减速器箱体加工工艺规程和工装设计论文

时间:2019-05-13 23:49:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《减速器箱体加工工艺规程和工装设计论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《减速器箱体加工工艺规程和工装设计论文》。

第一篇:减速器箱体加工工艺规程和工装设计论文

毕业设计说明书

题目:减速器箱体加工工艺规程和工装设计

专 业: 班 级: 学 号: 姓 名:

指导教师:

毕业设计(论文)任务书

一 设计内容和要求

1、按给定图绘出零件工作图 2张

2、选择毛坯,绘制毛坯图,制定毛坯技术条件 1张

3、对零件进行工艺分析,拟定工艺方案

4、合理选择定位基准

5、填写“机械加工工艺卡” 2张

6、编写设计说明书:按设计作业指导书内容认真编写。要求“立论鲜明,论证严密,计算准确,文理通顺” 二 课题来源 老师自主命题

目录

一 毕业设计的目的··········································1 二 零件的分析··············································1

1、零件的作用············································1

2、零件的图样分析········································1

3、工艺分析··············································1 三 工艺规程设计············································2

1、毛坯的确定············································2

2、基面的选择············································2

3、制定工艺路线··········································2

4、机械加工余量工序尺寸的确定····························4

5、确定切削用量··········································5 四 钻模设计················································9 五 设计小结················································9 六 主要参考资料············································10

一 毕业设计的目的

毕业设计是工科院校的最后一个重要教学环节。它对毕业生走上新的工作岗位能否适应技术工作需要有着直接的影响,同时也是对学生的一次综合训练。机械设计制造技术设计是培养机械工程类专业学生应职应岗能力的重要实践性教学环节,它要求学生能全面综合地运用所学的理论和实践知识,进行零件机械加工工艺规程和工艺装备的设计。通过本期设计,应达到以下学习目的

1.掌握编制机械加工工艺规程的方法和机械设计的基本计算;学会查阅有关手册、资料,能够正确应用公式和工艺参数的有关数据。2.学会拟定夹具设计方案并完成规定的工装设计。3.培养分析和解决工艺问题的能力。

4.把所学的机械制造有关课程的知识应用于生产实际。二零件的分析 1.零件的作用

题目所给定的零件为箱体机盖与机座。箱体零件是机器及部件的基础件,它将机器及部件的轴,轴承和齿轮等零件按一定的相互位置关系装配成一个整体,并按预定传动关系协调其运动。2.零件图样分析 1)Ф100 0 2)Ф100 0+0.035 mm和Ф80 0

+0.030

mm轴心线的平行度公差值为0.07mm。

+0.035 mm和Ф80 0

+0.030

mm两孔端面对基面B、A的位置度,公差为0.10mm。

3)分割面(箱盖,箱体的结合面)的平面度公差为0.03mm.4)铸件人工时效处理。5)零件材料HT200-400.6)箱体做煤油渗漏试验。3.工艺分析

1)减速器箱体、箱座主要加工部分是分割面,轴承孔、通过孔和螺孔其中轴承孔要在箱盖、箱体合箱后再进行孔加工,以确保两个轴承孔中心线与分割面的位置,以及两孔中心线的平行度和中心距。

2)减速器整个箱体壁薄,容易变形,在加工前要进行人工时效处理,以消除铸件内应力,加工时要注意夹紧位置和夹紧力的大小,防止零件变形。3)如果磨削加工分割面不到平面度要求时,可采用箱盖与箱体对研的手法。最终安装使用时,一般加密封胶密封。

4)减速器箱盖与箱体不具有互换性,所以以每装配一套必须钻铰定位销,做标记和编号。

5)减速器若批量生产可采用专锺模或专用锺床。以保证加工精度及提高生产效率。

6)两孔平行度的精度主要有设备精度来保证。工件一次装夹,主轴不移动,靠移动工作台来保证两孔中心距。

7)两孔平行度检查,可用两根心轴分别装入两个轴承孔中,测量两根心轴两端的距离差,即可得出平行度误差。

8)两孔轴心线的位置度也通过两根心轴进行测量。

9)箱盖、箱体的平面度检查,可将工件放在平台上,用百分表测量。10)一般孔的位置,靠钻模和划线来保证。三 工艺规程设计

1.箱体零件的材料为HT20-40即是灰口铸铁。由于箱体零件的结构形状比较复杂,内部常为空腔型,某些部位有“隔墙,”箱体壁薄且厚薄不均,而且零件的生产要求为小批量生产,为了提高生产效率,节约生产成本,保证加工质量,则选择采用砂型铸造的方式进行加工。为了消除铸造时形成的内应力,减少变形,保证其加工精度的稳定性。毛坯铸造后要安排人工时效处理。2.基面的选择

箱体基准的选择,直接关系到箱体上各个平面与平面之间,孔与平面之间,孔与孔之间的尺寸精度和位置精度要求是否能够保证。在选择基准时,首先要遵守“基准重合和基准统一“的原则,同时必须考虑生产批量的大小,生产设备,特别是夹具的选用等因素。1)粗基准的选择

粗脊准的作用主要是决定不加工面与加工面的位置关系,以及保证加工面的余量均匀。箱体零件上一般有一个(或几个)主要的大孔,为了保证孔的加工余量均匀,应以该毛坯孔为粗基准。箱体零件上的不加工面主要考虑内腔表面,它和加工面之间的距离尺寸有一定的要求,因为箱体中往往装有齿轮等传动件,它们与不加工的内壁之间的间隙较小,如果加工出的轴承端面与箱体内壁之间的距离尺寸相差太大,就有可能使齿轮安装时与箱体内壁相碰。从这一要求出发,应选内壁为粗基准。但这将使夹具结构十分复杂,甚至不能实现。考虑到铸造时内壁与主要轴承孔都是同一个泥心浇注的,因此实际生产中常以孔为主要粗基准限制四个自由度,而辅之以内腔或其它毛坯孔为次要基准面,以达到完全定位的目的。2)精基准的选择

根据批量生产的减速器箱体通常以顶面和定位销孔为基准,机盖以下平面和两定位销孔为精基准,平面和两定位销孔这种定位方式很简单地限制了工件六个自由度,定位稳定可靠;在一次安装下,可以加工除定位面以外的所有五个面上的孔或平面,也可以作为从粗加工到精加工的大部分工序的定位基准,实现“基准统一;”此外,这种定位方式夹紧方便,工件的夹紧变形小;易于实现自动定位和自动夹紧,但不存在基准重合误差。3.制订工艺路线

整个加工过程分为两个大的阶段,先对盖和底座分别进行加工,而后再对装配好的整体进行加工。第一个阶段主要完成平面,紧固孔和定位孔的加工,为箱体的装合作准备,第二阶段为在装合好的箱体上加工轴承孔 及其端面。在两个阶段之间应安排钳工工序,将盖与底座合成箱体,并用二锥销定位,使其保持一定的位置关系,以保证轴承孔的加工精度和撤装后的重复精度。1)箱体机盖工艺路线方案: 工序Ⅰ 铸造 铸造成形

工序Ⅱ 清砂 清除浇注系统、冒口、型砂、飞边、毛刺等

工序Ⅲ 热处理 人工时效处理

工序Ⅳ 涂底漆 非加工面涂防锈漆

工序Ⅴ 划线 划分割面加工线,划Ф100 0

+0.035

mm、Ф80 0

+0.030

mm两个轴承

孔端面加工线,划顶部斜面加工线(检查孔)

工序Ⅵ 铣 以分割面为装夹基面,按线找正,夹紧工件,铣顶部斜

面,保证尺寸5mm 工序Ⅶ 铣 以已加工的顶部斜面做定位基准,装加工件(专用工装),铣分割面,保证尺寸12毫米(注意周边尺寸均匀)

