PSA变压吸附技术制氢影响因素及优化措施

时间:2019-05-13 23:47:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《PSA变压吸附技术制氢影响因素及优化措施》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《PSA变压吸附技术制氢影响因素及优化措施》。

第一篇:PSA变压吸附技术制氢影响因素及优化措施

摘 要:本文介绍了变压吸附工作原理,并分析了影响变压吸附的主要因素,认为吸附时间与吸附压力是影响变压吸附最主要的因素; 同时,在变压吸附操作中应尽量提高吸附压力、降低解吸压力、延长吸附时间、降低产品纯度,以提高氢气回收率进而提高装置的经济效益。

关键词:psa变压吸附 制氢 优化

变压吸附氢提纯工艺过程之所以得以实现是由于吸附剂在物理吸附中的具有的两个性质: 一是对不同组分的吸附能力不同,二是吸附物质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的这些特性,可实现吸附剂在低温、高压下吸附而在高温、低压下解析再生,从而构成吸附剂的吸附与再生循环,达到连续分离提纯氢气的目的。

由于变压吸附(psa)气体分离技术是依靠压力的变化来实现吸附与再生的,因而再生速度快、能耗低,属节能型气体分离技术。并且,该工艺过程简单、操作稳定、对于含多种杂质的混合气可将杂质一次脱除得到高纯度产品。因而近二十年来发展非常迅速,已广泛应用于含氢气体中氢气的提纯,混合气体中一氧化碳、二氧化碳、氧气、氮气、氢气和烃类的制取、各种气体的无热干燥等。而其中变压吸附制取纯氢技术的发展尤其令人瞩目。

一、变压吸附的操作原理

变压吸附分离技术是以固定床吸附,在连续改变体系平衡的热力学参数下,加压气体组份吸附,减压被吸附组份解吸,放出该气体组份,吸附剂得到再生。如果在吸附和解吸过程中床层的温度维持恒定,利用吸附组份的分压变化吸附剂的吸附容量相应改变,如图 1,过程沿吸附等温线t1进行,则在ab 线两端吸附量之差 △q= qa-qb 为每经加压(吸附)和 减压(解吸)循环组份的分离量。如此利用压力变化进行的分离操作就是变压吸附。如果要使吸附和解吸过程吸附剂的吸附容量的差值增加,可以同时采用减压和加热方法进行解吸再生,在实际的变压吸附分离操作中,组份的吸附热都较大,吸附过程是放热反应,随着组份的解吸,变压吸附的工作点从 e 移向 f 点,吸附时从f点返回 e 点,沿着ef 线进行,每经加压吸附和减压解吸循环的组份分离量 q= qe-qf为实际变压吸附的差值。由此分析,要使吸附和解吸过程吸附剂的吸附量差值加大,对所选用的吸附剂除对各组份的选择性要大以外,其吸附等温线的斜率变化也要显著,即等温线的曲率要大,并尽可能使其压力的变化加大,以增加其吸附量的变化值。

二、影响变压吸附的主要因素

1.原料其组成对装置吸附能力的影响

由于不同的制氢装置所采用的转化工艺、制氢原料等诸多方面存在差异,所以 psa 原料中温变换气中烃类及 co、co2的含量差别也较大,原料气组成与吸附塔的处理的关系很大。psa 的氢气吸附能力通常是以产氢量或原料量来衡量的,当原料气中氢气含量越高时,由于所需要吸附的杂质含量低,在吸附剂能力一定的情况下,吸附塔的处理能力越大; 反之,原料气杂质含量越高,特别是净化要求高的有害杂质含量越高时,吸附塔的处理能力越小。

2.原料气温度对装置吸附能力的影响

在其他条件相同的情况下,原料气温度越高,吸附平衡曲线越靠下,吸附剂的吸附容量越小,吸附、解吸、再生的循环时间越短,吸附塔的处理能力越低。

3.操作压力对装置吸附能力的影响

psa 单元的吸附压力一般为系统压力变化过程中的最高压力,在近年来的制氢装置设计中,最高吸附压力与中温变换反应器出口压力接近。一般来讲,制氢转化的压力在 2.1mpa-3.1 mpa 之间,整个转化中反应的系统压力差越小,原料气的压力越高,吸附剂的吸附量越大,吸附塔的处理能力越高,但由此增加的操作费用和设备投资会随之增加。而解吸压力越低,吸附剂再生越彻底,吸附剂的动态吸附量越大,再次吸附效果好,吸附塔的处理能力越高。

三、psa变压吸附制氢技术优化措施

1.产品纯度的调整

变压吸附工艺具有产品纯度范围宽,且易于调整的特点,由于产品纯度与产品回收率是成反比关系的,即:在原料气条件不变和吸附、解吸压力一定的情祝下,产品纯度越高,氢气回收率越低:产品纯度越低,氢气回收率越高.因而,要保证装置运行于最佳状态,就必须将产品纯度控制在即能满足生产需要,又尽可能低的范围内,修改吸附时间和修改操作系数,延长吸附时间、增大操作系数,则降低产品纯度;缩短吸附时间,减小操作系数,则提高产品纯度。

