第一篇:光纤通信知识点
光纤通信优点 光纤通信之所以受到人们的极大重视,这是因为和其它通信手段相比,具有无以伦比的优越性。
1、通信容量大 从理论上讲,一根仅有头发丝粗细的光纤可以同时传输1000 亿个话路。虽然目前远远未达到如此高的传输容量,但用一根光纤同时传输24 万个话路的试验已经取得成功,它比传统的明线、同轴电缆、微波等要高出几十乃至上千倍以上。一根光纤的传输容量如此巨大,而一根光缆中可以包括几十根甚至上千根光纤,如果再加上波分复用技术把一根光纤当作几根、几十根光纤使用,其通信容量之大就更加惊人了。
2、中继距离长 由于光纤具有极低的衰耗系数(目前商用化石英光纤已达0.19dB/km 以下),若配以适当的光发送与光接收设备,可使其中继距离达数百公里以上。这是传统的电缆(1.5km)、微波(50km)等根本无法与之相比拟的。因此光纤通信特别适用于长途一、二级干线通信。据报导,用一根光纤同时传输24 万个话路、100 公里无中继的试验已经取得成功。此外,已在进行的光孤子通信试验,已达到传输120 万个话路、6000 公里无中继的水平。因此,在不久的将来实现全球无中继的光纤通信是完全可能的。
3、保密性能好 光波在光纤中传输时只在其芯区进行,基本上没有光“泄露”出去,因此其保密性能极好。
4、适应能力强 适应能力强是指,不怕外界强电磁场的干扰、耐腐蚀,可挠性强(弯曲半径大于25 厘米时其性能不受影响)等。
5、体积小、重量轻、便于施工维护 光缆的敷设方式方便灵活,既可以直埋、管道敷设,又可以水底和架空。
6、原材料来源丰富,潜在价格低廉 制造石英光纤的最基本原材料是二氧化硅即砂子,而砂子在大自然界中几乎是取之不尽、用之不竭的。因此其潜在价格是十分低廉的。
光纤的重量轻,光缆的重要比电缆轻得多,例如18管同轴电缆1m的重量为11kg,而同等容量的光缆1m重只有90g,这对于在飞机、宇宙飞船和人造卫星上使用光纤通信更具有重要意义。还有,光纤柔软可挠,容易成束,能得到直径小的高密度光缆。
光纤除具有以上突出的优点外,还具有耐腐蚀力强、抗核幅射、能源消耗小等优点。
其缺点是质地脆、机械强度低,连接比较困难,分路、耦合不方便,弯曲半径不宜太小等。这些缺点在技术上都是可以克服的,它不影响光纤通信的实用。
目前正处于100G至400G过渡阶段
我国在传输链路方面,2013年最大段落容量达12T,100G开始大规模部署并成为骨干网主导,预计到2017年最大段落容量将达40T,400G将迎来大需求。
新疆G.654.E陆用试验,提供了为400Gbit/s高速大容量光纤通信
2014年单模光纤超大容量光传输再次刷新全国纪录,一根光纤可容纳24亿人同时通话,而大小仅相当于一根头发丝。武汉邮电科学研究院烽火科技集团首次在一根普通单模光纤上实现了100.23Tb/s传输80公里的超大容量光传输,相当于12亿对人(即24亿人)在一根光纤上同时通话或1秒钟传输4000部25G大小、分辨率为1080P的蓝光超清电影,再次刷新我国光传输最高纪录。
2016年6月建成海底光缆将美国和日本相连,这一光缆系统的传输速率比电缆调制解调器快1000万倍。2016年跨太平洋的光缆系统建成并于6月30日启用:全长约9000公里,带宽高达60Tbps,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。
光纤通讯是光导纤维传送信号的一种通讯手段。光纤通讯的特点是通讯容量大,比电通讯容量大千万倍,在两根光纤上可以传递万路电话,或上千路电视;保密性能好,抗干扰性很强。
光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
从它们只是讲的角度不同,光纤通讯主要讲的手段,光纤通信说的是技术方面的东西。
加州大学圣地亚哥分校的研究人员打破了无中继器情况下光信号传播距离的障碍,在仅使用标准放大器的情况下,使得信息在光纤中的传输距离突破了12000公里(近7500英里)!
在光纤中,传输信息通过多种沟通渠道传输从而产生不同的频率带,而利用“频率梳”使光流信息的变化频率同步,即所谓的光纤传播“光载波”(“optical carriers”),这样就可以提前补偿同一光纤中多个通信通道间的串扰,同时还能够确保传输通道间的串扰可见。概述:光纤通信与其他形式通信的主要区别有两点:一是载波频率很高;二是用光纤作为传输介质,因此其优点十分明显。而缺点由于材料原因在施工和供电方面确有不足。本文详细讲解光纤通信的优缺点!
利用光波在光导纤维中传输信息的通信方式.由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信。
光纤通信的特点:
一、通信容量大、传输距离远,信道带宽极宽;
随着信息化时代的飞速发展,人们对通信的依赖程度越来越高,对通信系统运载信息能力的要求也日趋增强。有线通信从明线发展到电缆,无线通信从短波发展到微波和毫米波,都试图通过提高载波频率来提高信道容量。而光纤通信中的光波是迄今为止使用频率最高的载波,其传输容量无疑是最高的。一根光纤的潜在带宽可达20THz。采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。限于器件等技术因素的制约,目前光纤通信应有的通信能力并没有完全发挥出来。例如,理论上一根光纤可以同时传输近1 00亿路电话和1 000万路电视节目,而实际情况为每对光纤仅仅传输48万多路电话信号。在实际应用中,常将组合光纤数不等的光缆与一些新技术(如密集波分复用技术等)相结合,其传输容量可以满足任何条件下信息传输的需要。目前400Gbit/s系统已经投入商业使用。
光纤的损耗极低,在光波长为1.55μm附近,石英光纤损耗可低于0.2dB/km,这比目前任何传输媒质的损耗都低。因此,无中继传输距离可达几
十、甚至上百公里。
二、信号干扰小、保密性能好;
干扰是影响通信质量的重要原因。通信系统的干扰源很多,有天然干扰源,如雷电、电离层的变化和太阳黑子活动等;有工业干扰源,如电动机和高压电力线;还有无线通信的相互干扰等。干扰对通信系统的影响是通过干扰信号频谱落在通信系统工作频谱范围内产生的。为了降低干扰的影响,人们采取了数字通信、差错控制编码等措施,、但并不能完全消除干扰对通信指标的劣化。而光纤中传输的光信号特定的频率范围,使它不易受各种电磁干扰的影响。同时光纤是由高纯度的二氧化硅材料制成的,不导电,也无电感效应,所以光纤通信系统可以从根本上解决多年来困扰人们的干扰问题。
保密性好是对通信系统的又一重要要求。保密要求已从国家政治、军事、经济情报等领域扩展到企业经济、技术乃至个人通信领域。对信息的窃取通常有三个途径:一是直接接人式窃听;二是窃听计算机和终端设备辐射的电磁场;三是窃听电缆源辐射的电磁场。对于第一种窃听可以采取保密口令、信息加密等技术进行处理;对于第二种窃听可以采取加强电磁屏蔽措施,但电缆系统的完全屏蔽通常是比较困难的。现代侦听技术已能做到在离同轴电缆几千米的地方窃听电缆中传输的信号。但光波在光纤中传输.不易泄漏出来,难以用传统的方法窃听其中的信息,同时它也不会干扰其他通信设备的正常工作。
三、抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。
四、光纤尺寸小、重量轻,便于铺设和运输;
五、材料来源丰富,环境保护好,有利于节约有色金属铜。
光纤的主要原材料是来源丰富的二氧化硅。据测量,从上海至北京敷设一条电缆线路需要用铜800t,铅300to如果用光纤代替铜、铅等有色金属,在保持同样的传输容量下,仅需要10kg石英。因此,光纤通信技术的推广将节约大量的有色金属材料,具有合理使用地球资源的意义。
六、无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。
七、光缆适应性强,寿命长。
光纤通信的缺点:
一、质地脆,机械强度差。
二、光纤的切断和接续需要一定的工具、设备和技术。
三、分路、耦合不灵活。
四、光纤光缆的弯曲半径不能过小(>20cm)
五、有供电困难问题。
六、光纤怕水。
1、概述
1.1什么是光纤通信
光纤通信是以光波为载体,以光导纤维为传输媒质,将信号从一处传输到另一处的一种通信手段。
光纤通信,就是利用光纤来传输携带信息的光波以达到通信之目的。
1.2光缆通信的优点
光纤通信与以往的电气通信相比,主要区别在于有很多优点:它传输频带宽、通信容量大;传输损耗低、中继距离长;线径细、重量轻,原料为石英,节省金属材料,有利于资源合理使用;绝缘、抗电磁干扰性能强;还具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点,可在特殊环境上使用。
1.3光纤通信在电力系统中应用发展
电力系统通信网是我国专用通信网中规模较大、发展较为完善的专网。随着通信网络光纤化趋势进程的加速,我国电力专用通信网在很多地区已经基本完成了从主干线到接入网向光纤过渡的过程。目前,电力系统光纤通信承载的业务主要有语音、数据、宽带业务、IP等常规电信业务;电力生产专业业务有保护、安全自动装置和电力市场化所需的宽带数据等。特别是保护和安全自动装置,对光缆的可靠性和安全性提出了更高的要求。可以说,光纤通信已经成为电力系统安全稳定运行以及电力系统生产生活中不可缺少的一个重要组成部分。
光纤通信在电力通信中的应用最初是沿用电信部门传统的地埋、管道、架空等方法敷设普通光缆,构成电力光纤通信系统。随着技术的进步,到了上世纪的七、八十年代,一些有别于传统光缆的附加于电力线和加挂于电力杆塔上的光电复合式光缆被开发出来,这些光缆被统称为电力特种光缆。电力系统光纤通信与其它光纤通信系统最大区别之一就是通信光缆的特别性。电力特种光缆受外力破坏的可能性小,可靠性高,虽然其本身造价相对较高,但施工建设成本较低。经过多年的发展,目前电力特殊光缆制造及工程设计已经成熟,特别是OPGW和ADSS技术,在国内电力特殊光缆已经开始大规模的应用,如三峡工程中的长距离主干OPGW光缆线路等。特种光缆依托于电力系统自己的线路资源,避免了在频率资源、路由协调、电磁兼容等方面与外界的矛盾和纠葛,有很大的主动权和灵活性。