工序Ⅷ 钻 以分割面及外形定位,钻6xФ13mm和2xФ11mm孔,锪

以6xФ30mm和2xФ24mm孔深2mm,钻攻M10螺纹。

工序Ⅸ 钻 以分割面定位钻攻顶斜面上4xM6螺纹。工序Ⅹ 检验 检查各部尺寸及精度。2)箱体机座工艺路线方案

工序Ⅰ 铸造 铸造成型。

工序Ⅱ 清砂 清除浇口、冒口、型砂、飞边、毛刺等。

工序Ⅲ 热处理 人工时效处理。

工序Ⅳ 涂漆 非加工面涂防锈漆。

工序Ⅴ 划线 划分割面加工线,划两个轴孔端面加工线,底面线照顾

壁厚均匀。

工序Ⅵ 铣 以分割面定位,按线找正,装夹工件。铣底面保证高度

尺寸170mm(工艺尺寸)。

工序Ⅶ 铣 以底面定位,按线找正,装夹工件,铣分割面保证尺寸

12mm.工序Ⅷ 铣 定位夹紧,铣两处宽8mm,深5mm,距内壁8mm油槽。

工序Ⅸ 钻 钻底面6xФ17mm孔,其中两个铰至Ф17.5 0

锪6xФ30mm孔,深2mm。

+0.01

(工艺用),工序Ⅹ 钻 钻6xФ13mm和2xФ11孔,锪6xФ30mm和2xФ24mm孔,深2mm。

工序Ⅺ 钻 钻攻M12测油孔,深16MM,锪Ф20mm,深1mm。

工序Ⅻ钻 以两个Ф17.5 0

+0.01

mm孔及在底面定位,装夹工件,钻M16x1.5底

孔,攻M16x1.5螺纹,锪Ф30mm平。

工序ⅩⅢ 钳 箱体底部用煤油做渗漏试验。

工序ⅩⅣ 检验 检查各部尺寸及精度。3)箱体整体的工艺过程

工序Ⅰ 钳 将箱盖、箱底对准合箱。用6xM12螺栓,螺母紧固。

工序Ⅱ 钻 钻铰2xФ18mm,1:50锥度销孔,装入锥销。

工序Ⅲ 钳 将箱盖、箱体做标记、编号。

工序Ⅳ 划线 已合箱后的分割面为基准,划Ф100 0

两轴承孔加工线。

工序Ⅴ 镗 以底面定位,按线找正,装夹工件,粗镗Ф100 0

Ф80 0

+0.030

+0.035

+0.035

mm,Ф80 0

+0.030

mm

mm,mm两轴承孔,留加工余量1~2mm,保证中心距

150±0.07mm,保证分割面与轴承孔的位置度公差0.1mm。

工序Ⅵ 镗 定位夹紧,同工序Ⅴ按分割面精确对刀。精镗两轴承孔

至图样尺寸,保证中心距150±0.07mm,并倒角两处2x45º。

工序Ⅶ 镗 定位夹紧同工序Ⅴ,镗轴承孔两端面(兼顾尺寸均匀)

保证尺寸196mm。工序Ⅷ 钻 以底面,一端面定位,找正装夹,钻轴承孔两面12XM8

底孔,深20mm,攻12xM8螺纹深15,倒角0.5x45º。

工序Ⅸ 钳 折箱,清理飞边、边刺。工序Ⅹ 钳 合箱装锥销,紧固。工序Ⅺ 检验 检查各部分尺寸及精度。工序Ⅻ 入库。4.机械加工余量、工序尺寸的确定 1)箱盖

①毛坯的外廓尺寸

考虑其加工外廓尺寸为428x196x140mm,表面粗糙度要求为3.2um。根据《机械加工工艺手册》(以下简称《工艺手册》表2.3-5及表2.3-6按公差等级7-9级,取9级,加工余量等级取F级)确定毛坯长:因为零件两端为非加工面,故不留加工余量,其外廓尺寸长428mm 宽:196+2x6=208mm 高: 140+2x6=152mm ②主要平面加工的工序尺寸及加工余量

为了保证加工后工件的尺寸,在铣削工件表面时工序Ⅵ的铣削深度=3mm,工序Ⅶ的铣削深度=3mm。

③加工的工序尺寸及加工余量

⑴钻6xФ13孔

钻孔Ф13mm·2z=13mm·=6.5mm ⑵钻2xФ11mm孔

钻孔:Ф10mm·2z=10mm·=5mm 扩孔:Ф11mm·2z=1mm·=0.5mm ⑶攻钻4xM6孔

钻孔:Ф6mm·2z=6mm·=3mm 攻孔:M6mm 2)箱底

①毛坯的外廓尺寸

考虑其加工尺寸为428x196x170mm,表面粗糙度要求为为3.2um。根据《工艺手册表》表2.3-5及表2.3-6,按公差等级7-9级,取9级,加工余量等级取F级确定毛坯长:428mm 宽:196+2x6=208mm 高:170+2x6=182mm ②主要平面加工的工序尺寸及加工余量

为了保证加工后工件的尺寸,在铣削工件表面时,工序Ⅵ的铣削深度=3mm。

③加工的工序尺寸及加工余量

⑴钻6xФ17孔

钻孔:Ф14mm·2z=14mm·=7mm 扩孔:Ф17mm·2z=3mm·=1.5mm ⑵钻6xФ13孔

钻孔:Ф13mm·2z=13mm·=6.5mm ⑶钻2xФ11孔

钻孔:Ф10mm·2z=10mm·=5mm 扩孔:Ф11mm·2z=1mm·=0.5mm ⑷攻钻M12孔

钻孔:Ф12mm·2z=12mm·=6mm 攻孔:M12mm ⑸攻钻M16孔

钻孔:Ф16mm·2z=16mm·=8mm 攻孔:M16mm 3)箱体

①主要平面加工的工序尺寸及加工余量

为了保证加工后工件的尺寸,在铣削工件表面时,工序Ⅴ的镗削深度=2.6mm,工序Ⅵ的镗削深度=0.4mm,工序Ⅶ的镗削深度=2.6mm留0.8精镗余量,连续完成。

②加工的工序尺寸及加工余量

攻钻:24XM8孔

钻孔:Ф8mm·2z=8mm·=4mm 攻孔:M16mm 5.确定切削用量 1)箱盖

⑴工序Ⅵ铣顶部余面 ①加工条件:

工件材料:灰铸铁

加工要求:粗精铣箱盖,顶部斜面,保证尺寸5mm 机床:卧式铣床X63 刀具:采用高速钢镶齿三面刃铣刀,=225mm 齿数z=20.量具:卡板 ②计算铣削用量

已知被加工长度为100mm,最大加工余量为=6mm,分两次铣削,切削深度=3mm,确定进给量f.根据《工艺手册》表2.4-75确定=0.2mm/min.切削速度:参考有关手册确定v=0.45m/s,即27m/min.=1000x27/3.14x225=38r/min 根据表2.4-86,取=37.5r/min,故实际切削速度为: V=/1000=26.5m/min ⑵工序Ⅶ

①加工条件:

工作材料:灰铸铁

加工要求:粗精铣分割面,保证尺寸12mm 机床:卧式铣床 X63 刀具:采用高速钢镶齿三面刃铣刀dun=225mm,齿数Z=20。

量具:卡尺 ②计算铣削用量

已知毛坯被加工长度为428mm,最大加工余量Emax=6mm。留精铣余量0.8mm。分两次铣削,切削深度ap=2.6mm。

确定进给量f:根据《工艺手册》表2.4-75确定fz=0.2mm/Z 切削速度:参考有关手册确定V=0.45m/s。即27m/min Ns=1000v/πdw=1000×27/(3.14×225)=38r/min 根据表2.4-86取Nw=37.5r/min 故实际切削速度为V=πdwnw/1000=26.5m/min ⑶工序Ⅷ

①钻6×φ13mm孔

工作材料:灰铸铁

加工要求:钻6个直径为13mm的孔

机床:立式机床2535 刀具:采用φ13的麻花钻头走刀一次; f=0.25mm/r(《工艺手册》表2.4-

38、3.1-36)r=0.44m/s=26.4m/min(《工艺手册》表2.4-41)

Ns=1000r/πdw=336r/min 按机床先取Nw=400r/min(《工艺手册》表3.1-36)

