第一篇:1.2016年校级大学生创业训练及创业实践计划项目结题指南
大学生创业训练及创业实践计划项目结题指南
(试行)
一、结题操作流程:
1、根据通知的结题日期,学生填写《大学生创业训练及创业实践计划项目结题申请表》,交学院。
2、学院按照“适当集中、扩大影响、严格过程、重在训练”的原则,安排“大学生创业训练及创业实践计划项目”结题。
3、学院聘请不少于3名副高级及以上职称的院内外或校内外专家、骨干教师,组成结题答辩专家组,对结题项目完成情况进行评审、对学生答辩进行打分。
学院聘请的结题答辩专家组中,本项目指导教师不计算入专家组人数中,也不参与对自己指导的项目进行打分。
4、学院在确定了结题项目答辩日期后,提前2天将结题项目名称清单、结题答辩日期、答辩地点、专家组名单报学生处大学生就业指导服务中心备查。
5、项目组全体学生都必须到场,并参加答辩。由项目负责人作为主答辩人。
二、项目结题时,学生需准备向结题答辩专家组提供的资料:
1、《大学生创业训练及创业实践计划项目合同书》
2、《大学生创业训练及创业实践计划项目结题申请表》
3、大学生创业训练及创业实践计划项目结题总结报告(根据结题总结报告撰写要求撰写,结题总结报告撰写要求见附件一)
4、已经制作完成的展板含psd格式电子版(展板格式及要求见附件二)
5、每名学生撰写的《大学生创业训练及创业实践计划每月小结》(项目组每名学生的小结单独装订成册)
6、经费支出清单(学生根据项目经费簿中已经发生的经费,罗列一份清单)
7、项目合同书“结题提交成果”中应提交的各类成果(包括创业计划书、应提交的实物、发表论文的期刊原件、专利证书影印件或专利受理通知书等)
8、学生结题答辩时汇报用PPT电子版
9、其他与本项目相关的资料
10、结题答辩结束后,学生将上述资料的电子版刻制成一张光盘,与书面资料一 同交学院(《每月小结》等没有电子版的资料只交纸质版)。
三、结题答辩形式:
1、项目组全体学生都必须到场,并参加答辩。由项目负责人作为主答辩人。
2、学生用10分钟左右时间,以PPT形式,向结题答辩专家组专家汇报: ①项目内容 ②项目创新点
③学生在项目过程中获得的创新、创业体验 ④学生的最大收获 ⑤项目成果
3、专家用5分钟左右时间,向项目负责人及项目组所有学生,提出相关问题,由学生答辩,或指出存在的问题、期望及建议。
4、专家组成员对结题答辩的项目进行评审、打分。以项目为单位进行评审和打分。
四、结题答辩结束后,学院向学生处提交的资料:
①每个结题项目的《大学生创业训练及创业实践计划项目合同书》 ②每个结题项目的《大学生创业训练及创业实践计划项目结题申请表》 ③每个结题项目,每位专家的《大学生创业训练及创业实践计划项目结题答辩评审表》
④本次结题答辩项目《大学生创业训练及创业实践计划项目结题答辩评审汇总表》
⑤每个结题项目的“大学生创业训练及创业实践计划项目结题总结报告”(根据结题总结报告撰写要求撰写,结题总结报告撰写要求见附件一)
⑥每个结题项目已经制作完成的电子版展板(展板格式及要求见附件二,展板制作成“X展架”)
⑦每个结题项目的《大学生创业训练及创业实践计划每月小结》(项目组每名学生单独装订成册)
⑧每个结题项目,按照项目合同书“结题提交成果”中应提交的各类成果(包括创业计划书、应提交的实物、发表论文的期刊原件、专利证书影印件或专利受理通知书等)
⑨每个结题项目的经费支出清单 ⑩其他与本项目相关的资料 另外,还需交给学生处:
①学生上述资料的电子版光盘(应由学生在结题答辩前刻录完成)(《每月小结》、《项目合同书》、《结题答辩评审表》、《结题答辩汇总表》等没有电子版的资料只交纸质版)。
②学生结题答辩时汇报用PPT电子版(可以由学生刻录在上面的同一张光盘内)③本次结题答辩的现场照片,每个结题项目2张左右(电子版)
五、出席结题答辩的学生:
尽可能多安排其他学生旁听结题答辩,激发学生参加“大学生创业训练及创业实践计划”项目的兴趣和热情,扩大项目在学生中的影响面。
学生工作部(处)2017年1月20日
第二篇:大学生创新创业训练计划项目结题报告
大学生创新创业训练计划项目结题报告
一种集成式自供电纳米化学传感器的设计和制作
项目成员:何旺球(1426410514)王鹏云1426410408 陶俊贤1326410232 黄家仪1326410116 指导教师:祝元坤 摘要:
本项目以石墨烯作为基本功能单元,设计并制备一种新型的集成式化学分子驱动自供电传感器件;超薄二维纳米材料(石墨烯)作为基本功能单元制备新一代的自供电传感器件,使器件能感受到环境中化学分子状态的改变而输出电信号。石墨烯部分被聚合物薄膜所覆盖且另一部分暴露,当器件接触极性分子时,可以产生明显的电信号。因此,本项目的研究具有一定应用前景和重要学术价值。该类自供电传感器件可能应用于生产微型纳米传感器,具有自主创新知识产权。
1引言
近年来,随着纳米材料及纳米科学技术研究的不断深入,各种微纳电子器件不断被研究开发,并在军事、生物医学、环境监测等领域展现出十分诱人的应用前景[1]。微纳电子器件不仅尺寸小,而且具有功耗低、速度快、易于大规模集成、可移动等特点,但微纳电子器件需要有微尺度电源系统来供给电能,来维持正常工作。随着电子产品小型化,亟待开发即能为之提供能量并且小、轻、具有柔性的自供电传感器件。如果微电源器件能够持续收集环境中的能量并转换为电能,将会永久性解决电池耗尽的问题。因此,开发具有能量转换功能的微电源,并与传感器等器件集成构建自供电系统,是非常迫切的。可穿戴、物联网、智慧城市等新兴产业的发展将推动微纳电子器件市场的迅速发展,牵引微电源产品的技术变革和不断创新。
微纳自供电器件是当今的研究热点,目前的研究集中在以下几点:1)不断提高能量转换效率。如何在减小尺寸的同时保持高的能量转换效率,需要新材料和新工艺。2)具有柔韧性。未来可穿戴、可移植等器件的发展需要柔性的器件与之配套。3)易于集成。为满足自供电、自供能驱动等系统的需求,微电源器件应易于和传感器等进行集成。4)可从环境中持续捕获能量。微电源器件不仅要有能量存储功能,还要能持续将环境中的能量转换为电能。自然界不缺能源,大学生创新创业训练计划项目结题报告