电力系统有强大的电力网,遍布全国的城市和农村,借助于电力线路及杆塔建设光纤通信网是完全可行的。并且可以为发展电网自动化和新型继电保护提供宽频通道。目前,电力系统的城网和农网改造也为电力通信的发展带来了极好的机遇,许多省、地(市)电力局和县电力局都纷纷建设光纤线路,为实现宽带综合业务数字网(B-ISDN)做好充分准备。
2、常用电力光缆
2.1 GYFTZY非金属阻燃光缆
GYFTZY非金属阻燃光缆(一般电力光缆采用层绞式)严格来说不属于我们电力光缆用的特种光缆。但我们电力光缆线路进变电站时,变电站具有强电的场合,同时对防雷性及阻燃型要求很高,所以就需要采用非金属材料、阻燃性好的光缆,所有我们在进变电站段一般会采用GYFTZY非金属阻燃光缆。可能有人会说,我看可以采用ADSS全介质自承式光缆,根据ADSS全介质自承式光缆的使用条件也适用于雷电区,强电区,但相对于GYFTZY非金属阻燃光缆普通光缆,成本要高,性价比不高。
我们先通过GYFTZY的字母了解该光缆的性能,GY为通信用室外光缆;F为非金属加强件;T为填充式阻水;Z为阻燃;Y为聚乙烯护套。通过以上知道其技术特点为阻燃护套,松套管内填充特种油膏,对光纤进行关键性保护,全截面阻水结构,确保光缆良好的阻水防潮性能,高模量玻璃纤维增强塑料棒(FRP)中心加强构件,光缆为全介质(非金属)结构,重量轻,敷设方便,抗电磁能力优良,适用于电力系统及多雷地区。本光缆在站内一般穿管方式敷设。最小弯曲半径敷设时20倍光缆外径;敷设完成后工作时10倍光缆外。
2.2 ADSS全介质自承光缆
ADSS全介质自承式光缆(AllDielectricSelf-SupportingOpticalFiberCable,简称ADSS光缆),ADSS光缆在220kV、110kV、35kV电压等级输电线路上广泛使用,一般用于已建线路上。全介质即光缆所用的是全介质材料,自承式是指光缆自身加强构件能承受自重及外界负荷。这一名称就点明了这种光缆的使用环境及其关键技术:因为是自承式,所以其机械强度举足轻重;使用全介质材料是因为光缆处于高压强电环境中,必须能耐受强电的影响;由于是在电力杆塔上架空使用,所以必须有配套的挂件将光缆固定在杆塔上。
由于ADSS光缆是与高压电力线同路架设,所以其表面除要求与普通光缆一样抗紫外线辐射之外,还要求能长期经受高压强电环境的考验。光缆与高压相线及其与大地之间的电容耦合会在光缆表面产生不同的空间电位。在雨雪冰霜等气象环境及尘垢作用下,电位差在潮湿污秽的光缆表面局部引起漏电流,产生的热效应使光缆表面部分区域水分被蒸发,在蒸干的瞬间,漏电流中断从而产生电弧和较大热能,积累的热能会灼伤光缆表面,形成象树枝状的痕迹,这就是所说的电痕。天长日久外护层老化受损,由表及里,芳纶纱老化机械性能降低,最终就会出现光缆断裂。主要从两方面来解决这个问题。一是采用专用耐电痕护套料来挤制芳纶纱外的外护层,即采用AT耐电痕护套来减少强电对光缆表面的电痕腐蚀;另外通过专业软件对电力杆塔上的空间电位分布进行计算并绘制出电场强度分布图,根据这一科学依据来确定光缆在杆塔上的具体悬挂点,这样来避免光缆受更强的电场作用。ADSS光缆在不同的电力路线采用不同的护套,最常见的ADSS护套有两种,PE护套和AT护套。PE护套,普通的聚乙烯护套,用于350KV及以下电力线路。AT护套,抗电痕护套,用于110KV及以上电力线路。
2.3 OPGW光纤复合地线
OPGW光缆,OpticalFiberCompositeOverheadGroundWire(也称光纤复合架空地线)。把光纤放置在架空高压输电线的地线中,用以构成输电线路上的光纤通信网,这种结构形式兼具地线与通信双重功能,它具有两种功能:一是作为输电线路的防雷线,对输电导线抗雷闪放电提供屏蔽保护;二是通过复合在地线中的光纤来传输信息。OPGW是架空地线和光缆的复合体,但并不是它们之间的简单相加。
OPGW光缆主要在500kV、220kV、110kV电压等级线路上使用,受线路停电、安全等因素影响,多在新建线路上应用。OPGW光适用高压超过110kV的线路,档距较大(一般都在250m以上);易于维护,对于线路跨越问题易解决,其机械特性可满足线路大跨越;OPGW外层为金属铠装,对高压电蚀及降解无影响;OPGW在施工时必须停电,停电损失较大,所以在新建110kV以上高压线路中应该使用OPGW;OPGW的性能指标中,短路电流越大,越需要用良导体做铠装,则相应降低了抗拉强度,而在抗拉强度一定的情况下,要提高短路电流容量,只有增大金属截面积,从而导致缆径和缆重增加,这样就对线路杆塔强度提出了安全问题。常见的OPGW结构主要有三大类,分别是铝管型、铝骨架型和(不锈)钢管型。
2.4 OPPC光纤复合相线
光纤复合架空相线OPPC(OpticalPhaseConductor)是一种新型的电力特种光缆,是将光纤单元复合在相线中的光缆,具有相线和通信的双重功能,OPPC光缆的设计适用任何新建的中低压输电线路,主要用于110kV以下电压等级线路,尤其是35kV以下的配电线路,有些是可不架设地线的,因此不可能安装OPGW。在所有的电网中,唯有相线是必不可少的,为了满足电力监控或光纤联网的要求,OPPC与OPGW技术比较接近,在传统的相线结构中以合适的方法加入光纤单元,就成为光纤复合相线。
2.5 MASS金属自承光缆
金属自承光缆MASS(MetalAerialSelfSupporting)。从结构上看,MASS与中心管单层绞线的OPGW相一致,如没有特殊要求,金属绞线通常用镀锌钢线,因此结构简单,价格低廉。MASS是介于OPGW和ADSS之间的产品。MASS作为自承光缆应用时,主要考虑强度和弧垂以及与相邻导/地线和对地的安全间距。它不必像OPGW要考虑短路电流和热容量,也不需要像OPPC那样要考虑绝缘、载流量和阻抗,更不需要像ADSS要考虑安装点场强,其外层金属绞线的作用仅是容纳和保护光纤。在破断力相近的情况下,虽然MASS比ADSS重,但外直径比中心管ADSS约小1/4,比层绞ADSS约小1/3。在直径相近情况下,ADSS的破断力和允许张力却要比MASS小得多。
2.6 OPAC附加型光缆
无金属捆绑式架空光缆AD-Lash(AllDielectricLashedCable)和无金属缠绕式光缆GWWOP(GroundWireWrappedOpticalFiberCable)光缆有时被统称为附加型光缆——OPAC,是在电力线路上建设光纤通信网络的一种既经济又快捷的方式。
它们用自动捆绑机和缠绕机将光缆捆绑和缠绕在地线或相线上,其共同的优点是:光缆重量轻、造价低、安装迅速。在地线或10kV/35kV相线上可不停电安装;共同的缺点是:由于都采用了有机合成材料做外护套,因此都不能承受线路短路时相线或地线上产生的高温,都有外护套材料老化问题,施工时都需要专用机械,在施工作业性、安全性等方面问题较多,而且其容易受到外界损害,如鸟害、枪击等,因此在电力系统中都未能得到广泛的应用。但在国际上,这类技术并没有被淘汰或放弃,仍在相当的范围内应用。
2.7 光纤复合电缆
光纤复合电缆主要与OPPC类似,将光纤单元复合与电缆中,让电缆具有相线和通信的双重功能。光纤复合电缆有光纤复合低压电缆OPLC、光纤复合中压电缆OPMC及现在开始在高压电缆上使用的光纤复合高压电缆(如110kV海底电力电缆、220kV海底电力电及部分陆缆)。
光纤复合低压电缆OPLC(OpticalFiberCompositeLow-VoltageCable)是将经过保护后的光纤单元置于电力线缆中,可用于额定电压0.6/1kV及其以下电力系统中,同时解决光纤信息通信的问题。OPLC倡导的电力光纤到户(PowerandFibertothehome,简称PFTTH),即配合无源光网络(PON)技术,实现电信网、电力传输网、电视网和互联网等“多网融合”的概念完全符合我国现阶段电信运营商提出的“三网融合”建设的浪潮,因此可以通过OPLC构建电信公共服务平台,加速和节约我国光纤到户建设。
光纤复合中压电缆OPMC是额定电压6kV~35kV供电系统用中压智能复合电缆。光纤复合中压电缆OPMC是一种光纤复合中压电缆,包括缆芯、缆芯包带层及外护套,缆芯内具有电力传输导线和阻水填充物,每根电力传输导线由在导体外依次包覆导体屏蔽层、绝缘层、绝缘屏蔽层、金属屏蔽层构成,在缆芯内设有由内设光纤的松套管以及在松套管外依次包覆非金属加强层、护套层而构成的光纤通信单元,在缆芯包带层与外护套之间依次设有内护套、钢带铠装层。
光纤复合高压电缆的使用也是一种发展趋势,现在的海底电缆基本都是采用光纤复合高压电缆,现在陆缆使用光纤复合高压电缆也越来越多。下图的35kV海缆图截面图。
图中:
1.铜导体+阻水带 2.导体半导电屏蔽 3.XLPE绝缘
4.绝缘半导电屏蔽 5.半导电阻水带 6.合金铅套
7.防腐层+PE护套
8.PP绳填充条成缆外径 9.成缆包带
10.PP绳+沥青内衬层 11.钢丝铠装
12.PP绳+沥青外被层+包带 13.PP绳+沥青外被层+包带 光纤光缆基本知识45条 1.简述光纤的组成。
答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。2.描述光纤线路传输特性的基本参数有哪些? 答:包括损耗、色散、带宽、截止波长、模场直径等。3.产生光纤衰减的原因有什么? 答:光纤的衰减是指在一根光纤的两个横截面间的光功率的减少,与波长有关。造成衰减的主要原因是散射、吸收以及由于连接器、接头造成的光损耗。
4.光纤衰减系数是如何定义的? 答:用稳态中一根均匀光纤单位长度上的衰减(dB/km)来定义。5.插入损耗是什么? 答:是指光传输线路中插入光学部件(如插入连接器或耦合器)所引起的衰减。6.光纤的带宽与什么有关? 答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。
7.光纤的色散有几种?与什么有关? 答:光纤的色散是指一根光纤内群时延的展宽,包括模色散、材料色散及结构色散。取决于光源、光纤两者的特性。
