大数据课程报告

时间:2019-05-14 06:35:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《大数据课程报告》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《大数据课程报告》。

第一篇:大数据课程报告

摘要

流形学习方法作为一类新兴的非线性维数约简方法,主要目标是获取高维观测数据的低维紧致表示,探索事物的内在规律和本征结构,已经成为数据挖掘、模式识别和机器学习等领域的研究热点。流形学习方法的非线性本质、几何直观性和计算可行性,使得它在许多标准的 toy 数据集和实际数据集上都取得了令人满意的结果,然而它们本身还存在着一些普遍性的问题,比如泛化学习问题、监督学习问题和大规模流形学习问题等。因此,本文从流形学习方法存在的问题出发,在算法设计和应用(图像数据与蛋白质相互作用数据)等方面展开了一系列研究工作。首先对流形学习的典型方法做了详细对比分析,然后针对流形的泛化学习和监督学习、表征流形的局部几何结构、构造全局的正则化线性回归模型、大规模数据的流形学习等几个方面进行了重点研究,提出了三种有效的流形学习算法,并和相关研究成果进行了理论与实验上的比较,从而验证了我们所提算法的有效性。

关键词:流形学习,维数约简,正交局部样条判别投影,局部多尺度回归嵌入

I

目录

目录.................................................................................................................................................II 第1章 研究背景.......................................................................................................................1

1.1 流形学习的研究背景...................................................................................................1 1.2 流形学习的研究现状...................................................................................................2 1.3 流形学习的应用...........................................................................................................4 第2章 流形学习方法综述.......................................................................................................5

2.1 流形学习方法介绍.......................................................................................................6 第3章 流形学习方法存在的问题...........................................................................................9

3.1 本征维数估计...............................................................................................................9 3.2近邻数选择.................................................................................................................10 3.3 噪声流形学习.............................................................................................................10 3.4 监督流形学习.............................................................................................................11 第4章 总结.............................................................................................................................11

II

第1章 研究背景

1.1 流形学习的研究背景

随着信息时代的到来,使得数据集更新更快、数据维度更高以及非结构化性等问题更突出。在科研研究的过程中不可避免地遇到大量的高维数据,这就需要一种技术能够使在保持数据信息足够完整的意义下从海量数据集中提取出有效而又合理的约简数据,满足人的存储需求和感知需要。流形学习这一非监督学习方法应运而生,引起越来越多机器学习和认知科学工作者的重视。而在海量的高维数据中,往往只有少量的有用信息,如果想快速高效的搜集到人们想要的、有用的那些少量信息且快速的处理信息,这就需要一些关键技术的支持,即是必须采用相应的降维技术。而流形学习正是在数据降维方面有着重要的贡献。然而,降维的过程与《矩阵分析》中的内容有着密切的关系。

基于流形的降维方法能充分利用数据中所隐藏的低维有价值信息,进一步提高检索性能。Seung从神经心理学的角度提出“感知以流形的形式存在,视觉记忆也可能是以稳态的流形存储”,为流形提供了与人类认识相关的理由。流形学习的方法主要有主成分分析(PCA)、多维尺度化(MDS)、基于局部切空间排列法(LTSA)和基于等度规映射(ISOMAP)、局部线性嵌入算法(LLE)、拉普拉斯特征映射(LE)等。另外,流形学习方法在人脸识别、图像处理、模式识别、计算机视觉、认知科学、人工智能、人机交互等众多学科中有着广泛的应用。

线性维数约简方法是通过在高维输入空间与低维子空间之间建立线性映射关系,把高维数据样本集投影到低维线性子空间。线性维数约简技术通常假设数据集采样于一个全局线性的高维观测空间。如果所要处理的数据集分布确实呈现出全局线性的结构,或者在一定程度上可以近似为全局线性结构,则这些方法能够有效地挖掘出数据集内在的线性结构,获得数据紧致的低维表示。在线性维数约简方法中,使用最广泛的算法有主分量分析(Principal Component Analysis, PCA)(Jolliffe, 2002;Turk and Pentland, 1991)和线性判别分析(Linear Discriminant Analysis, LDA)(Duda et al., 2001)。

主分量分析(PCA)主要是根据高维数据在低维空间重构误差最小的原则,来寻找一组最优的单位正交向量基(即主分量),并通过保留数据分布方差较大的若干主分量来达到降维的目的。然而,众所周知,由于 PCA 算法没有利用数据样本的类别信息,所以它是一种非监督的线性维数约简方法。与 PCA 算法不同,LDA 算法考虑到样本的类别信息,它是一种有监督的方法。基于各类样本服从高斯分布且不同类的协方差矩阵相同的假设,LDA 算法在 Fisher 准则下选择最优的投影向量,以使得数据样本的类间散度最大而类内散度最小。由于 LDA 算法利用了样本的类别信息,而样本的类别信息通常有助于改善识别率,因此 LDA 算法更适用于分类问题。