2.装置参数的调节

2.1调整吸附时间

当装置的处理量改变之后(或原料气组成改变后),将有可能影响产品的纯度,这时可调整操作系数以调整吸附时间,使产品纯度重新运行于最佳范围,或将tmadjust置为on让计算机白动调整。

2.2产品气升压控制

产品气升压的速度的控制是通过产品气升压调节阀kvl621的随动pid调节来实现的,kv1621的设定值由计算机自动计算产生,无需操作工进行修改,需要调节的只是kvl621的最大,最小开度和pdi参数。

2.3逆放压力的调节与控制

本装置逆放压力的调节与控制是通过调节阀pv162a5、pv1625b来实现的,调节的目的是在保证逆放终压达到设定值要求的同时使逆放过程尽量缓慢(减小逆放对解吸气混合罐压力造成的波动),调节方法是随动pid调节,需要调节的只是改变pv1625a、pv1625b的最大!最小开度设定值和时间参数设置(在吸附时间不变的前提下,改变时间参数tl、t2、t3、t4的设定值。

2.4顺放压力的调节与控制

本装置顺放压力的调节与控制是最为重要的,顺放压力降的大小!冲洗过程的均匀连续性对产品氢的纯度和收率影响很大,pv1624调节的目的是在保证一定的顺放压力降的前提下,使冲洗过程尽量缓慢均匀,终压达到设定值要求的同时使逆放过程尽量缓慢(减小逆放对解吸气混合罐压力造成的波动),调节方法是随动pid调节,需要操作调节的也只是改变pv1624的最大,最小开度设定值。

参考文献

[1]万鸿斌.变压吸附装置的气体分离技术[ m ].化工科技动态,1992.[2] 马正飞.气固吸附平衡与吸附动力学研究 [ d].南京:南京化工大学,1997.作者简介:曹海鹏,性别:男,工作单位:陕西煤业化工集团神木天元化工有限公司。

第二篇:制氢操作规程(变压吸附部分)

甲醇重整制氢操作规程—变压吸附

第 1 页

共 8 页

生产部

第二部分 变压吸附部分 主题内容

本操作规程描述了甲醇重整制氢的工艺控制、设备运行的操作规范,以及操作中的注意事项、异常情况的处理;通过实施本操作规程,确保甲醇重整制氢的质量和设备的正常运行,减少事故的发生。2 适用范围

本操作规程适用甲醇重整制氢装置的操作与控制。3 职责

3.1 生产部管理人员负责本工艺操作规程的编制、修改、监督与管理。3.2 制氢岗位操作人员负责执行本操作规程。4 工作程序 4.1 装置概况 4.1.1 概述

本装置采用变压吸附(简称PSA)法从甲醇转化气中提取氢气,在正常操作条件,转化气的处理量可达到800NM3--1200NM3/h。在不同的操作条件下可生产不同纯度的氢气,氢气纯度最高可达99,9995%。4.1.2 吸附剂的工作原理

本装置采用变压吸附(PSA)分离气体的工艺,从含氢混合气中提取氢气。其原 理是利用吸附剂对不同吸附质的选择性吸附,同时吸附剂对吸附质的吸附容量是随压力的变化而有差异的特性,在吸附剂选择吸附条件下,高压吸附除去原料中杂质组份,低压下脱附这些杂质而使吸附剂获得再生。整个操作过程是在环境温度下进行的。4.1.3 吸附剂的再生

吸附剂的再生是通过三个基本步骤来完成的:(1)吸附塔压力降至低压

吸附塔内的气体逆着原料气进入的方向进行降压,称为逆向放压,通过逆向放压,吸附塔内的压力直到接近大气压力。逆向放压时,被吸附的部分杂质从吸附剂中解吸,并被排出吸附塔。(2)抽真空

吸附床压力下降到大气压后,床内仍有少部分杂质,为使这部分杂质尽可能解吸,甲醇重整制氢操作规程—变压吸附

第 2 页

共 8 页

生产部

要求床内压力进一步降低,在此利用真空泵抽吸的方法使杂质解吸,并随抽空气体带出 吸附床。

(3)吸附塔升压至吸附压力,以准备再次分离原料气 4.2 工艺操作

本装置是有5台吸附塔(T201A、B、C、D、E)、二台真空泵(P203A、B)、33台程 控阀和2个手动调节阀通过若干管线连接构成 4.2.1 工艺流程说明

工艺过程是按设定好的运行方式,通过各程控阀有序地开启和关闭来实现的。现以 吸附塔T201A在一次循环内所经历的20个步骤为例,对本装置变压吸附工艺过程进行 说明。(1)吸附