8.信号在光纤中传播的色散特性怎样描述? 答:可以用脉冲展宽、光纤的带宽、光纤的色散系数三个物理量来描述。9.什么是截止波长? 答:是指光纤中只能传导基模的最短波长。对于单模光纤,其截止波长必须短于传导光的波长。10.光纤的色散对光纤通信系统的性能会产生什么影响? 答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。影响误码率的大小,和传输距离的长短,以及系统速率的大小。
11.什么是背向散射法? 答:背向散射法是一种沿光纤长度上测量衰减的方法。光纤中的光功率绝大部分为前向传播,但有很少部分朝发光器背向散射。在发光器处利用分光器观察背向散射的时间曲线,从一端不仅能测量接入的均匀光纤的长度和衰减,而且能测出局部的不规则性、断点及在接头和连接器引起的光功率损耗。
12.光时域反射计(OTDR)的测试原理是什么?有何功能? 答:OTDR基于光的背向散射与菲涅耳反射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等,是光缆施工、维护及监测中必不可少的工具。其主要指标参数包括:动态范围、灵敏度、分辨率、测量时间和盲区等。
13.OTDR的盲区是指什么?对测试会有何影响?在实际测试中对盲区如何处理? 答:通常将诸如活动连接器、机械接头等特征点产生反射引起的OTDR接收端饱和而带来的一系列“盲点”称为盲区。
光纤中的盲区分为事件盲区和衰减盲区两种:由于介入活动连接器而引起反射峰,从反射峰的起始点到接收器饱和峰值之间的长度距离,被称为事件盲区;光纤中由于介入活动连接器引起反射峰,从反射峰的起始点到可识别其他事件点之间的距离,被称为衰减盲区。
对于OTDR来说,盲区越小越好。盲区会随着脉冲展宽的宽度的增加而增大,增加脉冲宽度虽然增加了测量长度,但也增大了测量盲区,所以,在测试光纤时,对OTDR附件的光纤和相邻事件点的测量要使用窄脉冲,而对光纤远端进行测量时要使用宽脉冲。
14.OTDR能否测量不同类型的光纤? 答:如果使用单模OTDR模块对多模光纤进行测量,或使用一个多模OTDR模块对诸如芯径为62.5mm的单模光纤进行测量,光纤长度的测量结果不会受到影响,但诸如光纤损耗、光接头损耗、回波损耗的结果是不正确的。所以,在测量光纤时,一定要选择与被测光纤相匹配的OTDR进行测量,这样才能得到各项性能指标均正确的结果。
15.常见光测试仪表中的“1310nm”或“1550nm”指的是什么? 答:指的是光信号的波长。光纤通信使用的波长范围处于近红外区,波长在800nm~1700nm之间。常将其分为短波长波段和长波长波段,前者指850nm波长,后者指1310nm和1550nm.16.在目前商用光纤中,什么波长的光具有最小色散?什么波长的光具有具有最小损耗? 答:1310nm波长的光具有最小色散,1550nm波长的光具有最小损耗。17.根据光纤纤芯折射率的变化情况,光纤如何分类? 答:可分为阶跃光纤和渐变光纤。阶跃光纤带宽较窄,适用于小容量短距离通信;渐变光纤带宽较宽,适用于中、大容量通信。
18.根据光纤中传输光波模式的不同,光纤如何分类? 答:可分为单模光纤和多模光纤。单模光纤芯径约在1~10μm之间,在给定的工作波长上,只传输单一基模,适于大容量长距离通信系统。多模光纤能传输多个模式的光波,芯径约在50~60μm之间,传输性能比单模光纤差。
在传送复用保护的电流差动保护时,安装在变电站通信机房的光电转换装置与安装在主控室的保护装置之间多用多模光纤。
19.阶跃折射率光纤的数值孔经(NA)有何意义? 答:数值孔经(NA)表示光纤的收光能力,NA越大,光纤收集光线能力越强。20.什么是单模光纤的双折射? 答:单模光纤中存在两个正交偏振模式,当光纤不完全园柱对称时,两个正交偏振模式并不是简并的,两个正交偏振的模折射率的差的绝对值即为双折射。
21.最常见的光缆结构有几种? 答:有层绞式和骨架式两种。22.光缆主要由什么组成? 答:主要由:纤芯、光纤油膏、护套材料、PBT(聚对苯二甲酸丁二醇酯)等材料组成。23.光缆的铠装是指什么? 答:是指在特殊用途的光缆中(如海底光缆等)所使用的保护元件(通常为钢丝或钢带)。铠装都附在光缆的内护套上。
24.光缆护套用什么材料? 答:光缆护套或护层通常由聚乙烯(PE)和聚氯乙烯(PVC)材料构成,其作用是保护缆芯不受外界影响。25.列举在电力系统中应用的特殊光缆。答:主要有三种特殊光缆:
地线复合光缆(OPGW),光纤置于钢包铝绞结构的电力线内。OPGW光缆的应用,起到了地线和通信的双功能,有效地提高了电力杆塔的利用率。
缠绕式光缆(GWWOP),在已有输电线路的地方,将这种光缆缠绕或悬挂在地线上。
自承式光缆(ADSS),有很强的抗张能力,可直接挂在两座电力杆塔之间,其最大跨距可达1000m.26.OPGW光缆的应用结构有几种? 答:主要有:1)塑管层绞+ 铝管的结构;2)中心塑管+ 铝管的结构;3)铝骨架结构;4)螺旋铝管结构;5)单层不锈钢管结构(中心不锈钢管结构、不锈钢管层绞结构);6)复合不锈钢管结构(中心不锈钢管结构、不锈钢管层绞结构)。
27.OPGW光缆缆芯外的绞线线材主要由什么组成? 答:以AA线(铝合金线)和AS线材(铝包钢线)组成。28.要选择OPGW光缆型号,应具备的技术条件有哪些? 答:1)OPGW光缆的标称抗拉强度(RTS)(kN);2)OPGW光缆的光纤芯数(SM);3)短路电流(kA);4)短路时间(s);5)温度范围(℃)。
29.光缆的弯曲程度是如何限制的? 答:光缆弯曲半径应不小于光缆外径的20倍,施工过程中(非静止状态)不小于光缆外径的30倍。30.在ADSS光缆工程中,需注意什么? 答:有三个关键技术:光缆机械设计、悬挂点的确定和配套金具的选择与安装。31.光缆金具主要有哪些? 答:光缆金具是指安装光缆使用的硬件,主要有:耐张线夹,悬垂线夹、防振器等。32.光纤连接器有两个最基本的性能参数,分别是什么? 答:光纤连接器俗称活接头。对于单纤连接器光性能方面的要求,重点是在介入损耗和回波损耗这两个最基本的性能参数上。
33.常用的光纤连接器有几类? 答:按照不同的分类方法,光纤连接器可以分为不同的种类,按传输媒介的不同可分为单模光纤连接器和多模光纤连接器;按结构的不同可分为FC、SC、ST、D4、DIN、Biconic、MU、LC、MT等各种型式;按连接器的插针端面可分为FC、PC(UPC)和APC.常用的光纤连接器:FC/PC型光纤连接器、SC型光纤连接器,LC型光纤连接器。
34.在光纤通信系统中,常见下列物品,请指出其名称。AFC、FC 型适配器 ST型适配器 SC型适配器 FC/APC、FC/PC型连接器 SC型连接器 ST型连接器 LC型跳线 MU型跳线 单模或多模跳线。
35.什么是光纤连接器的介入损耗(或称插入损耗)? 答:是指因连接器的介入而引起传输线路有效功率减小的量值,对于用户来说,该值越小越好。ITU-T规定其值应不大于0.5dB.36.什么是光纤连接器的回波损耗(或称反射衰减、回损、回程损耗)? 答:是衡量从连接器反射回来并沿输入通道返回的输入功率分量的一个量度,其典型值应不小于25dB.37.发光二极管和半导体激光器发出的光最突出的差别是什么? 答:发光二极管产生的光是非相干光,频谱宽;激光器产生的光是相干光,频谱很窄。38.发光二极管(LED)和半导体激光器(LD)的工作特性最明显的不同是什么? 答:LED没有阈值,LD则存在阈值,只有注入电流超过阈值后才会产生激光。39.单纵模半导体激光器常用的有哪两种? 答:DFB激光器和DBR激光器,二者均为分布反馈激光器,其光反馈是由光腔内的分布反馈布拉格光栅提供的。40.光接收器件主要有哪两种? 答:主要有光电二极管(PIN管)和雪崩光电二极管(APD)。41.光纤通信系统的噪声产生的因素有哪些? 答:有由于消光比不合格产生的噪声,光强度随机变化的噪声,时间抖动引起的噪声,接收机的点噪声和热噪声,光纤的模式噪声,色散导致的脉冲展宽产生的噪声,LD的模分配噪声,LD的频率啁啾产生的噪声以及反射产生的噪声。
42.目前用于传输网建设的光纤主要有哪些?其主要特点是什么? 答:主要有三种,即G.652常规单模光纤、G.653色散位移单模光纤和G.655非零色散位移光纤。
G.652单模光纤在C波段1530~1565nm和L波段1565~1625nm的色散较大,一般为17~22psnm?km,系统速率达到2.5Gbit/s以上时,需要进行色散补偿,在10Gbit/s时系统色散补偿成本较大,它是目前传输网中敷设最为普遍的一种光纤。
G.653色散位移光纤在C波段和L波段的色散一般为-1~3.5psnm?km,在1550nm是零色散,系统速率可达到20Gbit/s和40Gbit/s,是单波长超长距离传输的最佳光纤。但是,由于其零色散的特性,在采用DWDM扩容时,会出现非线性效应,导致信号串扰,产生四波混频FWM,因此不适合采用DWDM.G.655非零色散位移光纤:G.655非零色散位移光纤在C波段的色散为1~6psnm?km,在L波段的色散一般为6~10psnm?km,色散较小,避开了零色散区,既抑制了四波混频FWM,可用于DWDM扩容,也可以开通高速系统。新型的G.655光纤可以使有效面积扩大到一般光纤的1.5~2倍,大有效面积可以降低功率密度,减少光纤的非线性效应。
43.什么是光纤的非线性? 答:是指当入纤光功率超过一定数值后,光纤的折射率将与光功率非线性相关,并产生拉曼散射和布里渊散射,使入射光的频率发生变化。
44.光纤非线性对传输会产生什么影响? 答:非线性效应会造成一些额外损耗和干扰,恶化系统的性能。WDM系统光功率较大并且沿光纤传输很长距离,因此产生非线性失真。非线性失真有受激散射和非线性折射两种。其中受激散射有拉曼散射和布里渊散射。以上两种散射使入射光能量降低,造成损耗。在入纤功率较小时可忽略。
45.什么是PON(无源光网络)? 答:PON是本地用户接入网中的光纤环路光网络,基于无源光器件,如耦合器、分光器.