1.2 流形学习的研究现状

流形学习假定输入数据是嵌入在高维观测空间的低维流形上,流形学习方法的目的是找出高维数据中所隐藏的低维流形结构。经过十多年的研究与探索,人们提出了大量的流形学习理论与算法。经典的流形学习方法有等距特征映射算法(ISOMAP)(Tenenbaum et al., 2000)、局部线性嵌入算法(LLE)(Roweis and Saul, 2000;Saul and Roweis, 2003)、Laplacian 特征映射算法(Laplacian Eigenmaps,LE)(Belkin and Niyogi, 2002;Belkin and Niyogi, 2003)、Hessian特征映射算法(Hessian-based Locally Linear Embedding,HLLE)(Donoho and Grimes, 2003)、最大差异展开算法(Maximum Variance Unfolding,MVU)(Weinberger et al., 2005;Weinberger and Saul, 2004;Weinberger and Saul, 2006;Weinberger et al., 2004)、局部切空间排列算法(Local Tangent Space Alignment, LTSA)(Zhang and Zha, 2004)、黎曼流形学习算法(Riemannian Manifold Learning, RML)(Lin and Zha, 2007;Lin et al., 2006)和局部样条嵌入算法(Local Spline Embedding,LSE)(Xiang et al., 2006;Xiang et al., 2008)等。

Tenenbaum 提出的 ISOMAP 算法是多维尺度分析(Multidimensional Scaling, MDS)(Cox and Cox, 1994)在流形框架下的非线性推广,其核心思想是用测地距离代替欧氏距离来表征流形上数据点的内在几何关系。对于样本 点和它的近邻点之间的测地距离用它们之间的欧氏距离来代替;对于样本点和近邻点之外的点之间的测地距离用它们之间的最短路径来代替。Bernstein 等人证明了只要样本是随机抽取的,在样本集足够大且选择适当近邻参数k 时,近邻图上两点的最短路径可以逼近它们的测地距离(Bernstein et al., 2000)。当应用于内蕴平坦的凸流形时,ISOMAP 算法能够忠实地捕获数据内在的低维流形结构(De Silva and Tenenbaum, 2003)。

ISOMAP 算法的主要缺点在于:① 对样本点的噪声比较敏感;② 对于具有较大曲率或稀疏采样的数据集,不能发现其内在的本征结构;③ 需要计算全体数据集的测地距离矩阵,因此算法的时间复杂度较高。围绕 ISOMAP算法,已经出现了许多相关的理论分析与研究工作。

Balasubramanian 等人对ISOMAP 算法的拓扑稳定性进行了深入探讨(Balasubramanian and Schwartz, 2002)。对于数据分布所在的低维流形具有较大的内在曲率情况,de Silva 和Tenenbaum 提出了保角等距特征映射算法(conformal ISOMAP)(De Silva and Tenenbaum, 2003)。为了减小 ISOMAP 算法的计算复杂度,de Silva 和 Tenenbaum提出了带标记的等距特征映射算法(Landmark ISOMAP)(De Silva and Tenenbaum, 2003)。

针对 ISOMAP 算法对于数据集噪声敏感的问题,Choi 等人通过观察图中的网络流提出了一种消除临界孤立点的方法以加强 ISOMAP 算法的拓扑稳定性(Choi and Choi, 2007)。在构建近邻图方面,Yang 提出通过构造k 连通图方式来确保近邻图的连通性,以提高测地距离的估计精度(Yang, 2005)。

2009 年,Xiang 等人提出了局部样条嵌入算法(LSE)(Xiang et al., 2006;Xiang et al., 2008)。Xiang 认为,对于嵌入在高维输入空间的低维流形,非线性维数约简的任务实际上是寻找一组非线性的复合映射,即由局部坐标映射(Local Coordinatization Mapping)与全局排列映射(Global Alignment Mapping)复合而成的兼容映射(Compatible Mapping)。在兼容映射的概念框架下,LSE 算法首先通过主分量分析计算每个样本点局部邻域在切空间上的投影获得该邻域所有样本的局部坐标,从而保持流形的局部几何结构信息;然后采用Sobolev 空间的一组样条函数把每个样本点的局部坐标映射成 全局唯一的低维坐标。它们均是利用每个样本的局部切空间来捕获流形的局部几何,样本点在切空间的投影来表示样本点的局部坐标。然而它们的主要区别在于全局排列,LTSA 算法是利用仿射变换来进行全局排列,而 LSE 算法是利用样条函数来获得全局唯一的坐标。因此相对于 LTSA 而言,LSE 算法能够实现更小的重构误差。LSE 算法的主要缺点在于:一是无法保持全局尺度信息;二是不能学习具有较大曲率的低维流形结构。除此,如何选择满足要求的样条函数也是一个值得考虑的问题。