开启程控阀KS205和KS201,原料气由阀KS205进入,并自下而上通过吸附塔T201A,原料气中的杂质组份被吸附,分离出的氢气通过阀KS201输出。当被吸附杂质的吸附前 沿(指产品中允许的最低杂质浓度)移动到吸附塔一定位置时,关闭KS205和KS201,停止原料气进入和产品气输出。此时吸附器中吸附前沿至出口端之间还留有一段未吸附 杂质的吸附剂。

(2)第一次压力均衡降(简称一均降)开启程控阀KS203和KS216,吸附器T201A与刚结束隔离步骤的吸附器T201C进行第一次压力均衡降,均压过程中吸附器T201A的吸附前沿朝出口端方向推进,但仍未到达其出口端。当两台吸附塔压力基本相等时,关闭阀KS216,一均降步骤结束(继续开启阀KS203,便于吸附器V201A下一步二均降进行)。(3)第二次压力均衡降(简称二均降)

开启程控阀KS222,继续开启阀KS203,吸附塔T201A与刚结束隔离步骤的吸附塔 T201D进行第二次压力均衡降,均压过程中吸附塔T201A的吸附前沿继续朝出口端方向 推进,仍未到达其出口端。当两台吸附器压力基本相等时,关闭阀KS222,二均降步骤 结束(继续开启阀KS203,便于吸附塔T201A下一步三均降进行)。(4)第三次压力均衡降(简称三均降)

开启程控阀KS228,继续开启阀KS203,吸附塔T201A与刚结束抽真空步骤的吸附 塔T201E进行第三次压力均衡降,均压过程中吸附塔T201A的吸附前沿刚好到达出口端 时,两台吸附塔压力也基本相等,此时关闭阀KS203和KS228,三均降步骤结束。

甲醇重整制氢操作规程—变压吸附

第 3 页

共 8 页

生产部

(5)逆向放压(简称逆放)

开启阀KS206和KS231、KS233,吸附塔T201A内逆放步骤的解吸气通过阀KS206 和KS231经放空管放空,真空缓冲罐V202利用真空泵通过阀KS233进行抽真空。当吸 附塔T201A内压力降至接近常压时,关闭阀KS231,开启阀KS232,利用真空泵和处于 负压的真空缓冲罐V202对吸附塔T201A进行抽真空,降低吸附塔T201A中的杂质压力,当吸附塔T201A的压力降至规定值时,关闭阀KS233,逆放步骤结束(继续开启阀KS206 和KS232便于吸附塔T201A下一步抽真空步骤进行)。(6)抽真空

继续开启阀KS206和KS232,利用真空泵对吸附塔T201A进行抽真空,进一步降低 吸附塔T201A中的杂质压力,使吸附剂得到充分再生。当吸附塔T201A的压力降至规定 值-0.08MPa以下时,关闭阀KS206和KS232,抽真空步骤结束。(7)第一次压力均衡升(简称一均升)

开启程控阀KS204,继续开启阀KS209,吸附塔T201A与刚结束二均降步骤的吸附 塔T201B进行第一次压力均衡升,均压过程中吸附塔T201A的压力升高。当两台吸附塔 压力基本相等时,关闭阀KS204和KS209,一均升步骤结束。(8)隔离

此时与吸附塔T201A相连的程控阀均处于关闭状态,吸附塔T201A压力保持不变。(9)第二次压力均衡升(简称二均升)

开启程控阀KS204,继续开启阀KS215,吸附塔T201A与刚结束一均降步骤的吸附 塔T201C进行第二次压力均衡升,均压过程中吸附塔T201A的压力升高。当两台吸附塔 压力基本相等时,关闭阀KS215,二均升步骤结束。10:隔离

此时与吸附塔T201A相连的程控阀均处于关闭状态,吸附塔T201A压力保持不变。11:第三次压力均衡升(简称三均升)

开启程控阀KS204和阀KS221,吸附塔T201A与刚结束吸附步骤的吸附塔T201D进 行第三次压力均衡升,均压过程中吸附塔T201A的压力升高。当两台吸附器压力基本相 等时,关闭阀KS204,三均升步骤结束。12:最终升压(简称终充)