第二篇:光纤通信知识点
光纤通信知识点提纲
第一章知识点小结:
1.什么是光纤通信?
2、光纤通信和电通信的区别。
2.基本光纤通信系统的组成和各部分作用。
第二章知识点小结
1、光能量在光纤中传输的必要条件(对光纤结构的要求)。
2、突变多模光纤数值孔径的概念及计算。
3、弱导波光纤的概念。
4、相对折射率指数差的定义及计算。
5、突变多模光纤的时间延迟。
6、渐变型多模光纤自聚焦效应的产生机理。
7、归一化频率的表达式。
8、突变光纤和平方律渐变光纤传输模数量的计算。
第三章知识点小结
1、纤通信中常用的半导体激光器的种类。
2、半导体激光器的主要由哪三个部分组成?
3、电子吸收或辐射光子所要满足的波尔条件。
4、什么是粒子数反转分布?
5、理解半导体激光产生激光的机理和过程。
6、静态单纵模激光器。
7、半导体激光器的温度特性。
8、DFB激光器的优点。
9、LD与LED的主要区别
10、常用光电检测器的种类。
11、光电二极管的工作原理。
12、PIN和APD的主要特点。
13、耦合器的功能。
14、光耦合器的结构种类。
15、什么是耦合比?
16、什么是附加损耗?
17、光隔离器的结构和工作原理。
第四章知识点小结
1、数字光发射机的方框图。
2、光电延迟和张驰振荡。
3、激光器为什么要采用自动温度控
4、数字光接收机的方框图。
5、光接收机对光检测器的要求。
6、什么是灵敏度?
7、什么是误码和误码率?
8、什么是动态范围?
9、数字光纤通信读线路码型的要求。
10、数字光纤通信系统中常用的码型种类。
第五章知识点小结
1、SDH的优点。
2、SDH传输网的主要组成设备。
3、SDH的帧结构(STM-1)。
4、SDH的复用原理。
5、三种误码率参数的概念。
6、可靠性及其表示方法。
7、损耗对中继距离限制的计算。
8、色散对中继距离限制的计算。
第七章点知识小结
1、光放大器的种类
2、掺铒光纤放大器的工作原理
3、掺铒光纤放大器的构成方框图
4、什么WDM?
5、光交换技术的方式
6、什么是光孤子?
7、光孤子的产生机理
8、相干光通信信号调制的方式
9、相干光通信技术的优点
第三篇:光纤通信知识点详解
名词解释
光电检测器的暗电流在理想条件下,当没有光照时,光电检测器应无光电流输出。但是实际上热激励,宇宙射线或放射性物质的激励,在无光情况下光电检测器仍有电流输出,这种电流称为暗电流,严格的说暗电流还包括器件表面的漏电流。
受激辐射处于高能级E2的电子,当受到外来光子的激发而跃迁到低能级E1,同时放出一个能量为hf的光子,由于这个过程是在外来光子的激发下产生的,因此叫受激辐射 波导色散 是由于波导结构参数与波长相关而产生的,它取决于波导尺寸和纤芯与包层相对折射率差。
光接收机灵敏度在保证通信质量的条件下,光接收机所需的最小平均接收光功率。费米能级 Ef成为费米能级,用来描述半导体中各能级被电子占据的状态。
散射损耗 主要由材料微观密度不均匀引起的瑞利散射和由光线结构缺陷引起的散射产生的。
粒子数反转 假设能级E1和E2上的粒子数分别为N1和N2,在正常的热平衡状态下,低能级E1上的粒子数大于高能级E2上的粒子数N2的,入射的光信号总是被吸收。为了获得光信号的放大,必须将热平衡下的能级E1和E2上的粒子数N1和N2的分布关系倒过来,即高能级上的粒子数反而对于低能级上的粒子数,这就是粒子数反转分布。
问答
1、半导体激光器产生激光的机理
答:(自己总结的)用泵浦源使工作物质在泵浦元的作用下变成激活物质即实现了粒子数的反转分布(产生光放大的前提),进而使光得到放大,在光学谐振腔内再提供必要的反馈以及进行频率选择,光产生振荡,当物质中的受激辐射大于受激吸收时,就产生了激光。
2、色散分类,色散对光纤通信系统的影响
答:从形成色散的机理来看,光纤色散可以分为模式色散、材料色散和波导色散三种。光纤色钐使光脉冲在传输过程中波形展宽,产生码间干扰,增加误码率,从而限制通信容量和无中继传输距离。
3、什么是雪崩光电二极管的雪崩倍增效应?
答:是在二极管的P-N结上加高反向电压(约为100~150V)在PN结内部形成一个高电场区,入射光功率产生的电子空穴对经过高场区时不断被加速而获得很高的能量,这些高能量的电子空穴对在运动过程中与价带中的束缚电子碰撞,使晶格中的原子电离,产生新的电子空穴对。新的电子空穴对受到同样的加速运动,又与原子碰撞电离,产生电子空穴对,成为二次电子空穴对。如此重复,使载流子和反向光生电流迅速增大,这个物理过程成为雪崩倍增效应。
4、mBnB码
mBnB码又称分组码,它是把输入信码流中每m个比特码分为一组,然后在相同时隙内变换为n个比特,有n>m.5、扰码的作用:
是有规律的破坏长连“0”和长连“1”的码流,达到“0”“1”等概率的出现。
6、常见无源光器件
连接器、耦合器、波分复用器、外调制器、光开关、隔离器
7、光接收机中噪声的主要来源
第一种是光检测器的噪声,包括量子噪声、暗电流噪声及由APD雪崩效应产生的附加噪
声。
第二种是热噪声和前置放大器的噪声。
8、模式截止状态:介于传输模式和辐射模式的临界状态
9、对光电检测的要求
①波长响应要和光线低损耗窗口兼容;②响应度要高,在一定的接受光功率下,能产生尽可能大的光电流;③噪声要尽可能低,能接受微弱的光信号;④性能稳定,可靠性高,寿命长,功耗和体积小。
10、光隔离器的工作原理
光隔离器主要利用磁光晶体的法拉第效应。对于正向入射的信号光,通过起偏器后成为线偏振光,法拉弟旋磁介质与外磁场一起使信号光的偏振方向右旋45度,并恰好使低损耗通过与起偏器成45度放置的检偏器。对于反向光,出检偏器的线偏振光经过放置介质时,偏转方向也右旋转45度,从而使反向光的偏振方向与起偏器方向正交,完全阻断了反射光的传输。
11、阶跃型光纤和渐变型光纤的区别
阶跃型光纤:也成突变型光纤,纤芯折射率n1保持不变,到包层突然变成n2,光线以折线形状沿纤芯中心轴线方向传播,特点是信号畸变大。
渐变型光纤:在纤芯中心折射率最大为n1,沿径向r向外围逐渐变小,直到包层变为n2,光线以正弦形状沿纤芯轴线方向传播,特点是信号畸变小。具有自聚焦效应。
12、SDH帧结构中,信息净负荷区域、段开销、管理单元指针区域的主要作用
信息净负荷区域是SDH帧内用于承载各种业务信息的部分,对于STM-1,Payload有150.336Mb/s的容量。在Payload中包含少量字节用于通道的运行、维护和管理,这些字节成为通道开销POH。
段开销SOH实在SDH帧中为保证信息正常传输所必须的附加字节,主要用于运行、维护和管理。SOH的容量为4.608Mb/s。可细分为段再生开销SOH(占前三行)和复接段开销LOH(占第5~9行)。
管理单元指针是一种指示符,主要用于指示Payload第一个字节在帧内的准确位置,对于STM-1而言,AU-PTR有0.576Mb/s的容量。
前面知识点
1.光纤通信的通信窗口波长范围0.7~1.7um。
2.光纤通信是以光波为载波,以光纤为传输介质的通信方式。
3.光纤通信的最低损耗波长为1.55um,零色散波长为1.31um。
4.目前光纤通信常用的窗口有085um、1.31um、1.55um。
5.目前光纤通信常用的光源有半导体发光二极管LED、半导体激光二极管LD、以及动态纵模分布反馈DFB激光器。
6.光纤的主要优点:①容许频带很宽、传输流量很大②损耗很小,中继距离很长且误码率很小③重量轻、体积小④抗电磁干扰性能好⑤泄露小,保密性好⑥节约金属材料,有利于资源合理使用。
7.光缆的三个组成部分:缆芯、护套、铠套。/加强元件、护层
8.允许单模传输的最小波长是截止波长。
9.光纤基本组成及各组成的折射率以及作用
纤芯,n1,能量主要在纤芯内传输;
包层,n2。,为光的传输提供反射面和光隔离,起一定的机械保护作用。
10.单模传输的基模HE11(LP01)。
11.限制光纤传输容量的因素:光纤色散和光纤损耗。
12.双折射现象产生的原因:光纤形状不完善或应力不均匀造成折射率分布各向异性,使两个偏振模具有不同的传输常数。
13.色散是光纤中传输的光信号,由于不同成分光的传播时间不同让她产生的一种物理现象。
14.光纤的连接方式:活动连接和固定连接。
15.光调制器的调制方式:直接调制和外调制。应用范围:高速路系统、波分复用系统和相干光系统中。
16.光接收机灵敏度影响因素:传输速率;光检测器。前置放大器的特性;噪声特性。光发射机基本要求:①有合适的输出光功率,一般在0.01MV-5MV;②有较好的消光比Ext<=10%;③调制特性好。
17.抖动是数字信号传输过程中产生的一种瞬时不稳定现象,即数字信号在各有效瞬时对标准时间位置的偏差。主要性能参数:抖动幅度、抖动频率.18.光传输设备:光发射机、光纤线路、光接收机。
19.光发送机由光源、驱动器和调制器组成。其系统性能有工作波长、光谱特性、输出光功率、消光比、调制特性、湿度特性、工作寿命。