不同流形学习算法的区别在于所尝试保持流形的局部邻域结构信息以及利用这些信息构造全局嵌入的方法不同,与以往的维数约简方法相比,流形学习能够有效地探索非线性流形分布数据的内在规律与性质。但是在实际应用中流形学习方法仍然存在一些缺点,比如本征维数估计问题、样本外点学习问题、监督流形学习问题和噪声流形学习问题等。为了解决这些问题,相关的算法也不断涌现出来。Freedman 等提出了一种基于简化单纯复形的流形重构方法来自动估计流形的本征维数(Freedman, 2002)。

为了解决样本外点学习问题,研究人员分别在流形学习的线性化、核化和张量化等方面作了有益的探索(Yan et al., 2007)。Geng 等将样本的类别信息融入到 ISOMAP 算法,提出了一种用于可视化和分类的有监督的等距特征映射算法(S-ISOMAP)(Geng et al., 2005)。Zhang 等提出了一种基于局部线性平滑的流形学习消噪模型(Zhang and Zha, 2003)。这些方法的提出在一定程度上缓解了目前流形学习方法中存在的一些问题,但是还需要进一步充实和完善。

1.3 流形学习的应用

目前,流形学习方法的应用可归纳为以下几个方面:

1)数据的可视化。流形学习方法在高维数据的可视化方面有了广泛的应用。人不能直接感知高维数据的内部结构,但对三维以下数据的内在结构却有很强的感知能力。由于流形学习方法可以发现高维观测数据中蕴含的内在规律和本征结构,而且这种规律在本质上不依赖于我们实际观测到的数据维数。因此我们可以通过流形学习方法 对高维输入数据进行维数约简,使高维数据的内部关系和结构在低于三维的空间中展示出来,从而使人们能够直观地认识和了解高维的非线性数据的内在规律,达到可视化的目的。

2)信息检索。随着多媒体和网络技术的迅猛发展,图像和文本信息的应用日益广泛,对规模逐渐庞大的图像和文本数据库如何进行有效的管理已成为亟待解决的问题。灵活、高效、准确的信息检索策略是解决这一问题的关键技术之一。这些图像和文本信息呈现出高维、大规模、非线性结构,利用流形学习方法来处理这些信息,在大大降低时间和空间计算复杂度的同时,能够有效地保留这些信息在原始高维空间的相似性。

3)图像处理。流形学习给图像处理领域提供了一个强有力的工具。众所周知,图像处理与图像中物体的轮廓以及骨架等密切相关。如果我们把图像中物体的轮廓以及骨架等看成是嵌入在二维平面中的一维流形或者由一组一维流形构成,那么显然流形学习方法凭借其强大的流形逼近能力可以应用于图像处理领域。

第2章 流形学习方法综述

流形学习方法作为一种新兴的非线性维数约简方法,主要目标是获取高维观测数据的低维紧致表示,探索事物的内在规律和本征结构,已经成为数据挖掘、模式识别和机器学习等领域的研究热点。本章首先探讨了流形学习的基础性问题,即高维数据分析的流形建模问题;然后依据保持流形几何特性的不同,把现有的流形学习方法划分为全局特性保持方法和局部特性保持方法,并介绍了每一类方法中有代表性的流形学习算法的基本原理,对各种流形学习算法进行性能比较和可视化分析,最后就流形学习方法普遍存在的本征维数估计、近邻数选择、噪声流形学习、样本外点学习和监督流形学习问题等进行了分析和讨论。2.1 流形学习方法介绍

流形学习的定义:流形是局部具有欧氏空间性质的空间。假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。

流形学习用数学语言描述是:令Yyi且: Y是一个光滑的嵌套,其中D >> d。那么流形学习的目标是基于上的一个给定被观测数据集合xi去恢复Y与,也就是在Y 中随机产生隐藏的数据yi,然后通过 映射到观测空间,使得xifyi。

从流形学习的定义中可以看出,这是一个把数据从高维映射到低维的过程,用到了线性变换,当然少不了矩阵的分解及其基本运算。2.1.1 多维尺度分析(Multidimensional Scaling, MDS)

多维尺度分析(Multidimensional Scaling, MDS)是一种经典的线性降维方法,其主要思想是:根据数据点间的欧氏距离,构造关系矩阵,为了尽可能地保持每对观测数据点间的欧氏距离,只需对此关系矩阵进行特征分解,从而获得每个数据在低维空间中的低维坐标。

DDDxx设给定的高维观测数据点集为YU,i,观测数据点对i,Tyj间的欧氏距离为ijxiyj,传统MDS 的算法步骤如下:

a)首先根据求出的两点之间的欧氏距离

ij构造n阶平方欧式距离矩阵Aij2 nn。b)将矩阵A进行双中心化计算,即计算

B1HAH2(其中H 为中心化eeTHIn,将矩阵H左乘和右乘时称为双中心化)矩阵。

c)计算低维坐标Y。即将B奇异值分解,设B的最大的d个特征值diag1,2,...,dYUT。

u1,u2,...,ud则d维低维坐标为,对应特征向量,U虽然作为线性方法,MDS在流形学习中不能有效发现内在低维结构。但是从这一基本的算法中我们可以清楚的看出矩阵分析在流形学习研究中的应用。在这个MDS算法中,运用到了矩阵中的线性空间变换、矩阵特征值和特征向量的计算、矩阵的中心化计算、矩阵的奇异值的分解等相关知识点。想象一下,如果没有这些知识点做基础,这些算法如何进行。2.1.2 等距特征映射(ISOMAP)