关键在于如何将能量有效收集并转换为电能,这需要不断开发新型的自供电传感器件,将环境中潜在的光能、生物能、热能、振动能、电磁能等能量源转换为电能。
微纳自供电传感器件的国内外研发现状:哈佛大学C.M.Lieber教授采用Ge/Si核壳纳米阵列制作了太阳能电池[2]。美国佐治亚理工学院Z.L.Wang教授在2006年提出了纳米发电机的概念,利用ZnO纳米线的压电效应实现机械能到电能的转换,并在之后的研究中发展了压电电子学的概念[3]。最近,他们在单个原子厚度的二硫化钼内观察到了压电效应,并研制出全球最纤薄的发电机兼力学感知设备,其不仅透明轻质且可弯曲和拉伸[4]。复旦大学的彭慧胜教授成功制备出可拉伸的线状超级电容器,为可穿戴智能设备中电能的供应提供了一个解决思路[5]。上海交通大学利用非硅微加工技术制备了基于MEMS的压电发电机并表征了其俘能效果。中国科学院苏州纳米所在新型柔性可穿戴仿生触觉传感器即人造仿生电子皮肤方面做了系列工作[6]。南京航空航天大学郭万林教授首次实现石墨烯表面拖动海水液滴发电, 并揭示了其中的物理机制,为石墨烯在能源领域的应用开辟了新方向[7]。中科院沈阳金属所设计并制备出基于碳纳米管/石墨烯的柔性能量存储与转换器件,并发现其具有循环稳定性好、可快速充放电、可弯折等优异性能[8]。北京大学和大连化物所在石墨烯PN结的调控调制掺杂生长与光电转换器件研究中进行了前沿性探索[9]。
在之前的研究工作中,我们团队提出一种可将环境中的化学能转换为电能的新型器件——分子驱动自供电传感器件,当器件所处环境中化学分子状态发生变化时可触发电信号,从而实现电能的捕获。当极性化学分子接触部分覆盖的ZnO纳米线时,ZnO覆盖端和暴露端由于功函数不同而产生内部电势差[10]。利用这一原理可制成自供电的酒精检测仪,也可检测不同浓度、不同类别的有机化学试剂[11-14],当人吸气-呼气循环作用于器件时,如图1所示,在无任何外接电源的情况下,器件可产生 2-8 nA 的脉冲电流信号,交换电极可获得相反方向的电流信号,这意味着电流信号非测试系统误差或电阻变化引起的。器件能将人体连续的吸气-呼气转换为电信号,这意味着人呼吸也可以发电,无疑是令人振奋的。以化学分子驱动器件产生电能是继光电、热电、压电效应之后的一种全新的器件设计理念,包含丰富的物理内涵;基于这种理念构建的器件未来在物联网传感器、2
大学生创新创业训练计划项目结题报告
可穿戴器件、生物医疗器件等领域的自供电检测/自驱动系统构建等方面有巨大的应用前景。
图1 吸气-呼气循环作用于ZnO阵列自供电传感器件所产生的电信号 超薄二维纳米材料,如石墨烯等,因其独特的物理化学特性成为材料界最为活跃的研究主题,在能量转换与存储、柔性透明显示、复合材料、传感器、集成电路等领域表现出十分诱人的应用前景[15]。石墨烯的费米能级可以通过原子分子掺杂和气体分子的吸附进行有效调控。基于这一点,我们提出利用超薄二维纳米材料(石墨烯)作为基本功能单元制备新一代的自供电传感器件,使器件能感受到环境中化学分子状态的改变而输出电信号。前期的研究发现,石墨烯部分被聚合物薄膜所覆盖,部分暴露,当器件的暴露部分接触乙醇分子时,可以产生35 nA左右的电信号[16-18]。初步的研究结果表明石墨烯作为基本功能单元制备自供电化学传感器件是可行的。本申请项目提出以石墨烯作为功能单元制备自供电化学传感器件,有望获得高转换效率、超小尺寸、稳定的微电源器件,为自供电式微纳器件设计及性能优化打下基础。理论和实验结果表明,石墨烯的功函数可以通过原子分子掺杂和气体分子的吸附进行有效调控前期研究工作从实验上证明了利用半导体功函数调控实现能量捕获的可行性,但是,器件要取得实际应用,必须要有高的能量转换效率,且能实现持续电能转换,这就需要对器件性能影响因素及器件工作机制进行深入研究[19]。除此之外,ZnO材料化学稳定性差也是器件实用化的重要瓶颈。因此,有必要寻找新的替代材料实现类似能量转换功能。在本项目中,我们将在之前研究的基础上,进一步深化器件工作机制的研究,推进分子驱动自供电传感器件的实用化。石墨烯作为器件功能单元的可行性与优
大学生创新创业训练计划项目结题报告
势:近十年来,石墨烯因其独特的物理化学特性成为材料界最为活跃的研究主题,在能量转换与存储、柔性透明显示、复合材料、传感器、集成电路等领域表现出十分诱人的应用前景[20-23]。理论和实验结果表明,石墨烯的功函数可以通过原子分子掺杂和气体分子的吸附进行有效调控[24]。基于这一点,在本项目中,我们提出利用石墨烯作为基本功能单元制备新一代的分子驱动能量转换及自供电传感器件,使器件能感受到环境中化学分子状态的改变而输出电信号。在前期的研究中,我们利用石墨烯制备成器件,石墨烯部分被聚合物薄膜所覆盖,部分暴露。当工作端接触乙醇分子时,工作端工作函数发生变化,而密封端工作函数仍保持不变;由于同一种材料费米能级必须处于同一水平,由于载流子的迁移,器件两端产生接触电势差[25]。实验结果表明,乙醇液滴可使器件可产生35 nA 左右的电信号,这表明石墨烯作为基本功能单元制备分子驱动自供电传感器件是可行的。以石墨烯制备器件具有以下优势:首先,二维石墨烯具有大的比表面积,对化学分子有更高的敏感性,更容易进行表面电势的调节;其次,石墨烯具有良好的机械性质,可以做成柔性器件;再次,石墨烯的电子输运性质和功函数可在很大范围内调控,表面改性、应力、化学环境等都可以使石墨烯功函数发生变化。综合这些优势和前期研究结果,我们认为,以石墨烯作为功能单元制备分子驱动自供电传感器件,有望获得高转换效率、超小尺寸、柔性、稳定的微电源器件,满足实际需求[26-27]。实验部分
2.1 实验药品及气体
固体材料:超薄二维纳米材料(石墨烯)