所以实际切削速度V=πdwNw/1000=3.14×225×400/1000=31.42m/min ②钻2×φ11mm孔

工作材料:灰铸铁 加工要求:钻2个直径为11mm的孔

机床:立式钻床2535 刀具:采用φ10mm的麻花钻钻头走刀一次,扩孔钻φ11mm一次

Φ10mm的麻花钻:

f=0.2mm/r(《工艺手册》表2.4-38)

v=0.53m/s=31.8m/min(《工艺手册》表2.4-41)Ns=1000v/πdw=405r/min 按机床选取Nw=400r/min(《工艺手册》表3.1-36)

所以实际切削速度v=πdwNw/1000=31.42m/min ⑷工序Ⅸ

攻钻4×M6孔

钻φ6孔:f=0.15mm/r(《工艺手册》表2.4-

38、表3.1-36)v=0.61m/s=36.6m/min(《工艺手册》表2.4-41)Ns=1000v/πdw=466r/min 按机床选取Nw=400r/min(《工艺手册》表3.1-36)

所以实际切削速度V=πdwNw/1000=31.42m/min 攻钻4×M6mm孔

V=0.1m/s=6m/min Ns=238r/min 按机床选取Nw=195r/min 则实际切削速度V=4.9m/min。2)箱底

⑴工序Ⅵ 粗铣底面

由于加工条件与加工箱盖工序Ⅶ相同,所以计算过程也相同,在此不再陈述。

⑵工序Ⅶ 粗精铣分割面 同上

⑶工序9 钻6×φ17孔

工作材料:灰铸铁

工作要求:钻6个直径为17mm孔

机床:立式钻床2535 刀具:采用φ14mm的麻花钻头走刀一次,扩孔钻φ17mm走刀一次。

Φ14mm的麻花钻:

f= 0.3mm/s(《工艺手册》表2.4-38)

V=0.52m/s=31.2m/min(《工艺手册》表2.4-41)Ns=1000v/πdw=397r/min 按机床选取Nw=400r/min|(《工艺手册》表3.1-36)

所以实际切削速度v=πdwNw/1000=31.42m/min ⑷工序Ⅹ

①钻6×φ13孔 ②钻2×φ11孔

由于加工条件与加工箱盖工序Ⅷ(①②)相同,所以计算过程在此不再陈述。

⑸工序Ⅺ 攻钻M12mm、深16mm孔

机床:立式钻床2535 刀具:φ12mm的麻花钻 M12丝锥

钻φ12mm的孔;

f=0.25mm/r(《工艺手册》表2.4-38表3.1-36)v=0.51m/s=30m/min(《工艺手册》表2.4-41)Ns=1000v/πdw=402r/min 按机床选取Nw=400r/min(《工艺手册》表3.1-36)

所以实际切削速度v=πdwNw/1000=31.42m/min 攻钻M12mm孔

V=0.1m/s=6m/min Ns=238r/min 按机床选取Nw=195r/min 则实际切削速度v=4.9m/min ⑹工序Ⅻ 攻钻M16×1.5mm孔

机床:立式钻床2535 刀具:φ16mm的麻花钻 M16丝锥

钻φ16mm的孔

f=0.32mm/r(《工艺手册》表2.4-

38、表3.1-36)v=0.57m/s=34.2m/min(《工艺手册》表2.4-41)Ns=1000v/πdw=435r/min 按机床选取Nw=400r/min(《工艺手册》表3.1-36)

所以实际切削速度v=πdwNw/1000= 31.42m/min 攻M16mm孔

v=0.1m/s=6m/min Ns=238r/min 按机床选取Nw=195r/min 则实际切削速度v=4.9m/min 3)箱体

⑴工序Ⅱ 钻铰两个直径为8mm的孔

①钻孔工步

机床:立式钻床2535 刀具:采用φ6mm的麻花钻头走刀一次 f=0.11m/r(《工艺手册》表2.4-38)

v=0.76m/s=45.6m/min(《工艺手册》表2.4-41)Ns=1000v/πdw=580r/min 按机床选取Nw=530r/min(《工艺手册》表3.1-36)所以实际切削速度v=πdwNw/1000=41.6m/min ②粗铰工步

机床:立式钻床2535 刀具:采用φ6-φ8mm的铰刀走刀一次 f=0.4mm/r(《工艺手册》表2.4-38)

v=0.36m/s=21.6m/min(《工艺手册》表2.4-41)Ns=1000v/πdw=275r/min 按机床选取Nw=275r/min(《工艺手册》表3.1-36)

所以实际切削速度v=πdwNw/1000=21.6m/min ⑵工序Ⅴ

粗镗

①加工条件

工件材料:灰铸铁

加工要求:粗镗φ100、φ80轴承孔,留加工余量0.3mm加工11.4mm 机床:768镗床

刀具:YT30镗刀

量具:塞规

②计算镗削用量

粗镗孔至φ99.4mm、φ79.4mm。单力余量z=0.3mm,切削深度ap=5.7mm走刀长度为L=196mm 确定进给量f:根据《工艺手册》表2.4-60确定fz=0.37mm/z 切削速度:参考有关手册确定v=200mm/min Ns=1000v/πdw=1000×200/(3.14×260)=368r/min 根据表3.1-41取Nw=380r/min ⑶工序Ⅵ 精镗

①加工条件

加工要求:精镗φ100、φ80轴承孔加工0.3mm 机床:T68镗床

刀具:YT30镗刀

②计算镗削用量

精镗孔至φ100,φ80切削深度ap=0.3mm,走刀长度为L=196mm 确定进给量f:根据《工艺手册》表2.4-60确定fz=0.17mm/z 切削速度:参考有关手册确定v=300mm/min Ns=1000v/πdw=1000×300/(3.14×260)=868r/min 根据表3.1-41取Nw=800r/min ⑷工序7 钻24×M8mm孔

①加工条件

加工要求:钻φ8底孔深20mm,攻M8螺纹深15mm 机床:立式铣床2535 刀具:φ8mm的麻花钻 M8丝锥 ②计算钻削用量

钻φ8mm的孔确定进给量f根据《切削用量手册》表2-7,do=8mm时f=(0.2~0.32)m/r。由于本零件在加工φ8孔时属于低钢度零件,故进给量应乘系数0.75.则f=(0.2~0.32)×0.75=(0.15~0.24)mm/r 切削速度:根据《工艺手册》表3-42 v===2.21 查得切削速度v=20m/min.所以=100v/dw==796r/min 按机床选取=750v/min 所以实际切削速度v=/1000=18.84m/min 攻M8mm孔 V==0.1m/s=6m/min =1000v/=205r/min 按机床选取=180r/min 所以实际切削速度v=πdwNw/1000==4.5m/min 四 钻模设计

为了提高劳动生产率,保证加工质量,降低劳动强度。需要设计专用夹具。但因为产量少,只有50件。经与指导老师协商,可用钻模。钻模是摇臂钻、台钻等钻孔设备在生产批量(50件可用)产品时的必备夹具,又称靠模,北方人称“钻胚”是靠在零件钻孔面上进行钻孔的工具,让被钻零件的孔位置达到图纸要求,以满足产品的装配需要,“模”属于模具,就是要求其模具与被钻零件的孔位置统一。因此每个零件则需要一个模具。减速器的钻模可用盖板式,这样可以节省费用,经与老师协商,本零件要求精度不高。所以只有3个钻模即可,即分割面和两个轴承孔。这样就减少了困难度。使设计更加容易的完成。