(1)基本思想:Tenenbaum等人提出的等距特征映射算法(ISOMAP)是建立在多维尺度分析(MDS)基础上的一种非线性维数约简方法。ISOMAP算法利用所有样本点对之间的测地距离矩阵来代替MDS算法中的欧氏距离矩阵,以保持嵌入在高维观测空间中内在低维流形的全局几何特性。算法的关键是计算每个样本点与所有其它样本点之间的测地距离。对于近邻点,利用输入空间的欧氏距离直接得到其测地距离;对于非近邻点,利用近邻图上两点之间的最短路径近似测地距离。然后对于构造的全局测地距离矩阵,利用MDS算法在高维输入空间与低维嵌入空间之间建立等距映射,从而发现嵌入在高维空间的内在低维表示(Tenenbaum et al., 2000)。

(2)算法流程 <1>构造近邻图G

<2>计算最短路径

<3>计算 d 维嵌入(3)算法分析 ISOMAP算法是一种保持全局几何特性的方法,它的低维嵌入结果能够反映出高维观测样本所在流形上的测地距离。如果高维观测样本所在的低维流形与欧氏空间的一个子集是整体等距的,且与样本所在流形等距的欧氏空间的子集是一个凸集,那么ISOMAP算法能够取得比较理想的嵌入结果。但是当流形曲率较大或者流形上有“孔洞”,即与流形等距的欧氏空间的子集非凸时,流形上的测地距离估计会产生较大的误差,导致嵌入结果产生变形。

从算法的时间复杂度来看,ISOMAP算法有两个计算瓶颈(De Silva and Tenenbaum, 2003)。第一个是计算n×n 的最短路径距离矩阵DG。当使用Floyd算法时,计算复杂度为O(n3);若采用Dijkstra算法,可将计算复杂度降低到O(kn2log n)(k 为近邻数大小)(Cormen, 2001)。第二个计算瓶颈源于应用MDS时的特征分解。由于距离矩阵是稠密的,所以特征分解的计算复杂度为O(n3)。从中我们可以看出,随着样本个数n 的增大,ISOMAP算法计算效率低下的问题会变得十分突出。2.1.3局部线性嵌入(LLE)

1、基本思想

与ISOMAP和MVU算法不同,局部线性嵌入算法(LLE)是一种局部特性保持方法。LLE算法的核心是保持降维前后近邻之间的局部线性结构不变。算法的主要思想是假定每个数据点与它的近邻点位于流形的一个线性或近似线性的局部邻域,在该邻域中的数据点可以由其近邻点来线性表示,重建低维流形时,相应的内在低维空间中的数据点保持相同的局部近邻关系,即低维流形空间的每个数据点用其近邻点线性表示的权重与它们在高维观测空间中的线性表示权重相同,而各个局部邻域之间的相互重叠部分则描述了由局部线性到全局非线性的排列信息(Roweis and Saul, 2000)。这样就可以把高维输入数据映射到全局唯一的低维坐标系统。

2、算法流程

LLE算法的基本步骤分为三步:(1)选择邻域(2)计算重构权值矩阵W(3)求低维嵌入Y

3、算法分析

通过前面算法描述我们不难发现,LLE算法可以学习任意维具有局部线性结构的低维流形。它以重构权值矩阵作为高维观测空间与低维嵌入空间之间联系的桥梁,使得数据点与其近邻点在平移、旋转和缩放等变化下保持近邻关系不变。而且LLE算法具有解析的全局最优解,无需迭代。在算法的计算复杂度上,选择邻域的计算复杂度为O(Dn2),计算重构权值矩阵的计算复杂度为O((D+k)k2n),求解低维嵌入Y 的计算复杂度为O(dn2)。因此与ISOMAP和MVU算法相比,LLE算法的计算复杂度要小得多。

但LLE算法也存在一些缺点:① 由于LLE算法只是保持局部近邻的重构权值关系,并不是保持距离关系,因此,LLE算法通常不能很好的恢复出具有等距性质的流形。② LLE算法希望样本集均匀稠密采样于低维流形,因此,对于受噪声污染、样本密度稀疏或相互关联较弱的数据集,在从高维观测空间到低维嵌入空间的映射过程中,可能会将相互关联较弱的远点映射到局部近邻点的位置,从而破坏了低维嵌入结果。