所用极性有机液体:无水乙醇、异丙醇、丙酮、二氯甲烷、吡啶、二甲基甲酰胺主要测试光照:黑暗、日光灯、紫外灯(365nm)
2.2 实验设备及仪器
本实验所用到的设备仪器: 2.2.1半导体参数分析仪
半导体参数分析仪是一个模块化、可定制、高度一体化的参数分析仪,可同时进行电流-电压(I-V)、电容-电压(C-V)和超快脉冲 I-V 电学测试。使用其可
大学生创新创业训练计划项目结题报告
选的 多通道开关模块,可轻松地在 I-V 和 C-V 测量之间切换,而无需重新布线或抬起探针。半导体参数分析仪是最高性能的分析仪,可加快用于材料研究、半导体器件设计、工艺开发或生产的复杂器件的测试。使用时,先将器件连接在参数分析仪上,打开电源和电脑上的系统。设置程序,测试器件的伏安特性曲线、转移特性曲线,探究器件的迁移率、载流子浓度等基本的电学性能和半导体材料的电流电压随时间的变化曲线。
图2(a)半导体探针台和(b)半导体参数分析仪
2.2.2X射线衍射仪(XRD)X射线衍射仪(X-ray diffraction,XRD),其工作原理是根据布拉格方程2dsinθ=nλ,图3所示,实验仪器根据接收的θ角度变化信息及其强度分布信息可以得到晶体的点阵平面间距和原子排布信息,分析晶体的点阵平面间距和原子排布信息便能获得材料成分和内部原子(分子)结构等信息。
图3 布拉格衍射示意图
本论文中采用的XRD型号为D8-ADVANCE,由德国Bruker-AXS公司生产,如图4所示。衍射实验使用的测量电压和电流分别为40kV、30 mA,实验中的衍射X射线为Cu-Kα射线,射线波长为0.1541 nm。
大学生创新创业训练计划项目结题报告
图4 D8-ADVANCE型转靶X射线衍射仪
2.2.3扫描电子显微镜(SEM)
扫描电子显微镜可以方便的得到所制备材料的形貌特征及结构特征,是材料研究的关键。在使用过程中,其利用多种信号转换,得到经电子束激发相应材料表面产生次级电子信号,利用这种电子信号来完成对材料的形貌的表征形成我们所看到的图像特征。对导电性较差的样品,为避免观测样品表面时,因积累电荷从而影响观测,通常需要喷涂一层重金属薄膜。
本论文采用美国FEI公司生产的QuantaFEG450型场发射扫描电子显微镜(Field-Emission Scanning Electron Microscopy, FE-SEM)对样品进行表面形貌和结构的表征,主要测试参数为:电子枪和样品的距离10 mm,加速电压为30 kV,电流为10μA。
2.2.4石墨烯等二维超薄结构纳米功能材料的制备
近十年来,石墨烯因其独特的物理化学特性成为材料界最为活跃的研究主题,在能量转换与存储、柔性透明显示、复合材料、传感器、集成电路等领域表现出十分诱人的应用前景。理论和实验结果表明,石墨烯的功函数可以通过原子分子掺杂和气体分子的吸附进行有效调控。基于这一点,在本项目中,我们提出利用石墨烯作为基本功能单元制备新一代的分子驱动能量转换及自供电传感器件,使器件能感受到环境中化学分子状态的改变而输出电信号。
采用化学气相沉积方法以及Langmuir-Blodget方法制备了大面积(氧化)石墨烯材料。化学气相沉积法是制备石墨烯常用的方法,该方法的优点在于易实现石墨烯的大面积合成,常以铜、镍、铂等金属为衬底,通过渗碳冷却、表面催化等工艺制备得到大面积连续的石墨烯薄膜。实验中,以C2H4为碳源,H2为载气,以Ni和Cu为催化剂,生长温度控制在800-1000℃,通过调控对开式管式炉中的碳源、压强、温度以及生长时间,控制石墨烯的生长厚度。利用化学气相沉积
大学生创新创业训练计划项目结题报告
方法,获得了表面连续的大面积石墨烯材料。
为了进一步探索并优化化学气相沉积实验过程,我们采用化学气相沉积方法制备了大面积二维超薄半导体纳米材料,并以此二维超薄结构的半导体纳米材料制备类似的化学分子驱动自供电传感器件,借此与高质量石墨烯材料的制备方法和器件制作工艺类比,优化化学分子驱动能量转换及自供电传感器件性能,并深入探究器件工作机理。采用化学气相沉积方法,制备了具有二维超薄结构的氧化锌以及二硫化钼半导体纳米材料。探索了具有较大比表面积的二维超薄结构的半导体纳米材料最优化生长工艺;研究了不同升温速度、生长温度、生长时间、掺杂元素、反应气体及载气比例以及流量等条件,制备的大面积二维超薄结构半导体纳米材料的成分、结构、形貌以及光、电、机械等性能;实现了在不同表面状态的硅、二氧化硅以及不同晶体取向的蓝宝石衬底上生长高质量大面积二维超薄结构半导体纳米材料。
在实验研究上,以化学气相沉积法生长的大片石墨烯和化学剥离的氧化石墨烯(或还原氧化石墨烯)为实验对象,综合利用带环境气氛的Kelvin探针显微镜(KPFM)、聚焦离子束刻蚀(FIB)等材料领域先进样品表征、加工手段开展研究;归纳分析化学分子接触时石墨烯功函数变化的微观机制与器件的宏观行为,为基于功函数调控的微纳能量转换器件的材料、器件设计及性能优化打下基础。通过研究生长条件及复合工艺,对石墨烯材料以及二维超薄结构半导体纳米材料结构、成分以及形貌、光学和电学等性能,获得了控制大面积二维超薄结构纳米材料的最优化生长工艺。
2.2.5基于二维超薄结构纳米材料的化学分子驱动自供电传感器件制作
以化学气相沉积制备的大面积石墨烯材料和Langmuir-Blodget方法制备的大面积氧化石墨烯薄膜为功能单元,制作化学分子驱动的自供电传感器件。
基本器件制备工艺流程如图5所示:1)选择CVD生长的大片单晶石墨烯,转移到Si/SiO2衬底上。综合拉曼、透射电镜、X射线衍射仪、半导体参数分析仪等手段表征所制备的石墨烯的微观结构及物理性质;2)用铝箔做掩膜遮住中间部分石墨烯,用电子束蒸发法在石墨烯两端镀电极,用导线将电极引出以备测试; 3)用铝箔做掩模,遮挡一半石墨烯,通过低压气相沉积法在器件表面旋涂一层派瑞林(Parylene C)覆盖另一半石墨烯。
大学生创新创业训练计划项目结题报告