20.掺铒光纤放大器的优点:增益高、噪声系数小、频带宽、输出功率大。
21.掺铒光纤放大器主要结构:掺铒光纤、高功率泵浦光源、波分复用器、光隔离器。
22.WDM传输系统的五个部分:光发射机、光中继放大、光接收机、光监控信道、网络管理系统。
23.WDM网络管理系统主要功能:配置管理、故障管理、性能管理和安全管理。
24.EDFA(掺铒光纤放大器)工作波长1.5~1.6um。
25.光波分复用WDM的双纤单向和单纤双向
单向WDM是指在所有波长信道同时在一个光纤上同一方向传输。
双向WDM是指光通路在一根光纤上同时向两个不同的方向传输。
26.STM-1传输速率:155.520Mb/s。
27.半导体激光器阈值电流:随温度呈指数变化,在一定温度范围内可表示为It=Iexp(T/T。)<其中I为常数,T为结区的热力学温度,T。为激光器的特征温度>
28.光放大器的种类:半导体光放大器、光纤放大器。
29.数字光纤通信系统中传输特性的指标:误码率BER、抖动。
30.分插复用器ADM的功能是对不同的数字通道进行分下(drop)与插入(add)操作。可以分为光/电/光和全光两种类型。
31.SDH帧中字节传输顺序:由上往下逐行发送,每行先左后右。
32.SDH帧结构P106
一个SDH-N帧有9行,每行由270*N个字节组成。这样每帧共有9*270*N个字节,每字节为8bit,帧周期为125us,即每秒传输8000帧,对于STM-1而言,传输速率为9*270*8*8000=155.520Mb/s。SOH共用9*8(第四行除外)*8*8000=4.608Mb/s。Payload有9*261*8*8000=150.336Mb/s。AU-PTR只有9个字节(第四行),相应于9*8*8000=0.576Mb/s。
33.数字复接调整方式:正码速调整法和固定位置映射法。
34.光接收机中噪声产生的原因:第一,是由外部电磁干扰产生的;第二是内部产生的,在信号检测和放大过程中引入的随机噪声。主要包括光检测器产生的量子噪声、暗电流噪声和电阻热噪声及放大器产生的噪声。
第四篇:光纤通信 重要知识点总结
光纤通信 重要知识点总结
第一章
1.任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。通信系统的传输容量取决于对载波调制的频带宽度,载波频率越高,频带宽度越宽。
2.光纤:由绝缘的石英(SiO2)材料制成的,通过提高材料纯度和改进制造工艺,可以在宽波长范围内获得很小的损耗。
3.光纤通信系统的基本组成:以光纤为传输媒介、光波为载波的通信系统,主要由光发送机、光纤光缆、中继器和光接收机组成。光纤通信系统既可传输数字信号也可传输模拟信号。输入到光发射机的带有信息的电信号,通过调制转换为光信号。光载波经过光纤线路传输到接收端,再由光接收机把光信号转换为电信号。系统中光发送机的作用是将电信号转换为光信号,并将生成的光信号注入光纤。光发送机一般由驱动电路、光源和调制器构成,如果是直接强度调制,可以省去调制器。
光接收机的作用是将光纤送来的光信号还原成原始的电信号。它一般由光电检测器和解调器组成。光纤的作用是为光信号的传送提供传送媒介,将光信号由一处送到另一处。中继器分为电中继器和光中继器(光放大器)两种,其主要作用就是延长光信号的传输距离。为提高传输质量,通常把模拟基带信号转换为频率调制、脉冲频率调制或脉冲宽度调制信号,最后把这种已调信号输入光发射机。还可以采用频分复用技术,用来自不同信息源的视频模拟基带信号(或数字基带信号)分别调制指定的不同频率的射频电波,然后把多个这种带有信息的RF信号组合成多路宽带信号,最后输入光发射机,由光载波进行传输。在这个过程中,受调制的RF电波称为副载波,这种采用频分复用的多路电视传输技术,称为副载波复用技术。目前大都采用强度调制与直接检波方式。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。
数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息进行模数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD就会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数模转换,恢复成原来的信息。这样就完成了一次通信的全过程。
4.光纤通信的优点:1通信容量大,一根仅头发丝粗细的光纤可同时传输1000亿个话路2中继距离长,光纤具有极低的衰耗系数,配以适当的光发送与光接收设备,可使其中继距离达数百千米以上,因此光纤通信特别适用于长途一、二级干线通信。3.保密性能好4.适应能力强5.体积小、重量轻、便于施工维护6.原材料资源丰富,节约有色金属和能源,潜在价格低廉,制造石英光纤的原材料是二氧化硅(砂子),而砂子在自然界中几乎是取之不尽、用之不竭的
5.光发射机:功能是把输入的电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。光发射机由光源、驱动器和调制器组成。光源是光发射机的核心。光发射机的性能基本上取决于光源的特性,对光源的要求是输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳定,器件寿命长。
6.实现光源调制的方法:直接调制和外调制。直接调制是用电信号直接调制半导体激光器或发光二极管的驱动电流,使输出光随电信号变化而实现的。这种方案技术简单,成本较低,容易实现,但调制速率受激光器的频率特性所限制。外调制是把激光的产生和调制分开,用独立的调制器调制激光器的输出光而实现的。外调制的优点是调制速率高,缺点是技术复杂,成本较高,因此只有在大容量的波分复用和相干光通信系统中使用。
6.光纤线路:光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机。光纤线路由光纤、光纤接头和光纤连接器组成。光纤是光纤线路的主体,接头和连接器是不可缺 少的器件。光纤线路的性能主要由缆内光纤的传输特性决定。对光纤的基本要求是损耗和色散这两个传输特性参数都尽可能地小,而且有足够好的机械特性和环境特性。
7.石英光纤在近红外波段,其损耗随波长的增大而减小,在0.85μm、1.31μm和1.55μm有3个损耗很小的波长窗口。在这3个波长的窗口损耗分别小于2dB/km、0.4dB/km和0.2dB/km。
8.光接收机:功能是把从光纤线路输出、产生畸变和衰减的微弱光信号转换为电信号,并经放大和处理后恢复成发射前的电信号。光接收机由光检测器、放大器和相关电路组成,光检测器是光接收机的核心,对光检测器的要求是响应度高、噪声低和响应速度快。光检测器类型:在半导体PN结中加入本征层的PIN光敏二极管和雪崩光敏二极管。
光接收机把光信号转换为电信号的过程,是通过光检测器的检测实现的。检测方式有直接检测和外差检测两种。直接检测是用检测器直接把光信号转换为电信号。这种检测方式设备简单、经济实用,是当前光纤通信系统普遍采用的方式。外差检测要设置一个本地振荡器和一个光混频器,使本地振荡光和光纤输出的信号光在混频器中产生差拍而输出中频光信号,再由光检测器把中频光信号转换为电信号。难点是需要频率非常稳定、相位和偏振方向可控制,以及谱线宽度很窄的单模激光源,优点是有很高的接收灵敏度。
光接收机最重要的特性参数是灵敏度。灵敏度是衡量光接收机质量的综合指标,它反映接收机调整到最佳状态时,接收微弱光信号的能力。灵敏度主要取决于组成光接收机的光敏二极管和放大器的噪声,并受传输速率、光发射机的参数和光纤线路的色散的影响,还与系统要求的误码率或信噪比有密切关系。
9.空间光通信与传统的微波通信相比,其显著的优点为:1通信容量大。2体积小。3功耗低。4建造经费和维护经费低。
10.空间光通信是指在两个或多个终端之间,利用在空间传输的激光束作为信息载体,实现通信,空间光通信关键技术:1激光器技术对激光波长的研究主要集中在800nm、1000nm及1550nm三个波段,与以上三种波长对应的半导体激光器、固体激光器和光纤激光器。2.捕获、瞄准、跟踪技术3.调制、接收技术,调制方式分为调幅、调频、调相,接收直接强度探测,即非相干探测具有结构简单、成本低、易实现等优点。相干(外差)探测这种方法具有接收灵敏度高、抗干扰能力强等优点,但系统较为复杂,对元器件性能要求较高,特别是对波长的稳定性和谱线宽度要求较高
11.光通信链路功率设计原则主要是保证在所要求的参数(通信距离、系统码率及误码率)条件下,光接收端机探测器上接收到的最小功率Prmin大于接收机灵敏度的要求。
第二章