经过讨论和协商做出了如图所示样板,这样的样板既方便找正,又方便操作,使工作更容易。如前所述,这样设计的钻模提高了劳动生产率,又保证了生产成本,做工作更得于进行。

对于其他夹具则可用常用夹具,也能保证精度,故不做设计。五 设计小结

毕业设计是我们在学习阶段的最后一个重要环节,要求我们能综合运用大学三年所学的专业知识和理论知识,结合实际,独立解决本专业一般问题树立为生产服务,扎实肯干,一丝不苟的工作作风,为将来在机械方面工作打下良好的基础。为了综合训练我们的综合设计能力,进一步培养和提高科学的思维方式和正确的设计思想以及发现,分析,解决解决实际问题的能力,在老师的指导下解决一定的工程问题,完成专科教育中非常重要的实践教学环节。我的毕业设计课题是前机体的机械加工工艺以及钻模的设计,对其加工过程的工艺,工装夹具进行设计。本次设计是要求解决实际的非虚拟的机械工程问题,前提要求是我们掌握相当的专业知识,而通过本次设计提高自己综合运用所掌握知识,查阅相关设力,熟悉相关的国家标准和国际标准,进一步熟练手工绘图和操作绘图软件绘制工程图,锻炼我们独立解决一定的实际工程问题的能力,使我们的设计更具实用性。本次设计还能让我们更多的接触社会,了解社会的发展态势和国内外的现状,作 岗位作一个铺垫,增加自己的就业信心,明确今后的发展方向。由于本人的能力有限,在设计过程中会有很多不足之处,望各位老师给与批评和指教。我将努见。我基本上完成了前机体机械加工工艺以及夹具设计。在这整个设计的过程中我遇到了许多的问题,但是通过查找资料、和同组的同学一起探讨、请教指导老师来解决了这些问题。从这次设计当中我不但把以前学习到的知识运用上来了,还学习了一些我们以前没有学到的,可以说是即学即用。这对于即将走上工作岗位的我来说是一个很好的锻炼,因为参加工作之后还有很多的东西要学,我们就应该具有这种即学即用的能力。总的来说,通过毕业设计,我学到了很多知识,也深刻体会到毕业设计这一课在整个大学学习当中的重要性

六 主要参考资料

1、机械零件设计手册

2、机械加工工艺手册

3、金属切割手册

4、夹具设计手册

第二篇:减速器箱体盖加工工艺及夹具设计小批量生产

机械设计说明书

《机械制造工程原理》

课程设计说明书 设计题目: 减速器箱体盖设计加工工艺及夹具设计

设 计 者

指导教师

汪洪峰

信息工程学院 2013 年月日

机械设计说明书

摘 要

初步学会综合运用以前所学过的全部课程,并且独立完成了一项工程基本训练。运用机械制造工艺学的基本理论和夹具设计原理的知识,正确地解决减速器箱体盖零件在加工中的定位,夹紧以及合理制订工艺规程等问题的方法。对减速器箱体盖零件工序进行了夹具设计,学会了工艺装备设计的一般方法,提高了结构设计的能力。

机械设计说明书

前 言

《机械制造工程原理课程设计》是我们学习完大学阶段的机械类基础和技术基础课以及专业课程之后的一个综合课程,它是将设计和制造知识有机的结合,并融合现阶段机械制造业的实际生产情况和较先进成熟的制造技术的应用,而进行的一次理论联系实际的训练,通过本课程的训练,将有助于我们对所学知识的理解,并为后续的课程学习以及今后的工作打下一定的基础。

对于我本人来说,希望能通过本次课程设计的学习,学会将所学理论知识和工艺课程实习所得的实践知识结合起来,并应用于解决实际问题之中,从而锻炼自己分析问题和解决问题的能力;同时,又希望能超越目前工厂的实际生产工艺,而将有利于加工质量和劳动生产率提高的新技术和新工艺应用到机器零件的制造中,为改善我国的机器制造业相对落后的局面探索可能的途径。

由于所学知识和实践的时间以及深度有限,本设计中会有许多不足,希望各位老师能给予指正。

机械设计说明书

目 录

摘 要..............................................................2 第一章: 概 述......................................................5 第二章:零件工艺的分析..............................................6 2.1 零件的工艺分析.........................................6 2.2

确定毛坯的制造形式.........................................6 2.3 箱体零件的结构工艺性........................................6 第三章:拟定箱体加工的工艺路线......................................7 3.1 定位基准的选择...........................................7 3.2 加工路线的拟定.........................................7 第四章:机械加工余量,工序尺寸及毛坯尺寸的确定......................8 4.1.毛坯的外廓尺寸.............................................8 4.2.加工的工序尺寸及加工余量...................................8 第五章: 确定切削用量及基本工时....................................9 5.1.粗铣上窥视孔面.............................................9 5.2.粗铣结合面................................................10 5.3.磨分割面..................................................11 5.4.钻孔......................................................12 第六章:专用夹具的设计 6.1 粗铣下平面夹具............................................14 6.2 粗铣前后端面夹具设计......................................15 参考文献...........................................................18 结 论...........................................................19

机械设计说明书

第一章: 概 述

箱体零件是机器或部件的基础零件,它把有关零件联结成一个整体,使这些零件保持正确的相对位置,彼此能协调地工作.因此,箱体零件的制造精度将直接影响机器或部件的装配质量,进而影响机器的使用性能和寿命.因而箱体一般具有较高的技术要求.由于机器的结构特点和箱体在机器中的不同功用,箱体零件具有多种不同的结构型式,其共同特点是:结构形状复杂,箱壁薄而不均匀,内部呈腔型;有若干精度要求较高的平面和孔系,还有较多的紧固螺纹孔等.箱体零件的毛坯通常采用铸铁件.因为灰铸铁具有较好的耐磨性,减震性以及良好的铸造性能和切削性能,价格也比较便宜.有时为了减轻重量,用有色金属合金铸造箱体毛坯(如航空发动机上的箱体等).在单件小批生产中,为了缩短生产周期有时也采用焊接毛坯.毛坯的铸造方法,取决于生产类型和毛坯尺寸.在单件小批生产中,多采用木模手工造型;在大批量生产中广泛采用金属模机器造型,毛坯的精度较高.箱体上大于30—50mm的孔,一般都铸造出顶孔,以减少加工余量.机械设计说明书

第二章:零件工艺的分析

2.1 零件的工艺分析

2.1.1 要加工孔的孔轴配合度为H7,2.1.2 表面粗糙度为Ra小于1.6um,圆度为0.0175mm,垂直度为0.08mm,同2.1.3 轴度为0.02mm。其它孔的表面粗糙度为Ra小于12.5um,锥销孔的表面粗糙度为Ra小于1.6um。

2.1.3 盖体上平面表面粗糙度为Ra小于12.5um,端面表面粗糙度为Ra小于3.2um,2.1.4 机盖机体的结合面的表面粗糙度为Ra小于3.2um,2.1.5 结合处的缝隙不2.1.6 大于0.05mm,机体的端面表面粗糙度为Ra小于12.5um。

2.2 确定毛坯的制造形式

由于铸铁容易成形,切削性能好,价格低廉,且抗振性和耐磨性也较好,因此,一般箱体零件的材料大都采用铸铁,其牌号选用HT20-40,由于零件年生产量2万台,已达到大批生产的水平,通常采用金属摸机器造型,毛坯的精度较高,毛坯加工余量可适当减少。

2.3 箱体零件的结构工艺性

箱体的结构形状比较复杂,加工的表面多,要求高,机械加工的工作量大,结构工艺性有以下几方面值得注意:

2.3.1 本箱体加工的基本孔可分为通孔和阶梯孔两类,其中通孔加工工艺性最好,阶梯孔相对较差。

2.3.2 箱体的内端面加工比较困难,结构上应尽可能使内端面的尺寸小于刀具需穿过之孔加工前的直径,当内端面的尺寸过大时,还需采用专用径向进给装置。2.3.3 为了减少加工中的换刀次数,箱体上的紧固孔的尺寸规格应保持一致,机械设计说明书

第三章:拟定箱体加工的工艺路线

3.1 定位基准的选择

定位基准有粗基准和精基准只分,通常先确定精基准,然后确定粗基准。3.1.1

精基准的选择

根据大批大量生产的减速器箱体通常以顶面和两定位销孔为精基准,机盖以下平面和两定位销孔为精基准,平面为330X20mm,两定位销孔以直径6mm,这种定位方式很简单地限制了工件六个自由度,定位稳定可靠;在一次安装下,可以加工除定位面以外的所有五个面上的孔或平面,也可以作为从粗加工到精加工的大部分工序的定位基准,实现“基准统一”;此外,这种定位方式夹紧方便,工件的夹紧变形小;易于实现自动定位和自动夹紧,且不存在基准不重合误差。3.1.2基准的选择