第3章 流形学习方法存在的问题

流形学习相对于传统的线性维数约简方法来说,它能够更好地发现高维复杂非线性数据内在的几何结构与规律。但其各种算法本身还存在着一些普遍性的问题,比如本征维数估计问题、近邻数选择问题、噪声流形学习问题、泛化学习问题和监督学习问题等。本小节将对这些问题进行简要的分析和讨论。

3.1 本征维数估计

本征维数估计是流形学习的一个基本问题(赵连伟 et al., 2005)。本征维数一般被定义为描述数据集中所有数据所需要的自由参数(或独立坐标)的最小数目。它反映了隐藏在高维观测数据中潜在低维流形的拓扑属性。在非 线性维数约简过程中,本征维数估计的准确与否对低维空间的嵌入结果有着重要的影响。如果本征维数估计过大,将会保留数据的冗余信息,使嵌入结果中含有噪声;相反如果本征维数估计过小,将会丢失数据的有用信息,导致高维空间中不同的点在低维空间可能会交叠。因此,设计稳定可靠的本征维数估计方法将有助于流形学习算法的应用和性能的改善。

目前现有的本征维数估计方法大致分为两大类:特征映射法和几何学习法(Camastra, 2003)。特征映射法包括全局 PCA 方法(Bennett, 1969)、局部 PCA 方法(Bruske and Sommer, 1998;Fukunaga and Olsen, 1971)和多维尺度分析方法(Cox and Cox, 2000),它主要利用了数据分布的本征特征是数据的局部特征的基本思想,对局部数据进行特征分解,选取对应特征值最大的特征向量作为本征特征。显然,这类方法所估计的本征维数大小在很大程度上取决于数据的局部邻域划分和阈值的选择,因此特征映射方法不能提供本征维数的可靠估计。几何学习法主要基于最近邻距离(Nearest Neighbor Distances)或分形维(Fractal Dimension)(Camastra, 2003)来探索数据集所蕴含的几何信息,这类方法通常需要充足的样本数,因此,对于样本数少、观测空间维数较高的情况,经常会出现本征维数欠估计的情况。

3.2近邻数选择

流形学习探测低维流形结构成功与否在很大程度上取决于近邻数的选择(Zeng, 2008),然而在构造近邻图时如何选择一个合适的近邻数是一个公开的问题。如果近邻数选择过大,将会产生“短路边”现象(“short-circuit” edges),从而严重破坏原始流形数据的拓扑连通性。

3.3 噪声流形学习

当观测数据均匀稠密采样于一个理想的低维光滑流形时,流形学习方法可以成功地挖掘出其内在的低维结构和本质规律。但是在实际应用中,我们经常发现高维采样数据由于受各种因素的影响,一般总是存在着噪声和污染,这将势必影响流形学习算法的低维嵌入结果。3.4 监督流形学习

现有的流形学习方法多数用于无监督学习情况,如解决降维与数据可视化等问题。当已知数据的类别信息,如何利用这些信息有效地改进原始流形学习算法的分类识别能力是监督流形学习所要解决的问题。从数据分类的角度来看,人们希望高维观测数据经过维数约简后在低维空间中类内差异小而类间差异大,从而有利于样本的分类识别。原始的流形学习算法都是无监督学习过程,一些引进监督信息的改进算法纷纷被提出来(Li et al., 2009;Zhao et al., 2006)。这些方法的基本思想是利用样本的类别信息指导构建有监督的近邻图,然后利用流形学习方法进行低维嵌入。尽管这些方法能够获得较好的分类结果,但是这种通过类别属性构建的近邻图往往会被分割成多个互不相连的子图,而不是一个完整的近邻图,这就给原始流形学习算法的最终应用带来了很大的不便。

第4章 总结

流形学习是一个具有基础性、前瞻性的研究方向,其研究成果和技术已经立即应用于模式识别、计算机视觉、图像处理等相关领域。如高维数据的可视化、可听化;基于内容检索的模型;视频中三维对象的跟踪和检测;从静态二维图像中进行三维对象的姿态估计和识别;二维和三维对象的形状重构;从运动中构建结构、从阴影中成形等。此外流形学习还应用于自然语言处理、基因表达分析等生物信息处理领域,特别是在基因表达分析中,用于检测和区分不同的疾病和疾病类型。

尽管流形学习的算法和应用在过去的几年中已经取得了丰硕的成果,但是由于其数学理论基础较为深厚复杂,以及多个学科之间交叉融合,所以仍有许多亟需研究和解决的问题,尤其在下述几个方面:

1.目前已有很多流形学习算法,但很多算法只是建立在实验的基础之上,并没有充分理论基础支持,所以我们一方面要进一步探索能够有效学习到流形局部几何和拓扑结构的算法,提高流形投影算法的性能,另外更重要的是要不断完善理论基础。