1.光源是光发射机的主要器件,主要功能是实现信号的电—光转换,作用是将电数字脉冲信号转换为光数字脉冲信号并将此信号送入光纤线路进行传送。光检测器位于光接收机内,主要功能是实现信号的光—电转换,2.光源性能的基本要求与类型:1发光波长与光纤的低衰减窗口相符2足够的光输出功率3可靠性高、寿命长4温度稳定性好5光谱宽度窄,由于光纤有色散特性,使较高速率信号的传输距离受到一定限制。若光源谱线窄,则在同样条件下的无中继传输距离就长。6调制特性好7与光纤的耦合效率高8尺寸小、重量轻
3.光源的类型:光纤通信光源分为半导体激光器(LD)和发光二极管(LED)。半导体光源优点是其工作波长可以对准光纤的低损耗、低色散窗口,还具有体积小、功耗低、易于实现内调制等特点,特别适用于光纤通信。缺点,包括输出功率小、热稳定性差、远场发散角大(指半导体光源发出的激光功率不够集中,大致分布在30°左右的立体角内,因而有相当一部分光功率不能耦合进光纤,这一部分丢失的光功率就是“入纤损耗”的主要机理。)半导体光源的输出功率小和入纤损耗大,限制了通信的无再生距离。热稳定性差,环境温度超过40℃时应有监测和告警。发光二极管分为边发光、面发光和超辐射三种结构。同一波长的LD和LED采用相同组成的有源层(即发光层),它们的区别在于结构和工作原理不同。LD的输出功率大,入纤耦合效率高,但稳定性较差;而LED的输出功率小,耦合损耗也较大,但稳定性好,寿命几乎不成问题,价格也较LD便宜。一般长途干线使用LD作光源,短距离的本地网发送机选用LED。4.半导体光源:半导件激光器是向半导体PN结注入电流,实现粒子数的反转分布,产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光.绝大部分粒子处于基态,只有较少数的粒子被激发到高能级,-23且能级越高,处于该能级的粒子数越小。k0=1.38×10J/K,k0为玻耳兹曼常数.电子在原子核外的跃迁有三种基本方式:自发辐射、受激辐射和受激吸收.受激辐射是受激吸收的逆过程。电子在E1和E2两个能级之间跃迁,吸收的光子能量或辐射的光子能量都要满足玻尔条件,即E2-E1=hf12
-34h为普朗克常数,h=6.626×10J·s;f12为吸收或辐射的光子频率。
5.粒子反转分布:产生受激辐射和产生受激吸收的物质是不同的。设在单位物质中,处于低能级和处于高能级的粒子数分别为N1和N2。当系统处于热平衡状态时,存在分布 k0为玻尔兹曼常数,-23k0=1.38×10J/K;T为热力学温度。由于(E2-E1)>0,T>0,总有N1>N2。这是因为电子总是首先占据低能量的轨道。受激吸收和受激辐射的速率分别比例于N1和N2且比例系数相等。如果N1> N2,即受激吸收大于受激辐射。当光通过这种物质时,光强按指数衰减,这种物质称为吸收物质。
通常情况下,粒子具有正常能级分布,总是低能级上的粒子数比高能级上的粒子数多。所以光的受激吸收比受激辐射强,因此光总是受到衰减。要想获得光的放大,必须使受激辐射强于受激吸收。也就是说,使N2> N1,当光通过这种物质时,会产生放大作用,这种物质称为激活物质。N2> N1的分布和正常状态(N2> N1)的分布相反,所以称为粒子数反转分布。处于粒子数反转分布的物质称为激活物质或增益物质。要想得到粒子数反转分布,一般采用光激励、放电激励、化学激励等方法,给物质能量,以求把低能级的粒子激发到高能级上去,这个过程叫泵浦。
13.光源与光纤的耦合:光源和光纤耦合的程度,可以用耦合效率η来衡量,它的定义为η=PF/Ps.PF为耦合入光纤的光功率;Ps为光源发射的光功率。η的大小取决于光源和光纤的类型,LED和单模光纤的耦合效率较低,LD和单模光纤的耦合效率更低。
影响光源与光纤耦合效率的主要因素是光源的发散角和光纤的数值孔径NA。发散角越大,耦合效率越低;数值孔径越大,耦合效率越高。此外,光源的发光面、光纤端面尺寸、形状以及二者间距都会直接影响耦合效率。
14通常有两种方法来实现光源与光纤的耦合,即直接耦合和透镜耦合。直接耦合就是将光纤端面直接对准光源发光面,这种方法当发光面积大于纤芯时是一种有效的方法。直接耦合结构简单,但耦合效率低。面发光二极管与光纤的耦合效率只有2%~4%。半导体激光器的光束发散角比面发光二极管小得多,与光纤的耦合效率约为10%。
6.激光振荡和光学谐振腔:粒子数反转分布是产生受激辐射的必要条件,但还不能产生激光。只有把激活物质置于光学谐振腔中,对光的频率和方向进行选择,才能获得连续的光放大和激光振荡输出.激活物质和光学谐振腔只是为激光的产生提供了必要的条件。为了获得激光振荡,还必须满足一定的阈值条件和相位条件.阈值条件;设增益介质单位长度的小信号增益系数为G0,损耗系数为αi,两个反射镜M1、M2反射系数分别为r1和r2。由于增益介质的放大作用,腔内光功率随距离的变化可表示为z=0处的光功率。光束在腔内经历一个来回后,两次通过增益介质,此时的光功率为要想产生振荡,必须满足P(2L)≥P(0)此:
因P(0)为
.α称为光学谐振腔的平均损耗系数,它包括增益介质的本身损耗和通过两次反射镜的传输损耗。只有在这种情况下,光信号才能不断得到放大,使输出光功率逐渐增强。高能级粒子不断向低能级跃迁产生受激辐射,使得低能级粒子数和高能级粒子数差减小,受激辐射作用降低,增益系数G0也减小,直至G0=α,激光器维持一个稳定的振荡,并输出稳定的光功率。相位条件要产生激光振荡,除了要满足上述阈值条件外,还要满足一定的相位条件,即受激辐射光在腔内往返一次后与原有的波叠加;若要在腔中形成谐振,叠加的波必须是相互加强的,即要求它们之间的相位差必须是2π的整数倍,也就是往返一次的路径长度是波长的整数倍,以形成正反馈。这可写成2L=qλ式中,q表示纵模的模数;λ为在谐振腔内的光波波长。光学谐振腔的折射率为n,则输出的激光波长是谐振腔内波长的n倍。输出激光波长为λ=2nL/q , λ为输出的激光波长;n为激活物质的折射率;q为纵模模数,q=1,2,3。
7.激光器产生激光必须具备以下几个条件:1)必须有激光工作物质,可在需要的光波范围内辐射光子;2)工作物质必须处于粒子数反转分布状态,并使小信号增益系数大于谐振腔的平均损耗系数,从而产生光的放大系数;3)必须有光学谐振腔进行频率选择及产生光反馈。
8.半导体激光器的发光波长半导体发光器件所采用的半导体材料,根据不同的组合,其发光波长从可见光到红外光区域。发光波长基本上由半导体禁带宽度(即导带与价带的能级差)Eg=hf决定。由
8λ=C/f得出 λ =hc/Eg,其中c为光速(c=2.99792458×10m/s)。光子能量E和波长λ之间的变换关系为 E(eV)=1.2398/λ(μm)9.半导体激光器工作特性: 1.P-I特性:当激光器注入电流增加时,受激发射量增加,一旦超过P-N结中光的吸收损耗,激光器就开始振荡,于是光输出功率急剧增大。使激光器发生振荡时的电流称为阈值电流Ith。只有当注入电流等于或大于阈值时,激光器才发射激光。2.微分量子效率ηd激光器输出光子数的增量与注入电子数的增量之比,定义为微分量子效率
3.光谱特性,光源谱线宽度是衡量器件发光单色性的一个物理量。越窄越好。4.温度特性
10其他激光器:分布反馈式激光器,DFB激光器采用双异质掩埋条形结构。不同之处是它用布拉格光栅取代传统的F-P光腔作为光谐振器。量子阱激光器(MQW)多量子阱结构带来了阈值电流小、输出光功率大及热稳定性好的优点。光纤锁模激光器,产生激光超短脉冲的技术常称为锁模技术。垂直腔面发射激光器
11.发光二极管:发光二极管(LED)的工作原理与激光器(LD)有所不同,LD发射的是受激辐射光,LED发射的是自发辐射光。LED的结构和LD相似,大多采用双异质结(DH)芯片,把有源层夹在P型和N型限制层中间,不同的是LED不需要光学谐振腔,没有阈值。发光二极管有两种类型;一类是正面发光型LED,另一类是侧面发光型LED,和正面发光型LED相比,侧面发光型LED驱动电流较大,输出光功率较小,但由于光束辐射角较小,与光纤的耦合效率较高,因而入纤光功率比正面发光型LED大。
和激光器相比,发光二极管输出光功率较小,谱线宽度较宽,调制频率较低。但发光二极管性能稳定,寿命长,输出光功率线性范围宽,而且制造工艺简单,价格低廉。因此,这种器件在小容量短距离系统中发挥了重要作用。
12.发光二极管具有以下工作特性:1.光输出特性,即P-I特性当注入电流较小时,发光二极管的输出功率曲线基本是线性的.2.光谱特性,发光二极管的发射光谱比半导体激光器宽很多,3.温度特性,温度对发光二极管的光功率影响比半导体激光器要小。发光管的频率.4.调制特性.LED可调的速率低
第三章:
1.光纤的结构与类型:光纤是一种工作在光波段的介质波导,可将光波约束在波导内部和表面,并引导光波沿光纤轴传播的介质光波导,纤芯的折射率高于包层的折射率(全反射),从而构成一种光波导结构,使大部分的光被束缚在纤芯中传输。光纤是一种纤芯折射率比包层折射率高的同轴圆柱形电介质波导,它由纤芯(直径为2a)、包层(直径为2b)与涂敷层三大部分组成