加工的第一个平面是盖或低坐的对和面,由于分离式箱体轴承孔的毛坯孔分布在盖和底座两个不同部分上很不规则,因而在加工盖回底座的对和面时,无法以轴承孔的毛坯面作粗基准,而采用凸缘的不加工面为粗基准。故盖和机座都以凸缘A面为粗基准。这样可以保证对合面加工后凸缘的厚薄较为均匀,减少箱体装合时对合面的变形。

3.2 加工路线的拟定

分离式箱体工艺路线与整体式箱体工艺路线的主要区别在于:

整个加工过程分为两个大的阶段,先对盖和低座分别进行加工,而后再对装配好的整体箱体进行加工。第一阶段主要完成平面,紧固孔和定位空的加工,为箱体的装合做准备;第二阶段为在装合好的箱体上加工轴承孔及其端面。在两个阶段之间应安排钳工工序,将盖与底座合成箱体,并用二锥销定位,使其保持一定的位置关系,以保证轴承孔的加工精度和撤装后的重复精度。

机械设计说明书

第四章:机械加工余量,工序尺寸及毛坯尺寸的确定

根据上述原始资料及加工工艺,分别确定各加工表面的机械加工余量,工序尺寸及毛坯的尺寸如下:

4.1.毛坯的外廓尺寸

见图纸《箱体零件毛坯图》 考虑其加工外廓尺寸为485×176×155mm,表面粗糙度要求RZ为3.2um,根据《机械加工工艺手册》(以下简称《工艺手册》),表2.3—5及表2.3—6,按公差等级7—9级,取7级,加工余量等级取F级确定,毛坯长:485+2×3.5=492mm

宽:176+2×3=182mm 高:155+2×2.5=160mm

4.2.加工的工序尺寸及加工余量

① 钻4-Φ6mm孔

钻孔:Φ5mm,2Z=5 mm,ap=2.5mm 扩孔:Φ6mm,2Z=1mm,ap=0.5mm ② 钻6-Φ10mm孔

钻孔:Φ10mm,2Z=10 mm,ap=5mm ③ 攻钻M10mm孔

钻孔:Φ10mm,2Z=10 mm,ap=5mm 攻孔:M10mm

机械设计说明书

第五章: 确定切削用量及基本工时

5.1.粗铣上窥视孔面

⑴ 加工条件: 工件材料:灰铸铁

加工要求:粗铣箱盖上顶面,保证顶面尺寸3 mm 机床:卧式铣床X63 刀具:采用高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 量具:卡板

⑵ 计算铣削用量

已知毛坯被加工长度为125 mm,最大加工余量为Zmax=2.5mm,可一次铣削,切削深度ap=2.5mm 确定进给量f:

根据《工艺手册》),表2.4—75,确定fz=0.2mm/Z 切削速度:参考有关手册,确定V=0.45m/s,即27m/min 根据表2.4—86,取nw=37.5r/min, 故实际切削速度为:

V=πdwnw /1000=26.5(m/min)当nw=37.5r/min,工作台的每分钟进给量应为:

fm=fzznz=0.2×20×37.5=150(mm/min)(5-2)切削时由于是粗铣,故整个铣刀刀盘不必铣过整个工件,则行程为

l+l1+l2=125+3+2=130mm 故机动工时为:

tm =130÷150=0.866min=52s 辅助时间为:

tf=0.15tm=0.15×52=7.8s 其他时间计算:

6%×(tb+tx)=6%×(52+7.8)=3.58s 故工序5的单件时间:

tdj=tm+tf+tb+tx =52+7.8+3.58=63.4s 9

机械设计说明书

5.2.粗铣结合面

⑴ 加工条件: 工件材料:灰铸铁

加工要求:精铣箱结合面,保证顶面尺寸3 mm 机床:卧式铣床X63 刀具:采用高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 量具:卡板

⑵ 计算铣削用量

已知毛坯被加工长度为330 mm,最大加工余量为Zmax=2.5mm,留磨削量0.05mm,可一次铣削,切削深度ap=2.45mm 确定进给量f:根据《机械加工工艺手册》(以下简称《工艺手册》),表2.4—75,确定

fz=0.2mm/Z 切削速度:

参考有关手册,确定V=0.45m/s,即27m/min 根据表2.4—86,取nw=37.5r/min;由公式(5-1)得 故实际切削速度为:

V=πdwnw /1000=26.5(m/min)当nw=37.5r/min,工作台的每分钟进给量应为:

fm=fzznz=0.2×20×37.5=150(mm/min)切削时由于是粗铣,故整个铣刀刀盘不必铣过整个工件,则行程为

l+l1+l2=330+3+2=335mm 故机动工时为:

tm =335÷150=2.23min=134s 辅助时间为:

tf=0.15tm=0.15×134=20.1s 其他时间计算:

tb+tx=6%×(134+20.1)=9.2s 故工序6的单件时间:

tdj=tm+tf+tb+tx =134+20.1+9.2=163.3s 10

机械设计说明书

5.3.磨分割面

工件材料:灰铸铁

加工要求:以底面及侧面定位,装夹工件,磨分割面,加工余量为0.05mm机床:平面磨床M7130 刀具:砂轮 量具:卡板 ⑴ 选择砂轮

见《工艺手册》表4.8—2到表4.8—8,则结果为

WA46KV6P350×40×127 其含义为:砂轮磨料为白刚玉,粒度为46号,硬度为中软1级,陶瓷结合剂,6号组织,平型砂轮,其尺寸为350×40×127(D×B×d)⑵ 切削用量的选择

砂轮转速为N砂 =1500r/min,V砂=27.5m/s 轴向进给量fa =0.5B=20mm(双行程)工件速度Vw =10m/min 径向进给量fr =0.015mm/双行程 ⑶ 切削工时

根据《工艺手册》可知 式中L—加工长度,L=330mm b—加工宽度,230mm Zb——单面加工余量,Zb =0.0 5mm K—系数,1.10 V—工作台移动速度(m/min)

fa——工作台往返一次砂轮轴向进给量(mm)fr——工作台往返一次砂轮径向进给量(mm)辅助时间为:

tf=0.15tm=0.15×162=24.3s 其他时间计算:

tb+tx=6%×(162+24.3)=11.2s 故该工序的单件时间:

tdj=tm+tf+tb+tx =162+24.3+11.2=197.5s

机械设计说明书

5.4.钻孔

⑴ 钻4-Φ6mm孔 工件材料:灰铸铁

加工要求:钻4个直径为6mm的孔 机床:立式钻床Z535型

刀具:采用Φ5mm的麻花钻头走刀一次,扩孔钻Φ6mm走刀一次 Φ5mm的麻花钻:f=0.25mm/r(《工艺手册》2.4--38)

v=0.53m/s=31.8m/min(《工艺手册》2.4--41)ns=1000v/πdw=405(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

Φ6mm扩孔:f=0.57mm/r(《工艺手册》2.4--52)

v=0.44m/s=26.4m/min(《工艺手册》2.4--53)ns=1000v/πdw=336(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

由于是加工2个相同的孔,故总时间为

T=2×(t1 +t2)=2×(10.8+10.8)=86.4s 辅助时间为:

tf=0.15tm=0.15×86.4=12.96s 其他时间计算:

tb+tx=6%×(86.4+12.96)=5.96s 故单件时间:

tdj=tm+tf+tb+tx =86.4+12.96+5.96=105.3s ⑵ 钻6-Φ10mm孔 工件材料:灰铸铁

加工要求:钻6个直径为10mm的孔 机床:立式钻床Z535型

刀具:采用Φ10mm的麻花钻头走刀一次,f=0.25mm/r v=0.44m/s=26.4m/min ns =1000v/πdw=336(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