图5石墨烯化学传感器件制作的工艺路线图(a)在铜上生长的石墨烯;(b)将石墨烯转移到Si/SiO2衬底上;(c)用铝箔做掩膜覆盖石墨烯中间部分;(d)用铝箔做掩膜蒸镀两端电极;(e)引出两侧电极,用铝箔做掩膜,沉积parylene C;(f)去掉
掩膜得到所需器件。
经外引导线,获得了以大面积石墨烯为功能单元的聚合物半遮盖式化学分子驱动自供电传感器件。此外,选取了具有较高表面积的氧化锌和二硫化钼等二维超薄结构半导体纳米片材料,制作大面积二维超薄结构纳米材料的化学分子驱动自供电传感器件。通过设计掩膜版的位置和大小,镀制电极,涂覆半遮盖式聚合物薄膜等步骤,制备了化学分子驱动自供电传感器件。
图6自供电传感器的结构图 结果与讨论
3.1超薄二维半导体纳米材料(石墨烯)基本电学性能研究
化学分子驱动自供电传感器件的性能评价主要涉及对其基本电学性能以及在化学有机溶液作用下输出电学性能的测试。基于此,我们首先测试了大面积石 8
大学生创新创业训练计划项目结题报告
墨烯基化学分子驱动自供电传感器件的基本电学性能:包括石墨烯化学分子驱动自供电传感器件的漏电流行为,以此评价器件封装完好性以及相关介质层的绝缘性能等;在此基础之上,通过测试石墨烯化学分子驱动自供电传感器件的伏安特性曲线,获得了石墨烯化学分子驱动自供电传感器件的工作特性以及电极接触类型等关键器件参数,如图7(a)是超薄二维半导体纳米材料(石墨烯)的伏安特性曲线;最后,在P型硅/二氧化硅介质层衬底的作用,通过调控背底栅极电压,测试了石墨烯化学分子驱动自供电传感器件的转移特性曲线,测试了器件的半导体类型和栅极电压的调控作用等器件参数,图7(b)是栅压对石墨烯伏安特性曲线的调控作用。作为对比,对基于大面积二维结构超薄纳米材料的化学分子驱动自供电传感器件进行了类似的基本电学性能测试。
(a)
(b)
图7氧化石墨烯自供电传感器件的电学性能;(a)伏安特性曲线;(b)背底栅
极电压对其伏安特性曲线的调控作用
3.2 化学分子驱动能量转换器件性能测试
在获得化学分子驱动自供电传感器件基本电学性能的基础之上,测试了不同化学有机溶液作用下,大面积石墨烯和二维结构超薄纳米材料的化学分子驱动自供电传感器件的输出电学性能。首先测试了无外加电压激励作用下,化学分子驱动自供电传感器件的漂移电流以及电压随时间的变化规律,获得了能量转化器件的背景噪音以及稳定性等关键器件指标,图8(a)所示为传感器件的背景信号;随后,通过控制滴加化学有机溶液,测试了大面积二维结构超薄纳米材料化学分子驱动自供电传感器件的电流以及电压随时间变化规律,图8(b)所示,分析
大学生创新创业训练计划项目结题报告
了化学分子蒸发速度与器件电流电压信号的变化规律,建立了有机化学分子的极性、表面张力、润湿性等参数,与器件输出电学性能之间的内在联系机制,探究了化学分子在二维超薄半导体纳米片表面的吸附-脱附行为及器件能量传递机制。化学分子吸附在二维超薄半导体纳米片表面时,器件产生电信号,伴随载流子的转移,二维超薄半导体纳米片密封端和暴露端的费米能级达到平衡,电信号消失;要使器件持续工作,必须使化学分子处于不断吸附-脱附的动态循环中。
(a)
(b)
(c)
(d)
图8(a)GO传感器件的背景噪音信号;(b)滴加6微升二氯甲烷后的电流以及电压随时间变化曲线;(c)不同量丙酮的电流随时间的变化曲线;(d)源极和漏极反向连接后,滴加6微升二氯甲烷的电流以及电压随时间变化曲线 随后,研究了不同滴加量作用下,大面积二维结构超薄纳米材料的化学分子驱动自供电传感器件的电流以及电压随时间变化规律;图8(c)为在分别滴加 10
大学生创新创业训练计划项目结题报告
10微升和5微升丙酮溶液时的比较,滴加量多时电信号持续的时间明显加长。测试了暴露面积以及遮盖不同位置下,大面积二维结构超薄纳米材料的化学分子驱动自供电传感器件的电流以及电压随时间变化规律,获得了最优化的聚合物遮盖层材料种类以及遮盖位置和暴露面积等器件关键设计。在此基础之上,获得基于二维超薄结构纳米材料的化学分子驱动自供电传感器件的最优化制作工艺。
此外,通过正负极(源极漏极)倒转连接等方式,重复测试了大面积二维结构超薄纳米材料化学分子驱动自供电传感器件的电流以及电压随时间变化规律,获得了预期的形状相似但方向相反的电流电压信号,如图8(d)所示为氧化石墨烯器件正负极(源极漏极)倒转后滴加二氯甲烷的电流电压随时间的变化曲线,结合直接采用二氧化硅介质层作为功能单元制作的器件测试结果,证明了在滴加极性有机液体后产生的电流电压信号非偶然发生,而是由于化学有机溶液分子驱动作用下,石墨烯以及二维超薄纳米材料等功能层产生的必然规律性信号。结论
本项目采用化学气相沉积法制备了超薄二维半导体纳米材料(石墨烯),并研究了超薄二维半导体纳米材料的成分、微观结构、形貌和光电性能。我们选择了生长质量良好的超薄二维半导体纳米片,经过一系列的工艺,制备了化学分子驱动的超薄二维半导体纳米材料自供电传感器件,测试了其基本电学性能。在获得化学分子驱动传感器基本电学性能的基础之上,测试了不同化学有机溶液作用下,大面积石墨烯和二维结构超薄纳米材料的化学分子驱动自供电传感器件的输出电学性能。展望
本课题对化学分子驱动自供电传感器件性能进行了初步研究,证实二维超薄材料纳米传感器件在极性分子作用下能够产生稳定持续的电能,为解决微纳电子器件的微电源的维护和替换难题提供了新的思路。因此,希望有越来越多的人来研究制备自供电传感器件,也希望能对自供电传感器件的其他性能进行探究。相信随着纳米科技的发展,自供电传感器件作为一种优秀的纳米功能器件,具有非常广阔的前景。
大学生创新创业训练计划项目结题报告 参考文献