2.光纤主要由硅酸盐玻璃、二氧化硅或塑料制成。前者适用于长距离传输,后两者适用于短距离传输,其中塑料光纤由于损耗较大,传输距离很短,主要应用于更小距离传输和一些较恶劣的环境中,在恶劣环境中因其机械强度较好,所以较前两种更具优越性。3.光纤按照折射率分布可分为阶跃折射率分布光纤(阶跃光纤)和渐变折射率分布光纤(渐变光纤)。阶跃光纤的折射率分布特点是纤芯的折射率均匀为n1,而包层的折射率为n2。在纤芯和包层之间的分界面上,折射率有一个不连续的阶跃性突变。
渐变光纤的纤芯折射率是半径r的函数,记为n(r),在纤芯轴线上最大,为n1 ;而在纤芯的横截面内沿径向折射率逐渐减小,形成一个连续渐变的梯度或坡度,像一个抛物线,最后达到包层的折射率n2。在纤芯到分界面之间,折射率是渐变的,而不像阶跃光纤在分界面处突变。n1为光纤轴心处的折射率; n2为包层区域折射率;a1为纤芯半径;Δ=(n1-n2)/ n1称为相对折射率差。至于渐变光纤的剖面折射率为何做如此分布,其主要原因是为了降低多模光纤的模式色散,增加光纤的传输容量。
4.光纤按传导的模式可分为单模光纤和多模光纤。能够传输多种模式(基模和高阶模)的光纤叫多模光纤,而只能传输一种模式(基模)的光纤叫单模光纤。多模光纤的纤芯较粗,可以很容易将光功率注入到光纤,并且较容易将相同的光纤连接在一起,同时可以使用制造工艺简单、价格低廉、不需要外围电路和长寿命的LED作为光源。其缺点是存在较严重的模式色散,使其传输速率低、距离短,整体的传输性能差。但成本低,一般用于建筑物内或地理位置相邻的环境中;单模光纤的纤芯相应较细,传输频带宽、容量大、传输距离长,但需LD作为光源,成本较高,通常在建筑物之间或地域分散的环境中使用。光纤的模式色散(又叫模间色散):不同的传播模式会有不同的传播速度与相位,因此经过长距离的传输之后
2会产生时延,导致光脉冲变宽。计算多模光纤中传播模式数量的经典公式为N=V/4,其中V为归一化频率。如当V=38时,多模光纤中会存在300多种传播模式。模式色散会使多模光纤的带宽变窄,降低其传输容量。因此多模光纤仅适用于较小容量的光纤通信。
单模光纤由于它只允许一种模式在其中传播,从而避免了模式色散的问题,故其具有极宽的带宽,特别适用大容量的光纤通信。
5.光纤按工作波长分类,可分为短波长(光波之波长在0.6~0.9μm范围内)光纤与长波长(波长1.31μm和1.55μm)光纤。6.光纤按套塑类型分类,可分为紧套光纤与松套光纤。
7.光纤的数值孔径NA:从空气中入射到光纤纤芯端面上的光线被光纤捕获成为束缚光线的最大入射角θmax为临界光锥的半角称为光纤的数值孔径,记为NA。它与纤芯和包层的折射率分布有关,而与光纤的直径无关。对于阶跃光纤,NA为,Δ=(n1-n2)/n1是光纤纤芯和包层的相对折射率差。
NA表示光纤接收和传输光的能力,NA(或θc)越大,光纤接收光的能力越强,从光源到光纤的耦合效率越高。对于无损耗光纤,在θc内的入射光都能在光纤中传输。NA越大,纤芯对光能量的束缚越强,光纤抗弯曲性能越好。但NA越大,经光纤传输后产生的信号畸变越大,限制了信息传输容量,所以要根据实际使用场合,选择适当的NA。
8.归一化变量:为了描述光纤中传输的模式数目,在此引入一个非常重要的结构参数,即光纤的归一化频率,一般用V表示,其表达式如下
a为纤芯半径,传输模式数目随V值的增加而增多。当V值减小时,不断发生模式截止,模式数目逐渐减少。特别值得注意的是,当V<2.405时,只有HE11(LP01)一个模式存在,其余模式全部截止。HE11称为基模,由两个偏振态简并而成。由此得到单模传输条件为,对于给定的光纤(n1、n2和a确定),存在一个临界波长λc,当λ<λc时,是多模传输,当λ>λc时,是单模传输,这个临界波长λc称为截止波长。
9.光纤传输的基本特性:光信号经光纤传输后会产生损耗和畸变(失真),产生信号畸变的主要原因是光纤中存在色散。损耗和色散是光纤最重要的传输特性。损耗限制系统的传输距离,色散则限制系统的传输容量。光纤的损耗在很大程度上决定了系统的传输距离。光纤损耗的原因:1.吸收损耗:本征吸收损耗,杂质吸收损耗,原子缺陷吸收损耗2.散射损耗:线性散射损耗,瑞利散射 非线性散射损耗3.弯曲损耗:分弯曲或宏弯和微弯
10.光纤损耗系数:衡量一根光纤损耗特性的好坏,即传输单位长度(1km)光纤所引起的光功率减小的分贝数,一般用α表示损耗系数,单位是dB/km。dP/dz=-αP 11光纤色散:色散是在光纤中传输的光信号,由于不同成分的光的时间延迟不同而产生的一种物理效应。光纤的色散会使输入脉冲在传输过程中展宽,产生码间干扰,增加误码率,这样就限制了通信容量。因此制造优质的、色散小的光纤,对增加通信系统容量和加大传输距离是非常重要的。色散一般包括模式色散、材料色散和波导色散。
模式色散,就是由于轨迹不同的各光线沿轴向的平均速度不同所造成的时延差,它取决于光纤的折射率分布,并和光纤材料折射率的波长特性有关。材料色散是由于光纤的折射率随波长而改变,以及模式内部不同波长成分的光(实际光源不是纯单色光),其时间延迟不同而产生的。这种色散取决于光纤材料折射率的波长特性和光源的谱线宽度。波导色散是由于光纤中模式的传播常数是频率的函数而引起的。它不仅与光源的谱宽有关,还与光纤的结构参数(如V)等有关。
12.光的非线性:非线性现象本质上是在非线性介质中传输的光场进行能量和动量交换的过程。13.非线性折射率波动效应可分为三大类:自相位调制(SPM)、交叉相位调制(XPM)及四波混频(FWM)。非线性受激散射可分为布里渊散射和拉曼散射两种形式。
14.四波混频效应:当有三个不同波长的光波同时注入光纤时,由于三者的相互作用,产生了一个新的波长或频率,即第四个波,新波长的频率是由入射波长组合产生的新频率。四波混频效应能够将原来各个波长信号的光功率转移到新产生的波长上,从而对传输系统性能造成破坏。在波分复用系统中,混合产生的新波长会与其他信号信道的波长完全一样,严重破坏信号的眼图并产生误码。四波混频效应的效率与波长失配、波长间隔、注入光波长的强度、光纤的色散、光纤折射率、光纤的长度等有关。色散在四波混频效应中起了重要的作用。通过破坏相互作用的信号间的相位匹配,色散能减少四波混频效应产生的新波长数目。15.光导纤维是一种传输光束的细微而柔韧的媒质。光导纤维电缆由一捆光纤组成,简称为光缆。光缆是数据传输中最有效的一种传输介质,它的和光纤的优点类似,主要有1频带较宽。2电磁绝缘性能好。3衰减较小,4中继器的间隔较大,降低成本。
15.光缆结构可分为层绞式、骨架式、带状式和束管式四大类。光缆分类:1按敷设方式分类:有架空光缆、管道光缆、地埋光缆和海底光缆。2按光缆结构分类:有束管式光缆、层绞式光缆、骨架式光缆、带状式光缆、非金属光缆和可分支光缆。3按用途分类:有长途通信用光缆、短途室外光缆、混合光缆和建筑物内用光缆。
16.光纤的特性参数可分为几何特性、光学特性和传输特性三类。几何特性包括纤芯与包层的直径、偏心度和不圆度;光学特性主要有折射率分布、数值孔径、模场直径和截止波长;传输特性主要有损耗、带宽和色散。光纤特性的测量:规定了基准测量方法和替代测量方法。光纤损耗的测量:截断法:是测量精度最好的办法,其缺点是要截断光纤。背向散射法测量。光纤色散与宽带的测量:时域方法测量脉冲宽度;频域法测量光纤宽度
第四章:
1.通信用光有源器件主要包括光源、光检测器、光放大器和光波长转换器等。光源是光发射机的主要器件,主要功能是实现信号的电—光转换;光检测器位于光接收机内,主要功能是实现信号的光—电转换;光放大器主要是对光信号直接进行放大,无需通过光—电—光转换过程,解决长距离传输时光功率不足的问题。
2.在很强反向电场作用下,电子以极快的速度通过PN结。在行进途中碰撞半导体晶格上的原子离化而产生新的电子、空穴,即所谓二次电子和空穴,而且这种现象不断连锁反应,使结区内电流急剧倍增放大,产生“雪崩”现象。
3.光敏二极管的噪声包括由信号电流与暗电流产生的散粒噪声和由负载电阻与后继放大器输入电阻产生的热噪声。
4.由于雪崩倍增效应是一个复杂的随机过程,所以用这种效应对一次光生电流产生的平均增益的倍数来描述它的放大作用。并把倍增因子定义为APD输出光电流I0和一次光生电流Ip的比值。g=Io/Ip 5.光放大器的分类光放大器有半导体光放大器(SOA)和光纤放大器(OFA)两种类型。半导体光放大器的优点是小型化,容易与其他半导体器件集成;缺点是性能与光偏振方向有关,器件与光纤的耦合损耗大。OFA的性能与光偏振方向无关,器件与光纤的耦合损耗很小,因而得到广泛应用。
6.光放大器的重要指标1.光放大器的增益 放大器的带宽 增益饱和与饱和输出功率 2.放大器噪声。噪声来源和噪声系数
7.掺铒光纤的激光特性:主要由掺铒元素决定;掺铒光纤发大器可以对1550nm光进行发大。掺铒光纤放大器的泵浦方式:同向泵浦、反向泵浦和双向泵浦。同向泵浦的优点是构成简单、噪声性能较好。反向泵浦优点是:当光信号放大到很强时,泵浦光也强,不易达到饱和,因而具有较高的输出功率。双向泵浦:结合了同向泵浦和反向泵浦的优点,使泵浦光在光纤中均匀分布。掺铒(EDFA)放大器的应用:中继放大器,前置放大器,后置放大器。