机械设计说明书

由于是加工6个相同的孔,故总时间为

T=6×t=6×20.4=102.4 s 辅助时间为:

tf=0.15tm=0.15×81.6=12.2s 其他时间计算:

tb+tx=6%×(81.6+12.2)=5.6s 故单件时间:

tdj=tm+tf+tb+tx =81.6+12.2+5.6=99.5s ⑶ 钻M10mm孔 工件材料:灰铸铁

加工要求:攻钻4个公制螺纹M10mm的孔 机床:立式钻床Z535型 刀具:Φ10mm的麻花钻10丝锥 钻M10的孔

f=0.15mm/r v=0.61m/s=36.6m/min ns=1000v/πdw=466(r/min)按机床选取nw=400r/min, 作为实际切削速度

辅助时间为:

tf=0.15tm=0.15×90=13.5s 其他时间计算:

tb+tx=6%×(90+13.5)=6.2s 故单件时间:

tdj=tm+tf+tb+tx =90+13.5+6.2=109.7s 攻M10mm孔

v=0.1m/s=6m/min ns=238(r/min)按机床选取nw=195r/min, 则实际切削速度

V=4.9(m/min)故机动加工时间:

l=19mm, l1 =3mm,l2 =3mm, t=(l+l1+l2)×2/nf×4=1.02(min)=61.2s 辅助时间为:

机械设计说明书

tf=0.15tm=0.15×61.2=9.2s 其他时间计算:

tb+tx=6%×(61.2+9.2)=4.2s 故单件时间:

tdj=tm+tf+tb+tx =61.2+9.2+4.2=74.6s 故该工序的总时间:

T=105.3+99.5+109.7+74.6=389.1s

第六章:专用夹具的设计

6.1 粗铣下平面夹具

6.1.1 问题的指出

为了提高劳动生产率和降低生产成本,保证加工质量,降低劳动强度,需要设计专用夹具。

对于机体加工工序5粗铣机体的下平面,由于对加工精度要求不是很高,所以在本道工序加工时,主要考虑如何降低降低生产成本和降低劳动强度。6.1.2 夹具设计

(1)定位基准的选择:

由零件图可知,机体下平面与分割面的尺寸应保证为240mm,故应以蜗轮轴承孔及分割面为定位基准。为了提高加工效率,决定采用两把镶齿三面刃铣刀对两个面同时进行加工。同时,为了降低生产成本,此夹具采用手动夹紧。(2)定位方案和元件设计

根据工序图及对零件的结构的分析,此夹具定位以V形块上四个支承钉对蜗杆轴承孔与两个支承钉及一个双头浮动支承钉对磨合面同时进行定位。所选用的四个支承钉尺寸为,两个支承钉的尺寸为,浮动支承钉见夹具设计剖面图。(3)夹紧方案和夹紧元件设计

根据零件的结构和夹紧方向,采用螺钉压板夹紧机构,在设计时,保证: 1)紧动作准确可靠

采用球面垫圈,以保证工件高低不一而倾斜时,不使螺钉压弯。压板和工件的接触面应做成弧面,以防止接触不良或改变着力点而破坏定位。

一般采用高螺母,以求扳手拧紧可靠,六角螺母头也不易打滑损坏。支柱的高低

机械设计说明书

应能调节,以便适应工件受压面高低不一时仍能正确夹紧。2)操作效率高

压板上供螺钉穿过的孔应作成长圆孔,以便松开工件时,压板可迅速后撤,易于装卸。压板下面设置弹簧,这样压板松开工件取走后,仍受弹力托住而不致下落。螺旋夹紧机构各元件均已标准化,其材料,热处理要求和结构尺寸都可以查表求得。

(4)切削力及夹紧力的计算

刀具:高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 则F=9.81×54.5 ap0.9af0.74ae1.0Zd0-1.0δFz(《切削手册》)查表得:d0=225mm,Z=20,ae=192, af =0.2, ap =2.5mm, δFz =1.06所以: F=(9.81×54.5×2.50.9×0.20.74×192×20×1.06)÷225=6705N 查表可得,铣削水平分力,垂直分力,轴向力与圆周分力的比值: FL/ FE=0.8, FV / FE =0.6, FX / Fe =0.53 故 : FL=0.8 FE =0.8×6705=5364N FV=0.6 FE=0.6×6705=4023N FX =0.53 FE=0.53×6705=3554N 当用两把铣刀同时加工铣削水平分力时: FL/ =2FL=2×5364=10728N 在计算切削力时,必须考虑安全系数,安全系数 K=K1K2K3K4 式中:K1 —基本安全系数,2.5 K2—加工性质系数,1.1 K3—刀具钝化系数,1.1 K2—断续切削系数,1.1 则F/=K FH=2.5×1.1×1.1×1.1×10728 =35697N 选用螺旋—板夹紧机构,故夹紧力 fN=1/2 F/ f为夹具定位面及夹紧面上的摩擦系数,f=0.25 则 N=0.5×35697÷0.25=71394N(5)具设计及操作的简要说明

在设计夹具时,为降低成本,可选用手动螺钉夹紧,本道工序的铣床夹具就是选择了手动螺旋—板夹紧机构。由于本工序是粗加工,切削力比较大,为夹紧工件,势必要求工人在夹紧工件时更加吃力,增加了劳动强度,因此应设法降低切削力。可以采取的措施是提高毛坯的制造精度,使最大切削深度降低,以降低切削力。夹具上装有对刀块,可使夹具在一批零件的加工之前很好地对刀(与塞尺配合使用)。

6.2 粗铣前后端面夹具设计

本夹具主要用来粗铣减速箱箱体前后端面。由加工本道工序的工序简图可知。粗铣前后端面时,前后端面有尺寸要求,前后端面与工艺孔轴线分别有尺寸要求。以及前后端面均有表面粗糙度要求Rz3.2。本道工序仅是对前后端面

机械设计说明书

进行粗加工。因此在本道工序加工时,主要应考虑提高劳动生产率,降低劳动强度。同时应保证加工尺寸精度和表面质量。6.2.1 定位基准的选择

在进行前后端面粗铣加工工序时,顶面已经精铣,两工艺孔已经加工出。因此工件选用顶面与两工艺孔作为定位基面。选择顶面作为定位基面限制了工件的三个自由度,而两工艺孔作为定位基面,分别限制了工件的一个和两个自由度。即两个工艺孔作为定位基面共限制了工件的三个自由度。即一面两孔定位。工件以一面两孔定位时,夹具上的定位元件是:一面两销。其中一面为支承板,两销为一短圆柱销和一削边销。为了提高加工效率,现决定用两把铣刀对汽车变速箱箱体的前后端面同时进行粗铣加工。同时为了缩短辅助时间准备采用气动夹紧 6.2.2 定位元件的设计

本工序选用的定位基准为一面两孔定位,所以相应的夹具上的定位元件应是一面两销。因此进行定位元件的设计主要是对短圆柱销和短削边销进行设计。由加工工艺孔工序简图可计算出两工艺孔中心距。由于两工艺孔有位置度公差,所以其尺寸公差为: 所以两工艺孔的中心距为,而两工艺孔尺寸为。

根据《机床夹具设计手册》削边销与圆柱销的设计计算过程如下(1)、确定两定位销中心距尺寸 及其偏差(2)、确定圆柱销直径 及其公差(—基准孔最小直径)取f7 所以圆柱销尺寸为(3)、削边销的宽度b和B(由《机床夹具设计手册》)(4)、削边销与基准孔的最小配合间隙

其中: —基准孔最小直径 —圆柱销与基准孔的配合间隙(5)、削边销直径 及其公差

按定位销一般经济制造精度,其直径公差带为,则削边销的定位圆柱部分定位直径尺寸为。(6)、补偿值

6.2.3 定位误差分析

本夹具选用的定位元件为一面两销定位。其定位误差主要为:(1)、移动时基准位移误差 =0.009+0.027+0.016 =0.052mm(2)、转角误差

6.2.4 铣削力与夹紧力计算

根据《机械加工工艺手册》可查得:

当用两把铣刀同时加工时铣削水平分力

铣削加工产生的水平分力应由夹紧力产生的摩擦力平衡。

即:(u=0.25)