开启阀KS202,吸附塔T201A最后用产品气通过手动调节阀限流,使其逐步达到吸

甲醇重整制氢操作规程—变压吸附

第 4 页

共 8 页

生产部

附压力。当吸附塔T201A的压力与吸附压力基本一致时,关闭阀KS202,终充步骤结束。至此,塔T201A的吸附、均压和再生过程全部结束,紧接着进行下一次循环。

过程叙述中的步骤执行时间及过程压力是说明性的,装置在实际运行中可根据原料 气流量、组成和压力的变化随时对时间和压力进行调整。4.2.2 工艺指标

吸附塔压力控制范围:-0.09 ~0.9MPa 真空罐压力控制范围:-0.09 ~-0.06MPa 氢气罐压力控制范围:0.7~0.8 MPa 重整气金属转子流量计:90~900NM/h 氢气金属转子流量计: 80~800NM/h 氢气纯度:≥99.999% 氢气中:CO+CO2≦≤30PPm s≤0.1 PPm 4.2.3 工艺控制 4.2.3.1 原始开车 1:现场清理

安装完工后,对现场要进行一次彻底的清理,清除一切与设备无关的东西,如安装的剩余物品,安装时的设施、杂物等。2:现场检查

按照图纸,对全系统的安装进行逐项检查。

1:检查设备、管道、阀门、仪表、电气是否符合工艺要求。

2:检查安全设施是否就位,性能完好。如安全阀、阻火器、放空管、电气防爆设施、避雷针、消防栓、灭火器。3:施工资料整理

对施工所用图纸、技术资料、修改方案、配套设备的说明书、合格证、产品样本等进行整理、归档。4:设备、管道清洗

在设备制造、运输和管道、阀门的安装过程中,不可避免的会有杂物、油污进入设备管道内部,因而必须进行清洗。5:系统吹扫

3甲醇重整制氢操作规程—变压吸附

第 5 页

共 8 页

生产部

系统吹扫应先制定方案,明确吹扫位置和如何吹扫的方法。

不需吹扫或不能吹扫的有关阀门、仪表、物料、流量计、液位计等要用盲板堵死或拆除。

本装置应该逐步用仪表空气或氮气吹扫,吹扫压力不能大于气密试验的压力,吹扫时管内流速最好能大于20m/s。

吹扫检验可采用贴有白布获白纸的木板对着空气排出口放置5分钟,未发现板上有污点时为合格 6:试压

试压的目的是检查整个装置的气密性是否达到要求。检查的范围包括设备、阀门、仪表、连接法兰、焊缝(所有)。

试压方法:采用压缩空气或氮气加压至最高压力的1.15倍,在测定压力下,保持1 小时压力不下降为合格。试压结束后,应进行泄露率的测试,泄露试验压力为设计压力,时间为24小时,泄露率≤0.5%为合格。试压泄露率测试结束后的卸压点为各设备的排 污口。7:单机试车

目的是检查各主要设备性能及组装质量。此项工作按设计要求,使用说明书进行,包括以下主要内容:

 真空泵的运转情况,检测是否能达到标定压力。

 各调节系统的安装质量、控制、调节检测能力及调节特性是否完好。

 所有仪表的安装及指示控制性能,必要时进行刻度检验,包括:温度、压力、流量。 检查所有阀门的开关性能,检查完毕全部处于关闭状态。 测定各储料罐液面计刻度对应的体积。 各安全阀调节。8:初次开车前的准备工作

在装置安装完毕,吸附塔装填了吸附剂,完成了整个装置的吹扫和气密性试验后,应对自控系统进行严格的检查及调试,以保证整个装置可随时投入工作。但在投入原料气前还必须用干燥、无油的氮气对整个装置的设备和管道进行置换,使含氧量降到0.5%(体积)以下,因为本装置的原料和产品以及解吸气均含有大量氢,如果不预先将装置内的氧置换掉,那么在开车初期容易形成爆炸混合物而引起爆炸燃烧。以上工

甲醇重整制氢操作规程—变压吸附

第 6 页

共 8 页

生产部

作完毕后应将全部阀门处于关闭状态。9:正常开车

(1)打通整个流程,变压吸附所有程控阀处于关闭状态。关闭氢气进氢气储罐手动阀,打开氢气放空手动阀,将氢气罐的压控调节阀设于0.8MPa。

(2)制氢重整造气部分已投料并处于稳定产气状态,重整缓冲罐手动放空,维持前系统压力0.8~0.85 MPa。

(3)启动真空泵,手动打开程控阀KS233,将真空罐压力降至-0.08~0.09 MPa。关闭KS233。

(4)检查各吸附塔压力是否与吸附步骤第一步压力相同,否则手动调节各吸附塔压力与第一步相同。或将5个吸附塔压力均压至0.2MPa左右。

(5)将变压吸附程控阀处于自动状态,开启变压吸附,关闭重整气放空手动阀,将重整器缓冲罐压控调节阀PV201设置为自动状态,压力控制值设置为0.85MPa.(6)将新氢氢分仪投用。