8.半导体光放大器(SOA)和半导体激光器一样,是基于光的受激辐射和放大。事实上,激光器名称的意思就是受激辐射引起的光放大。SOA是利用半导体激活介质能够给通过的光提供增益的机理,使光信号得到放大。SOA是一种具有光增益的光电器件
SOA主要有两种结构:法布里—珀洛腔(FP)型及行波(TW)型两种。SOA优点:①SOA具有很大的增益带宽覆盖1310nm与1550nm两处窗口;②SOA增益平坦性好;③SOA能够动态转换波长,能够接受输入信号光改变它的频率,同时对其进行放大;④SOA体积小,泵浦简单,可批量生产,成本低。
9.拉曼光纤放大器RFA的放大范围更宽,噪声指数更低,是实现高速率、大容量、长距离光纤传输的关键器件之一。原理是基于石英光纤中的非线性效应—SRS。RFA有两种类型:一集总式拉曼光纤放大器,分布式拉曼光纤放大器。拉曼光纤放大器主要由增益介质光纤、泵浦源及一系列辅助功能电路等构成
第五章
1.光纤连接器是实现光纤与光纤之间的活动接头,是一种可拆卸的器件,它用于设备与光纤之间的连接、光纤与光纤之间的连接或光纤与其他光无源器件之间的连接。光纤接头是实现光纤与光纤之间的永久性(固定)连接,主要用于光纤线路的构成。光纤连接器件是一种无源器件。
2.对于连接器的一般要求:1插入损耗低2稳定性好3可重复性好4互换性好5反射损耗要小
3.影响光纤连接损耗的几种因素:主要来自制造工艺技术和光纤本身的不完善。光纤连接损耗是由于光纤之间的连接错位引起的损耗,以及与光纤参数相关的损耗。连接错位一般:轴心错位、端面间隙、角度倾斜、端面光洁度。
4.光耦合器是将光信号进行分路或合路、插入、分配的一种器件。在耦合的过程中,信号的频谱成分没有发生变化,变化的只是信号的光功率,即同一波长。常用耦合器的类型1T形耦合器 2星形耦合器 3定向耦合器4波分复用器。耦合器的结构有光纤型、微器件型和波导型。几个主要参数:插入损耗Lt是穿过耦合器的某一光通道所引入的功率损耗,附加损耗Le是由散射、吸收和器件缺陷产生的损耗,耦合比CR是指某一输出端口光功率Poc和各端口总输出光功率Pot的比值
5.光隔离器:是保证光信号只能正向传输,阻止光波往其他方向特别是反方向传输的器件。光隔离器就是一种非互易器件,耦合器是互易器件。光隔离器主要用在激光器或光放大器的后面,以避免反射光返回到该器件致使器件性能变坏。原理:光隔离器主要利用磁光晶体的法拉第效应。光隔离器主要由两个偏振器和一个法拉第旋转器组成。假定存在某种反射,反射光的偏振态也在45°方向上,当反射光通过法拉第旋转 器时再继续旋转45°,此时就变成了水平偏振光。水平偏振光不能通过左面偏振器(第一个偏振器),完全阻断了反射光的传输,于是就达到隔离效果。
6.光环行器是一种多端口非互易光学器件,其工作原理与隔离器类似。光调制器是把信息加载到光波(就是载波)上的过程就是调制。光调制器就是实现从电信号到光信号的转换的器件。光开关是一种光路控制器件,起着进行光路切换的作用,可以实现主/备光路切换,光纤、光器件的测试等有1机械式光开关2微机械式光开关(MEMS)3.喷墨气泡式光开关。光滤波器在WDM系统中是一种重要元器件,:法布里—珀罗滤波器(用作干涉仪)和马赫—曾德干涉滤波器(解复用器,复用器,调谐滤波器)
7.波长变换器能够提高子网间的互联性,解决波长竞争,消除阻塞,提供虚波长路由,并且可在动态传输模式下更好地利用网络资源。采用全光波长变换的原因:Internet的出现与多媒体业务的迅猛发展对带宽资源提出越来越高的要求。在物理传输层和网络层上,密集波分复用技术(DWDM)通过对波长进行复用,在波长域中提高传输容量,对光纤带宽资源进行了充分的利用。全光波长变换原理用光—电—光的方法间接实现:用接收器接受光信号,将它变换到电域,然后用处理后的电信号调制激光器产生相应的输出波长。
8.SOA型全光波长变换常采用的物理效应有:交叉增益调制(XGM)、交叉相位调制(XPM)和四波混频(FWM)等。
9.通常有两种方法来实现光源与光纤的耦合,即直接耦合和透镜耦合。直接耦合就是将光纤端面直接对准光源发光面,这种方法当发光面积大于纤芯时是一种有效的方法。直接耦合结构简单,但耦合效率低。面发光二极管与光纤的耦合效率只有2%~4%。半导体激光器的光束发散角比面发光二极管小得多,与光纤的耦合效率约为10%
第六章
1.在光纤通信系统中,从电端机输出的是适合于电缆传输的双极性码。目前常用的双极性码有HDB3码和CMI码。但对于光源来说是不可能发射负光脉冲的,因此必须进行码型变换,即将HDB3或CMI码变换为NRZ码,以适合于数字光纤通信系统传输的要求。
2.我国3次群和4次群PDH光纤通信系统最常用的线路码型是5B6B码
3.模拟光纤通信系统:主要调制方式:模拟基带直接光强调制、模拟间接光强调制和频分复用光强调制。
模拟基带直接光强调制是用承载信息的模拟基带信号,直接对发射机光源(LED或LD)进行光强调制,使光源输出光功率随时间变化的波形和输入模拟基带信号的波形成比例。模拟间接光强调制是先用承载信息的模拟基带信号进行电的预调制,然后用这个预调制的电信号对光源进行光强调制。频分复用光强调制是用每路模拟基带信号,分别对某个指定的射频电信号进行调幅或调频,然后用组合器把多个预调RF信号组合成多路宽带信号,再用这种多路宽带信号对发射机光源进行光强调制。
4.数字复用规定了准同步数字系列(PDH)和同步数字体系(SDH)两种基本复用标准。PDH采用异步复用方式现在的PDH体制中,只有1.5Mbit/s和2Mbit/s速率的信号是同步的,其他速率的信号都是异步的,需要通过码速的调整来匹配和容纳时钟的差异。与PDH相比较,SDH的主要特点1.SDH有一套标准的信息等级结构2.SDH的帧结构是矩形块状结构3.SDH帧结构中拥有丰富的开销比特 4.SDH具有统一的网络节点接口
5.SDH采用同步和灵活的复用方式6.实现了PDH向SDH的过渡,还支持异步转移模式(ATM)和宽带综合业务数字网(ISDN)业务。也有不足:SDH的频带利用率比起PDH有所下降;SDH网络采用指针调整技术来完成不同SDH网之间的同步,使得设备复杂,同时字节调整所带来的输出抖动也大于PDH;软件控制并支配了网络中的交叉连接和复用设备,一旦出现软件操作错误或病毒,容易造成网络全面故障。尽管如此,SDH的良好性能已经得到了公认,成为未来传输网发展的主流。
SDH的复用原理一种是低阶的SDH信号复用成高阶SDH信号,复用主要通过字节间插复用方式来完成的;另一种是低速支路信号复用成SDH信号STM-N。将PDH信号复用进STM-N信号中去。传统的将低速信号复用成 高速信号的方法有两种:码速调整法和固定位置映射法。SDH的基本复用单元包括容器C、虚容器VC、支路单元TU、支路单元组TUG、管理单元AU、管理单元组AUG、同步转移模块STM。
6.数字传输系统性能指标是误码性能、抖动和漂移。误码是指经光接收机的接收与判决再生后,数字码流中的某些比特发生了差错,使传输的信息质量产生损伤。误码减少的策略有如下两种:1内部误码的减小。2外部干扰误码的减少。
抖动和漂移与系统的定时特性有关。定时抖动(抖动)是指数字信号的特定时刻(如最佳抽样时刻)相对其理想时间位置的短时间偏离,漂移指数字信号的特定时刻相对其理想时间位置的长时间偏离
第五篇:光纤通信
1、什么是光纤色散?光纤色散主要有几种类型?其对光纤通信系统有何影响?
由于光纤中所传信号的不同频率成分,或信号能量的各种模式成分,在传输过程中,因群速度不同互相散开,引起传输信号波形失真,脉冲展宽的物理现象称为色散。光纤色散的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量和传输带宽。从机理上说,光纤色散分为材料色散,波导色散和模式色散。前两种色散由于信号不是单一频率所引起,后一种色散由于信号不是单一模式所引起。
2、分别说明G.652、G.653光纤的性能及应用。
G.652 称为非色散位移单模光纤,也称为常规单模光纤,其性能特点是:(1)在1310nm波长处的色散为零。(2)在波长为1550nm附近衰减系数最小,约为0.22dB/km,但在1550nm附近其具有最大色散系数,为17ps/(nm?km)。(3)这种光纤工作波长即可选在1310nm波长区域,又可选在1550nm波长区域,它的最佳工作波长在1310nm区域。G.652光纤是当前使用最为广泛的光纤。
----G.653 称为色散位移单模光纤。色散位移光纤是通过改变光纤的结构参数、折射率分布形状,力求加大波导色散,从而将零色散点从1310nm位移到1550nm,实现1550nm处最低衰减和零色散波长一致。这种光纤工作波长在1550nm区域。它非常适合于长距离单信道光纤通信系统