计算出的理论夹紧力F再乘以安全系数k既为实际所需夹紧力

即: 取k=3.3275 F/=3.3275Χ42054.4=139936N

机械设计说明书

6.2.5 夹紧装置及夹具体设计

为了提高生产效率,缩短加工中的辅助时间。因此夹紧装置采用气动夹紧装置。工件在夹具上安装好后,气缸活塞带动压块从上往下移动夹紧工件。

根据所需要的夹紧力F/=139936N,来计算气缸缸筒内径。

气缸活塞杆推力

其中:P—压缩空气单位压力(取P=6公斤力/)

—效率(取)

Q=F/=13993.6公斤力

夹具体的设计主要考虑零件的形状及将上述各主要元件联成一个整体。这些主要元件设计好后即可画出夹具的设计装配草图。整个夹具的结构夹具装配图3所示。

6.2.6 夹具设计及操作的简要说明

本夹具用于减速器箱体前后端面的粗铣。夹具的定位采用一面两销,定位可靠,定位误差较小。其夹紧采用的是气动夹紧,夹紧简单、快速、可靠。有利于提高生产率。工件在夹具体上安装好后,压块在气缸活塞的推动下向下移动夹紧工件。当工件加工完成后,压块随即在气缸活塞的作用下松开工件,即可取下工件。由于本夹具用于变速箱体端面的粗加工,对其进行精度分析无太大意义。所以就略去对其的精度分析。

机械设计说明书

参 考 文 献

邹青 主编 机械制造技术基础课程设计指导教程 北京: 机械工业出版社 2004,8 赵志修 主编 机械制造工艺学 北京: 机械工业出版社 1984,2 孙丽媛 主编 机械制造工艺及专用夹具设计指导 北京:冶金工业出版社 2002,12 李洪 主编 机械加工工艺手册 北京: 北京出版社 1990,12 邓文英 主编 金属工艺学 北京: 高等教育出版社 2000 黄茂林 主编 机械原理 重庆: 重庆大学出版社 2002,7 丘宣怀 主编 机械设计 北京: 高等教育出版社 1997 储凯 许斌 等主编 机械工程材料 重庆: 重庆大学出版社 1997,12 廖念钊 主编 互换性与技术测量 北京: 中国计量出版社 2000,1 10,乐兑谦 主编 金属切削刀具 北京: 机械工业出版社 1992,12 11,李庆寿 主编 机床夹具设计 北京: 机械工业出版社 1983,4 12,陶济贤 主编 机床夹具设计 北京: 机械工业出版社 1986,4 13,机床夹具结构图册 贵州:贵州人民出版社 1983,7 14,龚定安 主编 机床夹具设计原理 陕西:陕西科技出版社,1981,7 15,李益民 主编 机械制造工艺学习题集 黑龙江: 哈儿滨工业大学出版社 1984, 7 16, 周永强等 主编 设计指导北京: 中国建材工业出版社 2002,12

机械设计说明书

结 论

在本次毕业设计中,我们将设计主要分为两大部分进行:工艺编制部分和夹具设计部分。

在工艺部分中,我们涉及到要确定各工序的安装工位和该工序需要的工步,加工该工序的机车及机床的进给量,切削深度,主轴转速和切削速度,该工序的夹具,刀具及量具,还有走刀次数和走刀长度,最后计算该工序的基本时间,辅助时间和工作地服务时间。其中,工序机床的进给量,主轴转速和切削速度需要计算并查手册确定。

在夹具设计部分,首先需要对工件的定位基准进行确定,然后选择定位元件及工件的夹紧,在对工件夹紧的选择上,我用了两种不同的夹紧方法,即:粗铣下平面用的是螺钉压板夹紧机构,粗铣前后端面时用的是气动夹紧机构,两种方法在生产中都有各自的优点和不足,但都广泛运用在生产中。然后计算铣削力以及夹紧工件需要的夹紧力,这也是该设计中的重点和难点。

通过这次毕业设计,使我对大学里所学的知识有了一次全面的综合运用,也学到了许多上课时没涉及到的知识,尤其在利用手册等方面,对今后毕业出去工作都有很大的帮助。另外,在这次设计当中,指导老师刘麦荣老师在大多数时间牺牲自己的宝贵休息时间,对我们进行细心的指导,我对他们表示衷心的感谢!在这次毕业设计中,我基本完成了毕业设计的任务,达到了毕业设计的目的,但是,我知道自己的设计还有许多不足甚至错误,希望老师们能够谅解,谢谢!

第三篇:分离式减速箱箱体机械加工工艺规程设计

分离式减速箱箱体机械加工工艺

规程设计

内容提要:本文主要是分析了箱体的结构特点,箱体零件加工工艺等内容,叙述了该箱体毛坯的加工余量与生产批量、毛坯尺寸、结构、精度和铸造方法,主要平面的形状精度和表面粗糙度,孔的尺寸精度、几何形状精度和表面粗糙度等。

关键词:箱体;主要技术要求;工艺分析。

目 录

引 言................................................................1 第一章 箱体类零件的主要技术要求、材料和毛坯...........................2 1.1主要平面的形状精度和表面粗糙度............................................2 1.2孔的尺寸精度、几何形状精度和表面粗糙度....................................2 1.3主要孔和平面相互位置精度..................................................3 1.4箱体的材料及毛坯..........................................................3 第二章

箱体零件加工....................................................4 第三章 箱体孔系加工及常用工艺装备......................................8 结 论................................................................10 致 谢...............................................................11

引 言

箱体要求加工的表面很多。在这些加工表面中,平面加工精度比孔的加工精度容易保证,于是,箱体中主轴孔(主要孔)的加工精度、孔系加工精度就成为工艺关键问题。本文主要是分析了分离式减速箱的结构特点,叙述了该箱体的毛坯的加工余量与生产批量、毛坯尺寸、结构、精度和铸造方法,主要平面的形状精度和表面粗糙度,孔的尺寸精度、几何形状精度和表面粗糙度等。

第 1 页

第一章 箱体类零件的主要技术要求、材料和毛坯

箱体类零件中以机床主轴箱的精度要求最高。以某车床主轴箱,如图2-1所示为例,箱体零件的技术要求主要可归纳如下:

图1-1 车床主轴箱

1.1主要平面的形状精度和表面粗糙度

箱体的主要平面是装配基准,并且往往是加工时的定位基准,所以,应有较高的平面度和较小的表面粗糙值,否则,直接影响箱体加工时的定位精度,影响箱体与机座总装时的接触刚度和相互位置精度。

一般箱体主要平面的平面度在0.1-0.03mm,表面粗糙度Ra2.5-0.63um,各主要平面对装配基准面垂直度为0.1/300。

1.2孔的尺寸精度、几何形状精度和表面粗糙度

箱体上的轴承支承孔本身的尺寸精度、形状精度和表面粗糙度都要求较高,否则,将

第 2 页 影响轴承与箱体孔的配合精度,使轴的回转精度下降,也易使传动件(如齿轮)产生振动和噪声。一般机床主轴箱的主轴支承孔精度为IT7-IT6,表面粗糙度值为Ra2.5-0.63um。1.3主要孔和平面相互位置精度

同一轴线的孔应有一定的同轴度要求,各支承孔之间也应有一定的孔距尺寸精度及平行度要求,否则,不仅装配有困难,而且使轴的运转情况恶化,温度升高,轴承磨损加剧,齿轮啮合精度下降,引起振动和噪声,影响齿轮寿命。支承孔之间的孔距公差为0.12-0.05mm,平行度公差应小于孔距公差,一般在全长取0.1-0.04mm。同一轴线上孔的同轴度公差一般为0.04-0.01mm。支承孔与主要平面的平行度公差为0.1-0.05mm。主要平面间及主要平面对支承孔之间垂直度公差为0.1-0.04mm。1.4箱体的材料及毛坯

箱体材料一般选用HT200-400的各种牌号的灰铸铁,而最常用的为HT200。灰铸铁不仅成本低,而且具有较好的耐磨性、可铸性、可切削性和阻尼特性。在单位生产或某些简易机床的箱体,为了缩短生产周期和降低成本,可采用钢材焊接结构。此外,精度要求较高的坐标镗床主轴箱则选用耐磨铸铁。负载大的主轴箱也可以采用铸钢件。