2.各支几何都是研究空间在变换群下的不变性,微分几何亦是如此。而很多情况下我们正需要这种不变性,所以研究局部样本密度、噪声水平、流形的正则性、局部曲率、挠率结构的交互作用对流形学习的研究有积极促进作用。

3.统计学习理论得到充分发展并逐渐成熟,流形学习理论在其基础上发展自然可以把统计学中有用的技术应用于流形学习中,如流形上的取样和Monte Carlo估计、假设检验,以及流形上关于不变测度的概率分布密度问题,都值得进一步研究。

4.目前大部分学习算法都是基于局部的,而基于局部算法一个很大缺陷就在于受噪声影响较大,所以要研究减小局部方法对于噪声和离群值的影响,提高学习算法鲁棒性及泛化能力。

5.谱方法对噪声十分敏感。希望大家自己做做实验体会一下,流形学习中谱方法的脆弱。

6.采样问题对结果的影响。

7.一个最尴尬的事情莫过于,如果用来做识别,流形学习线性化的方法比原来非线性的方法效果要好得多,如果用原始方法做识别,那个效果叫一个差。也正因为此,使很多人对流形学习产生了怀疑。

8.把偏微分几何方法引入到流形学习中来是一个很有希望的方向。这样的工作在最近一年已经有出现的迹象。

参考文献

[1] R.Basri and D.W.Jacobs.Lambertian reflectance and linear subspaces.IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2):218–233, 2003.[2] R.Vidal.Subspace clustering.IEEE Signal Processing Magazine, 28(2):52–68, 2011.[3] J.Shi and J.Malik, “Normalized cuts and image segmentation,” IEEE Transactions Pattern Analysis Machine Intelligence, 22(8):888–905, 2000.[4] G.Liu, Z.Lin, S.Yan, J.Sun, Y.Yu, and Y.Ma.Robust recovery of subspace structures by low-rank representation.IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):171–184, 2013.[5] E.Elhamifar and R.Vidal.Sparse subspace clustering: Algorithm, theory, and applications.IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11):2765–2781, 2013.[6] Y.Wang, Y.Jiang, Y.Wu, and Z.Zhou.Spectral clustering on multiple manifolds.IEEE Transactions on Neural Networks, 22(7):1149–1161, 2011.[7] B.Cheng, G.Liu, J.Wang, Z.Huang, and S.Yan, Multi-task low rank affinity pursuit for image segmentation, ICCV, 2011.[8] C.Lang, G.Liu, J.Yu, and S.Yan, Saliency detection by multitask sparsity pursuit, IEEE Transactions on Image Processing, 21(3): 1327–1338, 2012.

第二篇:数据分析课程感想

数据分析课程感想

——XXXX级XX学院XX班XXXXXXXXXXX 接触数据分析是从大学的计算机课上开始,但是了解得很少,于是在选修课上进一步学习。通过学习我了解到数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们做出判断,以便采取适当行动。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。确实在课堂上我们也是主要通过看老师计算机数据分析软件操作来学习,所以可以知道计算机的应用给数据分析带来了新鲜血液,使得数据分析更具有操作性和实用性,在很大程度上方便了对大量数据进行系统分析。

在课程上我们主要学习了运用数据分析软件进行数据分析,比如插入表格,数据排列,数据分类等等。通过这些学习首先我们掌握的是对OFFICE软件的一些基础应用,比如合并单元格,插入各类数据表格,对大量数据进行快速排序等。这些技能不仅对于数据分析很有用,在以后的日常工作中,也可以帮助我们,因为在现代社会,熟练掌握计算机已经是每个合格办公人员的基本技能,而这些可以使我们繁重的文件数据处理工作更加轻松和得心应手。

虽然在上课时看老师操作有时会觉得很难,但是一旦掌握会发现数据分析十分有用。在以后工作中,特别是营销工作中,可以发挥重要作用,比如,在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。一个企业的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划。而这些如果不使用数据分析,那么工作人员可能就要被掩埋在庞大而复杂的数据中了。尤其在如今大数据时代,行业领先企业都充分利用大数据分析,从而找到顾客偏好和新的营销热点,因此数据分析有极广泛的应用范围。

数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。以公司进行顾客喜好数据分析为例。首先要确定收集哪些有效数据,比如顾客对产品的满意度,顾客的年龄,然后是确定收集数据的途径和实施方案。比如发放调查问卷,开展网上问卷,电话访问,信件邮寄,等等。之后是对收集来的大量数据进行分析,这个环节就是我们课堂上主要学习的数据分析方法,比如对数据进行分类统计等。通过对数据的分析可以得出顾客对于产品的满意度,和产品改进方向,当然在数据分析过程中也许因为模型选择和操作问题等出现数据分析偏差,所以最后还要对数据分析过程和结果进行评估和改进完善。

数据分析对于工作和生活有很大的便利性和必要性,所以我会在以后的生活学习中多多留心,争取掌握更多数据分析技能。

第三篇:市场营销数据分析课程大纲

市场营销数据分析课程大纲

一、营销分析的组织框架和技术框架

如何更好的进行企业积累的大量营销数据的统计分析和挖掘工作?通过解析不同企业的数据应用实践,本节与您分享营销数据分析的总体框架应如何搭建...1.从现有的数据能分析什么?