[1] X.Wang, B.Ding, M.Sun, J.Yu, G.Sun, Nanofibrous poly-ethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors.Sens.Actuators B, Chem., 144(2010)11-17.[2] H.Bagheri, M.Ghambarian, A.Salemi, A.Es-Haghi, Trace determination of free formaldehyde in DTP and DT vaccines and diphtheria-tetanus antigen by single drop microextraction and gas chromatography-mass spectrometry.J.Pharmaceutical Biomed.Anal., 50(2009)287-292.[3] M.Yoosefian, H.Raissi, A.Mola, The hybrid of Pd and SWCNT(Pd loaded on SWCNT)as an efficient sensor for the formaldehyde molecule detection: a DFT study, Sens.Actuators B 212(2015)55-62.[4] Y.Zhang, M.Zhang, Z.Q.Cai, M.Q.Chen, F.L.Cheng, A novel electrochemical sensor for formaldehyde based on palladium nanowire arrays electrode inalkaline media, Electrochimica Acta 68(2012)172-177.[5] J.R.Hopkins, T.Still, S.Al-Haider, I.R Fisher, A.C.Lewis, P.W.Seakins, A simplified apparatus for ambient formaldehyde detection via GC-pHID, Atmos.Environ.37(18)(2003)2557-2565.[6] F.M.Ren, L.P.Gao, Y.W.Yuan, Y.Zhang, A.Alqrni, O.M.Al-Dossary, J.Q.Xu, Enhanced BTEX gas-sensing performance of CuO/SnO2 composite, Sens.Actuators B 223(2015)914-920.[7] N.Han, Y.J.Tian, X.F.Wu, Y.F.Chen, Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO, Sens.Actuators B 138(1)(2009)228-235.[8] S.P.Zhang, T.Lei, D.Li, G.Z.Zhang, C.S.Xie, UV light activation of TiO2 for sensing formaldehyde: how to be sensitive, recovering fast, and humidity less sensitive, Sens.Actuators B 202(2014)964–970.[9] R.Q.Xing, L.Xu, Y.S.Zhu, J.Song, W.F.Qin, Q.L.Dai, D.L.Liu, H.W.Song, Three-dimensional ordered SnO2 inverse opals for superior formaldehyde gas-sensing performance, Sens.Actuators B 188(2013)235-241.[10] V.Selvamanickam, R.Mallick, X.Tao, Y.Yao, M.Heydari Gharahcheshmeh, A.大学生创新创业训练计划项目结题报告
Xu, Y.Zhang, E.Galstyan, G.Majkic, Improved flux pinning by prefabricated SnO2 nanowires embedded in epitaxial YBa2Cu3Ox superconducting thin film tapes, Supercond.Sci.Tech 29(2016)085016-085028.[11] L.A.Ma, Z.H.Wei, X.Y.Ye, T.Lin, T.L.Guo, Structure and enhanced field emission properties of cone-shaped Zn-doped SnO2 nanorod arrays on copper foil, Mat.Let.174(2016)32-35.[12] G.E.Unni, T.G.Deepak, A.Sreekumaran Nair, Fabrication of CdSe sensitized SnO2 nanofiber quantum dot solar cells, Mat.Sci.Semicon.Proc.41(2016)370-377.[13] W.W.Chen, Y.K.Liu, Z.J.Qin, Y.M.Wu, S.H.Li, N.L.Gong, Improved ethanediol sensing with single Yb ions doped SnO2 nanobelt, Ceram.Int.42(2016)10902-10907.[14] J.Jang, S.Choi, S.Kim, M.Hakim, I.Kim, Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes, Adv.Funct.Mater.26(2016)4740-4748.