[J].电测与仪表, 2000, 2: 011.[25] 吴茂林, 崔翔.变电站地电位差对屏蔽电缆的电磁干扰分析[J].高电压技术, 2005, 31(3): 53-55.[26] 方年安.带电作业安全技术[J].东北电力技术, 1994, 7: 51-59.[27] 黄金杰, 李士勇, 左兴权.一种 TS 型粗糙模糊控制器的设计与仿真[J].系统仿真学报, 2004, 16(3): 480-484.[28] 陈传波, 涂岩.HC01 单片机中断逻辑设计[J].计算机工程与应用, 1991(12): 32-36.[29]孙方, 颜国正, 王文兴.MultiMediaCard 及其与单片机接口[J].单片机与嵌入式系统应 用, 2004, 6: 44-46.[30] 殷健.工业控制系统中模拟信号的传输[J].工矿自动化, 2005, 2: 54-55.[31] 林卓宏, 田军利.高层智能大厦雷击机理及防雷设计 [J].气象研究与应用, 2008,29(1): 69-71.作者简介: ** 贵州大学电气工程学院 本科生 主要从事于发电变电输电的学习联系方式:贵州省贵阳市贵州大学电气工程学院 550025 手机:187