(7)变压吸附投入运行一个大循环后通知化验室取新氢样,氢气中CO+CO2≦≤30PPm 后将氢气改进氢气储罐,关闭氢气放空手动阀。

(8)系统刚开车后新氢应每一小时取样复检,稳定运行后可每班取样一次检测。(9)氢气罐压力升至0.7MPa时,开新氢压缩机给加氢系统升压。4.2.3.2 正常停车

停车前确保氢气罐压力大于0.75MPa,以便前系统及加氢系统压力较低时给系统补压。1:吸附步骤在第一步时停止变压吸附系统,重整气手动放空。2:将重整气缓冲罐压控调节阀PV201设置为手动状态并关闭。3:停真空泵

4:关闭新氢去氢分仪手动阀门,将新氢氢分仪切出。

5:关闭氢气进氢气储罐手动阀门,关闭氢气罐压控调节阀前后手动阀门。6:关闭变压吸附抽真空及放空手动阀。7:检查各吸附塔压力。4.2.3.3 岗位巡检

4.2.3.3.1 定时巡检各压力、液位、温度、流量是否正常,尤其各吸附塔的压力的上限及下限是否为正常值,各吸附塔产氢气量是否正常。

甲醇重整制氢操作规程—变压吸附

第 7 页

共 8 页

生产部

4.2.3.3.2 定时巡检新氢压缩机的油压、油温、循环水压力、进气及排气压力、排气温度是否正常,压缩机运转是否有杂音。

4.2.3.3.3 定时巡检各机泵的出口压力是否正常,运转时是否有杂音。4.2.3.3.4 定时巡检氢气分析仪的纯度是否正常。

4.2.3.3.5 定期检查泵的地脚螺栓坚固情况。4.2.4 正常运行调节

为了获得良好的运行性能,在运行其间要检查和调整下列项目: ● 吸附步骤

为了使装置达到设计要求,吸附塔在设计压力下运行是很重要的,吸附压力的稳定 主要取决于吸附压力自动调节系统的调节,即重整器缓冲罐压控调节阀PV201的压力设 定值,一般设定压力为0.85MPa,使处于吸附状态的吸附塔压力稳定在给定值上。要改变 吸附压力只需改变给定值即可达到目的。原料气流量波动过大也会影响吸附压力的稳定。● 均压步骤

由于存在阻力的原因,两个塔之间均压后的压力不完全一样,要求均压后的压差在 0.05MPa以内,设定的均压时间只要满足实际均压达到平衡所需的时间即可。● 逆放步骤

逆放终压力越接近常压,对减少真空泵的负荷就越有利,如要将吸附塔内压力完全 放至常压需要很长的时间。逆放时间太长,影响正常工况,因此逆放终压力只要能达到 比常压高0.02MPa左右即可。● 最终升压步骤

最终升压终的压力应该在切换时正好基本上达到吸附压力。如果终充量过小,终充 终时塔压力未达到吸附压力,在该塔转为吸附步骤初期将有一短时间需要升压而使原料 气流量猛增,并引起吸附压力波动。如果终充流量过大,那么在吸附步骤初期又将有大 量的产品被用于终充而致使短时间内无产品输出。● 抽空步骤

抽真空步骤压力要求达到-0.08MPa,如果抽真空步骤压力与要求相比相差太大,则 可考虑装置是否有较大的泄漏点,或真空泵需要检修。● 产品质量

一个吸附塔具有固定的负载杂质能力,因此在一个吸附、再生循环里只能处理一 定数量的原料气,如果循环时间过长,由于导入的原料气过多会造成氢气质量的降低; 而吸附时间过短,会造成吸附剂的利用率降低和氢的回收率降低。循环时间的调整必 须谨慎地进行,因为氢气浓度的变化要滞后一段时间才能反应出来。

甲醇重整制氢操作规程—变压吸附

第 8 页

共 8 页

生产部

4.3 设备维护与保养

4.3.1 经常检查紧固件的紧固情况,定期检查轴承的润滑及真空泵皮带磨损情况。4.3.2 生产中尽量避免设备的频繁启动。

4.3.3 开停真空泵及压缩机时应严格按照操作规程操作,以免损坏设备,冬天停机时应将设备内循环水放净。

4.3.4 设备运转时观察运转状况,如有异常及时处理,4.3.5 打扫设备卫生,保持设备本色。4.4 安全防护注意事项:

4.4.1 工作中,一定要穿工作服、工作鞋,佩戴工作帽,女工要把头发置入工作帽内。4.4.2 远离蒸汽管道,在开启蒸汽阀门时,应侧身操作,避免蒸汽泄出烫伤。4.4.3 严禁用身体任何部位接触各运转设备,防止发生人身安全事故。4.5 应急异常情况处理:

事故紧急停车包括以下几个原因造成的。

1、停电:

(1)停电后,暂停变压吸附顺控。

(2)注意系统压力,现场专人在重整气缓冲罐放空阀处根据系统压力放空,维持系统压力0.8~0.85MPa。放空人员未到位之前可从重整气缓冲罐处调节阀紧急放空。

(3)将重整气缓冲罐压控调节阀PV201设置为手动状态并关闭。(4)停真空泵。

(5)关闭新氢去氢分仪手动阀门,将新氢氢分仪切出。

(6)关闭氢气进氢气储罐手动阀门,关闭氢气罐压控调节阀前后手动阀门。(7)关闭变压吸附抽真空及放空手动阀。(8)检查各吸附塔压力。

若短时间停电后来电,变压吸附开车时吸附顺控继续运行即可,若长时间停电,将各塔压力均压至正压,防止负压塔由于密封不严造成进氧。

2、循环水故障:按照停电处理。

第三篇:PSA 变压吸附制氮和故障处理探讨

PSA 变压吸附制氮和故障处理探讨

一、概述氮气是一种中性惰性气体,非活化状态下,氮气可作为保护气体用于防爆(惰化)或防止工作介质被氧化等场所,被广泛用于石油化工、天然气开采及加工、金属热处理、干燥和防腐保护等领域中。变压吸附制氮是近来发展起来的高效节能的新型气体分离技术。它利用空气作原料,在有电能的条件下制取氮气。国外 PSA 工业制氮应用是在 20 世纪 80 年代初期,经过近30 多年研究开发,变压吸附装置在降低能耗、降低投资、工艺流程简化、提高可靠性方面,都有了很大的进步,得以广泛应用。

二、基本流程和配置根据氮气用量和使用要求,各装置的流程略有差异,但是基本流程和配置为:空气压缩机→储罐→管道过滤器→冷冻干燥机(或其他再生干燥塔)→(超)精过滤器→高效除油器→缓冲储罐→吸附塔 A/B(两塔流程)→粉尘过滤器→氮气缓冲储罐→氮分析仪→用户。空气经压缩机压缩至 0.8MPa,经空气储罐冷却至常温,再经管道过滤器油液分离进入冷冻式干燥机,流经精过滤器、超精过滤器和高效除油器除去油及液态水到达缓冲储罐,再进入碳分子筛吸附塔组成的变压吸附分离系统,压缩空气从容器底部进入后,空气中氧气、二氧化碳和水分被吸附剂选择吸附,其余组份(主要为氮气)则从出口端流出,经粉尘过滤器进入氮气缓冲罐,经氮气缓冲罐后作为产品氮气输出。之后,吸附塔经均压、减压至常压等过程,脱除所吸附的杂质组份,完成碳分子筛的再生。两吸附塔循环交替操作,连续送入空气,连续产出氮气。氮气经计量及氮气分析仪分析纯度达标后进入氮气输送总管供使用。上述

过程,由 PLC 控制系统自动控制。氮气纯度可高达 99.99%,氮气压力基本设计在 0.6MPa 左右。

三、变压吸附制氮与再生技术基本原理吸附剂是 PSA 制氮设备的核心部分,变压吸附常使用碳分子筛(CMS),是一种非极性速度分离型吸附材料。常以煤为主要原料,纸张或焦油为粘结剂经过特殊加工而成活性碳,粒径平均为 1.5nm,是一种半永久的吸附剂。分子筛在生产过程中添加磁性氧化铁,可大幅提高其吸附性能。CMS 充满微孔和空腔,能把比孔道直径小的分子吸附到孔穴的内部中来,而把比孔道大的分子排斥在外,因而能把形状直径大小不同的分子、极性程度不同的分子、沸点不同的分子、饱和程度不同的分子分离开来,即具有“筛分”分子的作用,故称为分子筛。当气体与多孔的分子筛接触时,因分子筛表面分子与内部分子不同,具有剩余的表面自由力场或表面引力场,使气相中的可被吸附的氧分子碰撞到分子筛表面后,即被吸附。随着吸附的进行,吸附于表面的氧分子逐渐增加,吸附表面逐渐被氧分子覆盖,分子筛再吸附的能力下降,最终失去吸附能力,即达到吸附平衡;利用分子筛吸附剂对不同气体组分在吸附量、吸附速度(分子直径小的氧分子比分子直径稍大的氮分子在运动中的扩散速度要快十倍)、吸附力等方面的差异,以及吸附剂的吸附容量随压力的变化而变化,因此可在加压条件下完成混合气体的吸附分离过程,减低压力解吸所吸附的杂质组份,从而实现气体分离以及吸附剂的循环使用。变压吸附制氮技术,一般采用 PSA 碳分子筛为吸附剂(岩谷生产的 1.5GN-H 型分子筛),碳分子筛对氧氮的吸附速度相差很大(如图 1 所示),在短时间内(最佳吸附时间为 68 秒)加压情况下,氧的吸附速度大大超过氮的吸附速度,氧分子被碳分子筛大量吸附,而氮分子吸附很少,利用该特性来完成氧氮分离。碳分子筛对氧的吸附容量随压力的降低而减少,减低压力,被吸附的氧分子则从碳分子筛中逸出,通过塔的下部进入消音器后排出大气,即可解吸,完成碳分子筛的再生。另外,碳分子筛对二氧化碳和水分也有吸附能力,且较易减压解吸。通常 PSA 制氮机采用双吸附并联交替进行吸附产氮,解吸再生,实现氧、氮分离,连续供气。为取得好的操作性能和长的寿命,分子筛使用一定时间后必须再生。正确再生后的分子筛同新鲜的一样,其吸附性能和机械性能的衰减和老化非常低。分子筛再生方法有变温和变压两种,常用改变相对压力:保持吸附剂温度不变,通过降低压力和惰性气体反吹,除去吸附质。再生同吸附逆向的,这可使被吸附床入口处的大部分吸附质不必通过整个床层,部分分子筛也可不与湿热气体接触,从而提高分子筛使用寿命。再生气应尽可能干燥,否则会影响吸附效率。