[15] L.L.Zhu, M.H.Hong, G.W.Ho, Hierarchical assembly of SnO2/ZnO nanostructures for enhanced photocatalytic performance, Scientific reports, 5(2015)11609-11619.[16] L.L.Zhu, M.H.Hong, G.W.Ho, Fabrication of wheat grain textured TiO2/CuO composite nanofibers for enhanced solar H2 generation and degradation performance, Nano Energy, 11(2015)28-37.[17] E.Comini, G.Sberveglieri, Metal oxide nanowires as chemical sensors, Mater.Today 13(2010)28-36.[18] F.Schedin, A.K.Geim, S.V.Morozov, E.W.Hill, Detection of individual gas molecules adsorbed on graphene, Nat.Mater.6(2007)652-655.[19] Y.Lin, W.Wei, Y.J.Li, F.Li, J.R.Zhou, D.M.Sun, Y.Chen, S.P.Ruan, Preparation of Pd nanoparticle-decorated hollow SnO2 nanofibers and/ their enhanced formaldehyde sensing properties, J.Alloys Compd.651(2015)690-698.[20] H.Y.Du, J.Wang, M.Y.Su, P.J.Yao, Y.G.Zheng, N.S.Yu, Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process, Sens.Actuators B 166-167(2012)746-752.大学生创新创业训练计划项目结题报告
[21] S.Chen, Y.Qiao, J.Huang, H.Yao, Y.Zhang, Y.Li, J.Du, W.Fan.One-pot synthesis of mesoporous spherical SnO2@graphene for high-sensitivity formaldehyde gas sensors.RSC Advances 6(30)(2016)25198-25202.[22] X.Li, J.Wang, D.Xie, J.L.Xu, R.X.Dai, L.Xiang, H.W.Zhu, Y.D.Jiang, Reduced graphene oxide/hierarchical flower-like zinc oxide hybrid films for room temperature formaldehyde detection, Sens.Actuators B 221(2015)1290-1298.[23] H.J.Kim, J.H.Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sens.Actuators B 192(2014)607-627.[24] J.Huang, L.Wang, C.Gu, M.Zhai, J.Liu, Preparation of hollow porous Co doped SnO2 microcubes and their enhanced gas sensing property, Cryst Eng Comm 15(2013)7515-7521.[25] M.Chi, Y.Zhao, Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: A first principle study, Comput.Mater.Sci.46(2009)1085-1090.[26] H.H.Kim, J.W.Yang, S.B.Jo, B.Kang, S.K.Lee, H.Bong, G.Lee, K.S.Kim, K.Cho, Substrate-induced solvent intercalation for stable graphene doping, ACS Nano 7(2013)1155-1162.[27] J.Park, W.H.Lee, S.Huh, S.H.Sim, S.B.Kim, K.Cho, B.H.Hong, K.S.Kim,Work-function engineering of graphene electrodes by self-assembled monolayers for high-performance organic field-effect transistors, J.Phys.Chem.Lett.2(2011)841-845.14
第三篇:2017年大学生创业训练实践项目结题材料提交的具体要求
2017年大学生创业训练(实践)项目结题材料提交的具体要求
一、学生提交材料要求: 1.提交项目成果
学生项目负责人登陆系统,在“流程管理”栏点击“提交项目成果”进入项目成果页面,在操作栏选择相应的成果形式点击进入相应的页面,点击“添加”,根据不同成果形式,按要求提交相关材料。
要求:若项目结题成果形式为真实产品,结题至少需提交一张产品的整体照片;若项目结题成果形式为已设计上线的网站、APP等,需提交主页面截图。若项目结题成果形式为实际营收,可提交2017年的营收情况。可添加附件提交。
2.提交结题表