2.现存的报告机制存在哪些问题

3.数据分析的技术架构和组织架构

4.实施营销数据分析思路和步骤

5.数据分析与挖掘技术简介

二、指标分析

指标分析是一种快速的企业绩效分析手段,是衡量企业健康状况的健康指标,本节介绍如何通过指标构建数据分析模型。

1.从一个绩效考核表说起

2.KPI的局限

3.搭建分析模型分析公司经营状况

4.基于市场营销指标的矩阵分析

5.利润分析矩阵

6.新产品分析矩阵

7.案例分析

三、数据规划和数据收集

没有数据,营销分析就成了空中楼阁。本节介绍数据搜集的思路和方法,为营销分析奠定坚实的基础。

1.思考:应该采集哪些数据

2.数据来源和收集途径

3.构建有效的数据采集系统

4.数据表的规划和设计

5.低成本的数据收集手段

6.利用新技术手段简化数据收集

四、常用分析方法

数据分析不是空洞理论,还需要有科学的技术手段和方法,本节演练常用的数据分析方法

1.对比分析

2.多维分析和统计

3.时间序列分析

4.数据分布分析

5.方差分析

五、竞争分析

企业总是在竞争中壮大,如果能提前预知竞争对手的信息和策略,企业更容易成功。

1.如何界定竞争对手

2.市场竞争的四个层次

3.需求的交叉弹性

4.品牌转换矩阵

5.行业竞争力分析

6.竞争分析矩阵

7.竞争对手数据收集

六、市场调查与置信度分析

市场调研是合法获取数据的重要来源,也是快速了解市场反应的途径,本节讨论市场调查的策划和统计方法。

1.如何策划一次市场调查

2.常规调查方法和网上调查方法

3.如何进行统计学上有效的抽样调查

4.理解误差的来源分析

5.如何对抽样结果进行统计

6.通过置信度分析计算调查误差

七、客户细分与精确营销

无差别的大众媒体营销已经无法满足零和的市场环境下的竞争要求。精确营销是现在及未来的发展方向,而客户细分是精确营销的基础。

1.精确营销与客户细分

2.客户细分的价值

3.基于数据驱动的细分

4.客户数据库分析的RFM指标

5.基于聚类细分方法的案例解析

6.细分结果的应用

八、商业预测技术

预测是企业重要的决策依据,企业通过预测技术可以估计下一季度、的市场规模、市场占有率、销售量等。

1.预测责任者与支持者

2.预测的组织流程

3.不同的预测模型各自的优缺点

4.多元回归分析:如何分析多个因素对目标值的影响程度,包含

i.如何建立多变量业务预测模型

ii.如何评估业务模型的有效性

iii.企业外部变量(例如经济宏观数据)的选择和过滤

5.回归分析演练:如何量化分析广告的效果

第四篇:项目数据分析师学习数据分析师课程

CPDA 项目数据分析师整理

项目数据分析师学习数据分析课程

项目数据分析师(英文简称CPDA)是专业从事投资和运营项目数据分析的高级决策人,通过掌握大量行业数据以及科学的计算工具,将经济学原理用数学模型表示,科学合理的分析投资和运营项目未来的收益及风险情况,为做出科学合理的决策提供依据。

项目数据分析师主要包括从事数据挖掘和投资两大领域,在投资分析、信贷融资、企业经营管理、企业战略规划、决策管理等影响政府和企业重大决策的领域担任重要角色,主要为政府和企业进行重大决策提供科学、真实和准确的依据。

授课方式:

面授

项目数据分析师培训课程涉及到经济学、市场营销学、财务管理学、计量经济学、预测学、金融学等多方面知识,需要学员具备全面性理论基础知识贮备。我们对各个学科中项目分析所要用到的知识点进行了深入分析,在讲义中详细说明,使学员可在相对准确的领域内迅速掌握知识并加以运用。做到能够让学员将课本上所学的东西真正变为可以利用的有效工具。远程学习

时间为一年整,采取先进的同步教学方式,保证学习质量,具体特点如下:

a、面授期间(8天面授),更新课程五次,通过每周的更新课程,让学员不仅可以在面授前提前预习基础知识,而且可以通过远程学习中心提交作业、知识点自我测试、考试复习、习题解答、在线答疑、案例参与等综合项目更好的掌握知识。

b、面授结束后,学员还有11个月的远程学习时间,每月一次的课件更新,使学员不仅能顺利适应项目数据分析师的认证考试,而且可以掌握各种数据分析的拓展知识和技能,为分析师在未来能够胜任专业分析工作奠定深厚基础。

c、远程学习不仅有丰富的文字学习内容,而且大比例增加了音频、视频课件,使学员可以通过生动的课件完成阶段性学习。

d、远程学习中心为学员提供学习计划制定、班级交流、继续教育等功能,帮助学员自觉学习、实现更好的学习效果。

适用人群:

1、企业单位:

参与企业经营、决策管理、项目投资的职业经理人或高级决策人;

参与企业项目运营环节中涉及的包括市场分析、市场研究、生产、研究、评价、销售等各个环节的工作人员。

2、政府、事业机构:负责项目审核、审批和招商引资、项目评估、项目决策、政策制订等工作的政府机构领导者及相关从业者。

3、金融机构:银行或非银行金融机构、管理咨询公司、风险投资、金融产品研发、信贷等相关工作人员。

4、事务所:项目数据分析师事务所、会计师事务所、资产评估事务所、税务师事务所及律师事务所等工作人员。

5、学校:学习经济学、财务、统计、投资、金融和企业管理等相关专业的在校学生(毕业后才能取证)以及应届毕业生。

第五篇:数据挖掘课程体会

数据挖掘课程体会

学习数据挖掘这门课程已经有一个学期了,在这十余周的学习过程中,我对数据挖掘这门课程的一些技术有了一定的了解,并明确了一些容易混淆的概念,以下主要谈一下我的心得体会。

近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。数据挖掘就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。作为一类深层次的数据分析方法,它利用了数据库、人工智能和数理统计等多方面的技术。

要将庞大的数据转换成为有用的信息,必须先有效率地收集信息。随着科技的进步,功能完善的数据库系统就成了最好的收集数据的工具。数据仓库,简单地说,就是搜集来自其它系统的有用数据,存放在一整合的储存区内。所以其实就是一个经过处理整合,且容量特别大的关系型数据库,用以储存决策支持系统所需的数据,供决策支持或数据分析使用。

数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。主要是可以做以下几件事:分类、估计、预测、关联分析、聚类分析、描述和可视化、复杂数据类型挖掘。在这里就不一一介绍了。

在学习关联规则的时候,提出了一个关于啤酒与纸尿布的故事:在一家超市里,纸尿布与啤酒被摆在一起出售,但是这个奇怪的举措却使得啤酒和纸尿布的销量双双增加了。其实,这是由于这家超市对其顾客的购物行为进行购物篮分析,在这些原始交易数据的基础上,利用数据挖掘方法对这些数据进行分析和挖掘。从而意外的发现跟纸尿布一起购买最多的商品竟是啤酒。按我们的常规思维,啤酒与纸尿布是两个毫无关联的商品,但是借助数据挖掘技术对大量交易数据进行挖掘分析后,却可以寻求到这一有价值的规律。这个故事在一定程度上说明了数据挖掘技术的巨大价值。

总之,非常感谢周教员在这十余周的精彩授课,让我受益匪浅,我会继续学习这门课程,努力为今后的课题研究或论文打好基础。

下载大数据课程报告word格式文档
下载大数据课程报告.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    大数据读书报告

    大数据读书报告 网络13-1戴崇卓 大数据的概念 大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力......

    大数据调研报告

    大数据技术市场调查报告:“BigData浪潮”迫使企业做出抉择 发表于2012-02-06 13:26| 2517次阅读| 来源CSDN| 0 条评论| 作者李智 数据中心浪潮数据挖掘数据分析大数据 摘要:......

    数据分析报告格式

    数据分析报告格式分析报告的输出是是你整个分析过程的成果,是评定一个产品、一个运营事件的定性结论,很可能是产品决策的参考依据,既然这么重要那当然要写好它了。我认为一份好......

    2015数据分析报告

    2015数据分析报告范文 第1篇:项目数据分析报告 (1)项目数据分析报告简介: 项目数据分析报告是"项目数据分析师"以客观的态度和谨慎的作风,通过科学的市场调研,运用专业的分析方法,......

    大数据学术会议报告

    Big and Open Date :Challenges for Smart City Victoria Lopez Victoria Lopez任教于西班牙马德里Complutense大学,其在计算机软件,计算机应用技术,计算机网络,人工智能,管......

    数据分析报告格式

    数据分析报告格式分析报告的输出是是你整个分析过程的成果,是评定一个产品、一个运营事件的定性结论,很可能是产品决策的参考依据,既然这么重要那当然要写好它了。我认为一份好......

    数据分析报告(大全)

    数据分析报告(一)一、报告概述回顾2015,这是不平静的一年,酒店旅游行业发生了众多事情。酒店之间收购之战,当酒店产品被迫下架;当OTA控制酒店低价竞争;当酒店支付高佣金低报价;当......

    如何写数据分析报告

    如何写数据分析报告首先,要有一个好的框架,跟盖房子一样,好的分析肯定是有基础有层次,有基础坚实,并且层次明了才能让阅读者一目了然,架构清晰、主次分明才能让别人容易读懂,这样才......