四、常见故障与处理 PSA 变压吸附制氮装置除了设计选型不合理、机组本身或仪表故障、误操作之外,常见的故障现象和处理方法如下:

(一)各级过滤器分子筛吸湿能力极强,忌油和液态水,怕磨损,在进入吸附塔之前需要除去压缩空气中的油污和水分,在不同的位置采用各级过滤器,管道过滤器滤除大余 5 m 的颗粒及大部分水分,而细过滤器选用一次性可换芯的精过滤器,过滤精度达 0.1 m。粉尘过滤器主要过虑粉化的分子筛或微量的活性炭。主要故障是气当中有液相、粉末夹带。日常要检查前面机组油气分离效果、气体温度、油污液面高度、压差指示仪;过滤器在使用一定阶段后,需要吹扫或更换过滤器、过滤器底部的自动排污阀。

(二)冷冻干燥机冷冻式干燥机(型号为 J2K-125G)该产品主要部件如冷媒压缩机等为进口元件,性能可靠,运转平稳,噪音低,耗能少、安装不需基础,采用微电脑程序控制仪,对冷冻式干燥机的进气温度、露点温度、蒸发温度、冷凝温度、冷却水进口温度等进行数据采集、分析和处理,可远程测量和控制,确保进入变压吸附分离系统的空气含水量降至一定的水平。主要故障是制冷剂缺少、AD402-04 型自动排污阀失效、过滤网堵塞等,运行过程中加强监测和灰尘清除工作。

(三)高效除油器高效除油器,内部填充 15#活性炭,属气相吸附。活性炭是一种多孔性的含炭物质,有高度发达的孔隙构造,是优良的吸附剂,是藉由物理性吸附力与化学性吸附力而成。活性炭的比表面积(BET)越大,吸附力也越大。使用初期的吸附效果很高。时间一长,活性炭的吸附能力会不同程度地减弱,吸附效果也随之下降。如水族箱中水质混浊,有机物含量高,活性炭很快就会丧失过滤功能。所以,活性炭应定期清洗或更换。活性炭一般使用 3~5 年时间。

(四)缓冲过滤器系统中设置的缓冲过滤器起平衡气压及除去管道中粉尘的作用。常见故障为泄漏,用紧固或更换垫片的方法消除。

(五)PSA 吸附分离系统 PSA 吸附分离系统主要由二台填装了 1.5GN-H 型分子筛的吸附塔(底部有氧化铝分子筛吸收水分)及一台氮气缓冲罐组成,还包括了一组气动截止阀,该阀为管道式平衡气动截止阀,具有启闭速度快,切换寿命长等特点,其开启时间仅需 0.015 秒,切换寿命为 100 万次,特别适合于变压吸附工艺的频繁启闭使用。分子筛的使用寿命和其本生的质量、装填质量还有使用过程中的空气预处理效率有关,一般情况下可用 5~8 年。PSA 吸附分离系统的控制由 PLC 完成,该 PLC 已完成程序录入,能执行制氮装置的各种运行参数控制。控制系统由可编程控制器,压力变送器,温度传感器,阀位开关及二次仪表组成,主要负责现场各设备的机械动作及连锁控制,可正确处理各种突发故障报警,同时设计上考虑了各级功能分隔,可全自动运行也可以人工操作运行。吸附塔组故障现象常有:

1.吸附器组的有关压力指示不正常;维修保养或更换仪表。2.动作阀切换缓慢或关闭不严、不动作;电磁阀存在故障或粉末引起动作阀故障;更换阀门配件。

3.吸附器床层发生流化现象,造成分子筛摩擦冲击严重产生粉末;进水、油分严重引起分子筛硬度减低加剧粉化或分子筛失效;寻找出油、水根源,加以排除,同时分子筛多次再生,仍然不合格就需要更换合格的分子筛。压缩空气含油量是分子筛失效的首要因素。4.程序控制的仪表系统,有时出现程序功能紊乱,主要体现在电磁阀开关顺序或时间发生变化,需要定期校验。5.氮气的分析与计量。氮气缓冲罐后在进入氮气总管前设置有一取样口,样气经 KY-2N 氮气分析仪在线分析达到使用指标后,进入氮气总管。氮气的计量由涡街流量计完成,氮气流量可实时显示,并可实现累积流量显示与控制。产品气分析指示系统故障现象:(1)分析系统指示纯度偏低,重新调试/校验;(2)流量未达到设计指标,工艺调整。

五、使用中应注意的问题装置调试交付后,用户应会使用操作、会维护并了解装置的原理流程。在掌握各配套机组的使用性能后,为了维护使用好吸附器这个核心装置,特别强调分子筛忌水、忌油、怕磨损,因此在装置运行当中要特别注意空气的质量(含水、油量),在日常操作中经常检查空压机是否上油、滤油系统是否正常、冷干机制冷除水是否正常。还要经常检查产品气排出过滤器和解析气放空口,是否有堆积或夹带过多的分子筛粉末;定期检查吸附器内分子筛的磨损量,并确定是否须增添等等,如有以上现象,应及时解决。如能正常操作和维护,使用寿命将会大大延长。

第四篇:变压吸附(PSA)氢气提纯技术 Microsoft Word 文档

工艺原理:

变压吸附(PSA)技术是:利用不同吸附剂对不同物质的吸附能力,吸附速度和吸附容量的不同,以及吸附剂对混合气体中各种组分的吸附容量随压力而变化的物理特性。采用自动控制阀门开关,自动实现升压吸附、降压解析的气体分离过程。

应用领域:

PSA提纯氢:

我公司成功地从合成氨厂的变换气、弛放气、精练气,炼油厂的催化裂化气、石油裂解气,钢铁厂的焦炉煤气、水煤气,三氯氢硅合成尾气、多晶硅还原尾气和多种富氢混合(H2 大于25%,P大于0.6MPa)尾气中提纯出纯氢和高纯氢。

现已广泛用于:电子、冶金、热处理、通讯等行业作为保护气。用于油脂、香料、糖醇、(山梨醇、木醇糠醇)双氧水、炼油、染料等加氢。用于石化、医药农药中间体、有机合成、等行业。

PSA:空气分离,提取O2、N2

PSA:氨碳分离,提取NH3、CO2、CO等

第五篇:PSA变压吸附制氮装置操作规范及注意事项

PSA变压吸附制氮装置操作规范及注意事项

一、安装要求

♦设备与周围环境之间的距离最好保持1米以上,以利于操作及维护保养;

♦安装场地必须通风良好、少灰尘、防雨、防太阳直射、且不能在腐蚀性的气体环境中;

♦如通风不畅且有空压机在装置旁的地方安装,消声器应安装在室外(应有防雨设施);

♦电源应按标定的电压(V)、电流(A)、相数配置,电压应在交流±10%范围内。电器必须有效接地。

二、操作 开机:

♦启动冷冻式干燥机,待冷干机空运转3-5分钟后,缓缓打开进气阀门,等压力平衡后全开此阀;

♦打开制氮机前的截止阀让经过干燥的压缩空气缓缓通入制氮机等压力平衡后全开此阀,同时打开放空装置中放空阀及关闭出气阀;

♦启动制氮机;

♦调节流量计前的调压阀直至压力达到需求值;

♦调节流量计后的阀门使流量计的读数达到实际流量值的一半,当纯度达到要求值时再调整到正常值;

♦氮分析仪纯度达到要求值时,关闭放空阀,打开氮气出气阀,将合格氮气送入用气点。停机:

♦关闭氮气的出气阀,停止供气;

♦按制氮机停止按钮,关闭制氮机;

♦关闭空压机出气阀门;

♦按冷干机停止按钮,关闭冷干机;

♦打开净化系统中各设备的排污阀,必须放尽各设备内的压缩空气;

♦如果长时间停机,切断电源所有设备电源。

三、注意事项

♦设备应可靠接地;

♦维修设备时,需放尽所有管路及容器内的压力,否则会导致严重伤害;

♦连接的密封垫应使用高密度的纸板,以防止氮气的泄露;

♦氮气为无色无味无毒无氧气体,人体直接吸入易造成窒息,排空氮气时要远离人的口鼻。

下载PSA变压吸附技术制氢影响因素及优化措施word格式文档
下载PSA变压吸附技术制氢影响因素及优化措施.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    国内变压吸附制氮技术概述[合集5篇]

    国内变压吸附制氮技术概述 摘自中国气体网 河北大化集团TDI责任有限公司 1 前言 采用变压吸附技术从空气中提取氮气,在中小规模用户已经广泛普及。在2000Nm3/H能力范围内,比......