学生项目负责人登陆系统,在“流程管理”栏点击“提交结题表”进入结题报告页面,在操作栏选择“提交结题报告”进入结题报告填写页面,按要求填写相关信息。友情提示:提交后提醒指导教师审核。
二、指导教师审核材料要求: *审核项目成果与结题报告
指导教师登陆系统,在“流程管理”栏点击“审核结题表”进入审核结题表页面,可以点击查看项目成果,查看学生提交的项目成果是否正确、齐全;在操作栏选择“审核”进入结题表页面,审核学生结题表并填写审核意见与审核结果。
要求:若项目结题成果形式为真实产品,结题至少需提交一张产品的整体照片;若项目结题成果形式为已设计上线的网站、APP等,需提交主页面截图。若项目结题成果形式为实际营收,可提交2017年的营收情况。可添加附件提交。
各项目组负责人要按时在网上提交“项目成果”、“结题报告”与“项目列支”(截止时间3月26日),同时将项目成果及其证明材料与结题报告的纸质版一起整理装订成册,提交招生就业处(截止时间3月28日)。学生提交的材料应有指导教师签署的审阅意见。
注:在填报过程中如有问题,可电话咨询就业处严老师51682914。
第四篇:大学生创新创业训练结题报告
篇一:大学生创新创业训练计划项目结题验收报告
大学生创新创业训练计划项目 结题验收报告
项目类别 国家级()校 级()项目类别 创新项目()创业项目()项目编号 cx12042 教务处 2013年1 3 45 篇二:大学生创新创业训练项目结题报告书
大学生创新创业训练项目结题报告书 项目名称:__________ 项目编号: 项目负责人:_________ 专业年级:__________ 所在学院:__________ 起止年月:电 话:__________ e-mail: 填表时期: ********大学
四、经费使用情况
五、学院评审意见
六、学校创新创业训练计划领导小组审核意见
注:表格空间不够可扩展。
供参考的成果形式(以附件形式附后,与结题报告书一起装订成册提交)大学生创新创业训练计划成果形式之一:论文 学术论文排版要求 题名(二号黑体,居中,不超20字)
学校名称 第一作者,第二作者(四号楷体-gb2312,居中)(1.第一作者单位 至院系部处,省 市 邮编; 2.第二作者单位 至院系部处,省 市 邮编)(?此处插入作者简介脚注,符号定义为空白)(5号宋体居中)
指导教师姓名及职称(四号楷体-gb2312,居中)摘 要(小五号宋体):字数一般在300字左右。摘要必须反映全文中心内容,一般包括研究目的、方法、主要观点及结论。写作时,应简写目的,写明采用的具体方法,详细写所得到的结果和结论,要突出反映文章的创新性。要求语言简明、扼要、准确、客观、逻辑性强。总之,摘要应写得内容充实,不要过分抽象或空洞无物,避免使用“对??具有??意义,价值”等评价性用语,避免使用“本文”、“笔者”等第一人称写法。定稿时要注意纠正语病,删减啰唆重复的语句和句子。(小五号宋体)关键词:词1;词1;词1(3-5个反应所研究的领域和关键特征的词,小五号宋体)下接正文(引言、导论性)或一级标题(引言、导论性)。论文word文档页面设置为a4纸型,页边距各2,文档网格设置为46字×43行,行距16磅,正文用五号宋体,其中阿拉伯数字、英文用times new roman体。论文要求主题明确、数据可靠、逻辑严密、文字精炼,遵守我国著作权法,注意保守国家机密。题名应恰当简明地反映文章的特定内容,要便于编制题录、索引和选定关键词,不宜使用非公知的缩略词、代号等。标题一(四号黑体,居中,上下各空一行)
下接正文或二级标题。参考其他文献,包括引用原文或参考、综述、评论他人观点,要在文中加引? 作者简介(小五号宋体,加黑):姓名(出生年-)、性别,籍贯,职称,最后学位或在读学历,研究方向。
注标记,采用顺序编码制,符号按出现的先后顺序为[1][2]??,用上角标,与文后所列参考文献序号一致。参考文献只列出已经公开出版且在文中加注的文献,著录格式另附。文中图、表应有自明性,且随文出现,须注明图名、表名,按顺序标明序号如表
1、表2??、图
1、图2??,图名、表名及内容、参考文献均为小五号字。请在稿件首页地脚处给出作者简介信息。1.标题序号(空两格,加黑)下接正文。我刊论文标题层次采取如下方式:一级标题“一”,二级标题“1.”,三级标题“(1)”,请按此层次顺序设置标题。(1)作者简介示例 作者简介:周吴郑(1970-),男,辽宁大连人,教授,博士生导师,主要从事化学工程与工艺等研究。
(2)参考文献著录原则和方法
[1]作者姓名,作者姓名.参考文献题目[j].期刊或杂志等名称,年份,卷(期数):文章起-止页码.[2]刘凡丰.美国研究型大学本科教育改革透视[j].高等教育研究,2003,5(1):18-19.没有卷的就直接写2003,(1)(本条为期刊杂志著录格式)
[3]谭丙煜.怎样撰写科学论文[m].沈阳:辽宁人民出版社,1982.5-6.(本条为中文图书著录格式)[4]作者姓名.参考文献题目[d].南京:南京农业大学,2002.(本条为硕士、博士论文著录格式)[5]作者姓名.参考文献题目[n].人民日报,2005-06-12(第几版).(本条为报纸著录格式)[6]作者姓名.电子文献题名[eb/ol].电子文献的出处或可获地址,发表或更新日期.[7]作者姓名.参考文献题目[a].主编.论文集名[c].出版地:出版单位,出版年.起-止页码.(本条为论文集著录格式)
[8]外国作者姓名(作者姓名:姓在前,名在后,姓全拼大写,名缩写,姓与名之间隔半格,作者之间用逗号隔开。).参考文献题目[m].译者(名字)译.出版地:出版单位,出版年.起-止页码.(本条为原著翻译中文的著录格式,多个译者可写为:***,***,***,等译.)大学生创新创业训练计划成果形式之二:展板 展板要求(篇幅1面a4纸)展板包含信息如下:(1)项目名称;
(2)项目成员:姓名、年级、专业;(3)指导教师:姓名、职称、研究方向;(4)立项:2009—2012年(5)项目简介:200字左右;(6)项目图片(含图表):2—3张,图片要有图注,表格要有表名;(7)创新点:100字左右。
大学生创新创业训练计划成果形式之三:创业计划书 创业计划书要求
创业计划训练的成果以提交创业计划书的形式体现。创业计划书内容要求:内容上要体现产品与技术、市场与竞争分析、市场营销策略、公司战略、财务预测与分析、风险管理等大学生创新创业训练计划成果形式之四:其它形式(专利证明、各类学科竞赛奖状等)篇三:2013年大学生创新创业训练项目结题验收报告书 毛浩
大学生创新创业训练计划 结题验收报告书
项目编号: 201310059023 项目名称:基于ccd与rfid电子标签的飞机防护系统研发 项目负责人: 毛浩 项目组成员: 毛浩 金昱 郑穆然 袁万彪 陈强 所在学院: 机场学院指导教师:解本銘 王伟 填表日期:2014年4月3号
大学生创新创业实践中心二〇一四年四月填 表 说 明
一、结题验收报告书应按照本表格要求,逐项认真填写,内容必须实 事求是,表达明确严谨,空缺处要填“无”。
二、“项目编号”填写国家级项目编号。如:201210059001。
三、“项目组成员”按照实际参与项目实施的人员填写。
四、“指导教师意见”要对项目成果和学生实施情况进行总结。
五、“专家组意见“要对成果内容和成果水平进行评价。
六、材料规格:用a4纸双面打印(复印),左侧装订。
七、材料报送:申报材料需纸质材料和电子文档一并提交。
第五篇:大学生创新创业训练计划项目
大学生创新创业训练计划项目
一、计划目标
通过实施广东省大学生创新创业训练计划(以下简称训练计划)项目建设,促进高等学校转变教育思想观念,改革人才培养模式,强化创新创业能力训练,增强高校学生的创新能力和在创新基础上的创业能力,培养适应创新型国家建设需要的高水平创新人才。
二、计划内容
训练计划内容参照国家级大学生创新创业训练计划建设内容,包括创新训练项目、创业训练项目和创业实践项目三类。
创新训练项目是本科生个人或团队,在导师指导下,自主完成创新性研究项目设计、研究条件准备和项目实施、研究报告撰写、成果(学术)交流等工作。
创业训练项目是本科生团队,在导师指导下,团队中每个学生在项目实施过程中扮演一个或多个具体的角色,通过编制商业计划书、开展可行性研究、模拟企业运行、参加企业实践、撰写创业报告等工作。
创业实践项目是学生团队,在学校导师和企业导师共同指导下,采用前期创新训练项目(或创新性实验)的成果,提出一项具有市场前景的创新性产品或者服务,以此为基础
开展创业实践活动。
三、参与高校
训练计划面向全省本科高校(含独立学院)。参与国家级大学生创新创业训练计划的高校,将予以优先支持。
四、计划组织实施
(一)制定工作方案和管理办法。各校制定本校训练计划工作方案和训练计划学生项目的管理办法。规范项目申请、项目实施、项目变更、项目结题等事项的管理,建立质量监控机制,对项目申报、实施过程中弄虚作假、工作无明显进展的学生要及时终止其项目运行。
(二)评审立项。各高校在省级建设项目申报限额内,在公平、公开、公正的原则下,自行组织学生项目评审,报我厅备案并对外公布。项目结束后,由学校组织项目验收,并将验收结果报我厅。验收结果中,必需材料为各项目的总结报告,补充材料为论文、设计、专利以及相关支撑材料。我厅将在有关网站公布项目的总结报告。
各校通过自筹经费,可以保障项目有足够经费支持、可以顺利实施的前提下,可超额申报建设项目,我厅将予以认可。
各校校内项目申报表、项目任务书、验收表等相关工作表格由各校自定。
(三)项目负责人。训练计划项目面向本科生申报,原则上要求项目负责人在毕业前完成项目。创业实践项目负责人毕业后可根据情况更换负责人,或是在能继续履行项目负责人职责的情况下,以大学生自主创业者的身份继续担任项目负责人。创业实践项目结束时,要按照有关法律法规和政策妥善处理各项事务。
(四)三类项目比例。各高校根据本校实际情况,适当安排创新训练项目、创业训练项目、创业实践项目的比例,并逐步覆盖本校的各个学科门类。
五、有关要求
(一)高度重视训练计划对推动人才培养模式改革的重要意义。参与高校要成立由主管教学的校领导牵头负责,由教务、科研、设备、财务、产业、学工、团委等职能部门参与的校级组织协调机构,制定切实可行的管理办法和配套政策,将训练计划的日常管理工作纳入本科生教学管理体系。
(二)训练计划要进入人才培养方案和教学计划。参与计划高校教学管理部门要从课程建设、学生选课、考试、成果认定、学分认定、灵活学籍管理等方面给予政策支持。要把创新创业训练项目作为选修课程开设,同时要组织建设与创新训练有关的创新思维与创新方法等选修课程,以及与创业训练有关的项目管理、企业管理、风险投资等选修课程。
(三)要重视训练计划导师队伍建设。对参与训练计
划的学生实行导师制。参与计划高校要制定相关的激励措施,鼓励校内教师担任训练计划的导师,积极聘请企业导师指导学生创业训练和实践。
(四)重视训练计划实施的条件建设。参与计划高校的示范性实验教学中心、各类开放实验室和各级重点实验室要向参与项目的学生免费提供实验场地和实验仪器设备。参与计划高校的大学科技园要积极承担大学生创新创业训练任务,为参与计划的学生提供技术、场地、政策、管理等支持和创业孵化服务。
(五)参与计划高校要营造创新创业文化氛围。搭建项目学生交流平台,定期开展交流活动。鼓励表现优秀的学生,支持项目学生参加校内外学术会议,为学生创新创业提供交流经验、展示成果、共享资源的机会。学校还要定期组织项目指导教师之间的交流。
(六)参与计划的学生,如发现本校实施该计划时有违反我部要求的情况,可以向我厅投诉。投诉的问题要确切,并且署真实姓名。我厅将在调查核实之后予以处理。
六、项目周期
一年半
七、申报材料
(一)工作方案;
(二)训练计划项目管理办法;
(三)2012训练计划项目信息表(报送截止日期为2012年7月16日)。
以上材料各一式2份。
附表:2012训练计划项目信息表