第 3 页

第二章

箱体零件加工

工艺箱体类零件是机器及其部件的基础件,它将机器及其部件中的轴、轴承、套和齿轮等零件按一定的相互位置关系装配成一个整体,并按预定传动关系协调其运动。因此,箱体的加工质量不仅影响其装配精度及运动精度,而且影响到机器的工作精度、使用性能和寿命。

2.1箱体类零件功用、结构特点和技术要求(一)箱体零件的功用

箱体零件是机器及部件的基础件,它将机器及部件中的轴、轴承和齿轮等零件按一定的相互位置关系装配成一个整体,并按预定传动关系协调其运动。

(二)箱体类零件的结构特点

箱体的种类很多,其尺寸大小和结构形式随着机器的结构和箱体在机器中功用的不同有着较大的差异。但从工艺上分析它们仍有许多共同之处。

(三)箱体类零件的技术要求

1.轴承支承孔的尺寸精度和、形状精度、表面粗糙度要求。

2.位置精度 包括孔系轴线之间的距离尺寸精度和平行度,同一轴线上各孔的同轴度,以及孔端面对孔轴线的垂直度等。

3.此外,为满足箱体加工中的定位需要及箱体与机器总装要求,箱体的装配基准面与加工中的定位基准面应有一定的平面度和表面粗糙度要求;各支承孔与装配基准面之间应有一定距离尺寸精度的要求。

(四)箱体类零件的材料和毛坯

箱体类零件的材料一般用灰口铸铁,常用的牌号有HT100~HT400。

毛坯为铸铁件,其铸造方法视铸件精度和生产批量而定。单件小批生产多用木模手工造型,毛坯精度低,加工余量大。有时也采用钢板焊接方式。大批生产常用金属模机器造型,毛坯精度较高,加工余量可适当减小。

2.2箱体零件加工工艺分析 2.2.1工艺路线的安排

车床主轴箱要求加工的表面很多。在这些加工表面中,平面加工精度比孔的加工精度容易保证,于是,箱体中主轴孔(主要孔)的加工精度、孔系加工精度就成为工艺关键问题。因此,在工艺路线的安排中应注意三个问题:

第 4 页 1.工件的时效处理

对于特别精密的箱体,在粗加工和精加工工序间还应安排一次人工时效,迅速充分地消除内应力,提高精度的稳定性。

2.安排加工工艺的顺序时应先面后孔

由于平面面积较大定位稳定可靠,有利与简化夹具结构检少安装变形。从加工难度来看,平面比孔加工容易。先加工批平面,把铸件表面的凹凸不平和夹砂等缺陷切除,在加工分布在平面上的孔时,对便于孔的加工和保证孔的加工精度都是有利的。因此,一般均应先加工平面。

3.粗、精加工阶段要分开

箱体均为铸件,加工余量较大,而在粗加工中切除的金属较多,因而夹紧力、切削力都较大,切削热也较多。加之粗加工后,工件内应力重新分布也会引起工件变形,因此,对加工精度影响较大。为此,把粗精加工分开进行,有利于把已加工后由于各种原因引起的工件变形充分暴露出来,然后在精加工中将其消除。

2.2.2定位基准的选择

箱体定位基准的选择,直接关系到箱体上各个平面与平面之间,孔与平面之间,孔与孔之间的尺寸精度和位置精度要求是否能够保证。在选择基准时,首先要遵守“基准重合”和“基准统一”的原则,同时必须考虑生产批量的大小,生产设备、特别是夹具的选用等因素。

工艺过程的拟订

(1)箱体的时效处理 为了消除铸造内应力,防止加工后的变形,使加工精度保持长期稳定,要进行时效处理。粗加工之后,精加工之前应有一段存放时间,以消除加工内应力。对于精密机床的主轴箱体,应为粗加工后甚至半精加工之后再安排一次时效处理。

人工时效处理的工艺规范为加热到530~560℃,保温6~8h,冷却速度≤300℃/h,出炉温度≤200℃。

(2)箱体加工工艺的原则 拟订箱体类零件工艺过程时一般应遵循以下原则: ① “先面后孔”的原则。先加工平面,后加工孔,是箱体零件加工的一般规律。这是因为作为精基面的平面在最初的工序中应该首先加工出来。而且,平面加工出来以后,由于切除了毛坯表面的凸凹不平和表面夹砂等缺陷,使平面上的支承孔的加工更方便,钻孔时可减少钻头的偏斜,扩孔和铰孔时可防止刀具崩刃。

② “粗精分开,先粗后精”的原则。由于箱体结构复杂,主要表面的精度要求高,为

第 5 页 减少或消除粗加工时产生的切削力、夹紧力和切削热对加工精度的影响,一般应尽可能把粗精加工分开,并分别在不同机床上进行。至于要求不高的平面,则可将粗精两次走刀安排在一个工序内完成,以缩短工艺过程,提高工效。

(3)主要表面加工方法的选择 箱体的主要加工表面为平面和轴承支孔。箱体平面的粗加工和半精加工,主要采用刨削和铣削,也可采用车削。铣削的生产率一般比刨削高,在成批和大量生产中,多采用铣削。箱体平面的精加工,在单件小批生产时,除一些高精度的箱体仍需手工刮研以外,一般多以精刨代刮;当生产批量大而精度要求又高时,多采用磨削。为了提高生产效率和平面间的相互位置精度,还可采用专用磨床进行组合磨削。

箱体上精度为IT7的轴承支承孔,一般采用钻—扩—粗铰—精铰或镗—半精镗—精镗的工艺方案进行加工。前者用于加工直径较小的孔,后者用于加工直径较大的孔。当孔的精度超过IT7、表面粗糙度小于0.63μm时,还应增加一道最后的精加工或精密加工工序,如精细镗、珩磨、滚压等。

2.2.3主要表面的加工 1.箱体的平面加工

箱体平面的粗加工和半精加工常选择刨削和铣削加工。

刨削箱体平面的主要特点是:刀具结构简单;机床调整方便;在龙门刨床上可以用几个刀架,在一次安装工件中,同时加工几个表面,于是,经济地保证了这些表面的位置精度。

箱体平面铣削加工的生产率比刨削高。在成批生产中,常采用铣削加工。当批量较大时,常在多轴龙门铣床上用几把铣刀同时加工几个平面,即保证了平面间的位置精度,又提高了生产率。

2.主轴孔的加工

由于主轴孔的精度比其它轴孔精度高,表面粗糙度值比其它轴孔小,故应在其它轴孔加工后再单独进行主轴孔的精加工(或光整加工)。

目前机床主轴箱主轴孔的精加工方案有: 精镗—浮动镗;金刚镗—珩磨;金刚镗—滚压。

上述主轴孔精加工方案中的最终工序所使用的刀具都具有径向“浮动”性质,这对提高孔的尺寸精度、减小表面粗糙度值是有利的,但不能提高孔的位置精度。孔 的位置精度应由前一工序(或工步)予以保证。

从工艺要求上,精镗和半精镗应在不同的设备上进行。若设备条件不足,也应在半精

第 6 页 镗之后,把被夹紧的工件松开,以便使夹紧压力或内应力造成的工件变形在精镗工序中得以纠正。

3.孔系加工

车床箱体的孔系,是有位置精度要求的各轴承孔的总和,其中有平行孔系和同轴孔系两类。

平行孔系主要技术要求是各平行孔中心线之间以及孔中心线与基准面之间的尺寸精度和平行精度根据生产类型的不同,可以在普通镗床上或专用镗床上加工。

坐标法加工孔系,许多工厂在单件小批生产中也广泛采用,特别是在普通镗床上加装较精密的测量装置(如数显等)后,可以较大地提高其坐标位移精度。

第 7 页 第三章 箱体孔系加工及常用工艺装备

箱体上一系列相互位置有精度要求的孔的组合,称为孔系。孔系可分为平行孔系,如图5-1a所示、同轴孔系,如图5-1b所示和交叉孔系,如图5-1c所示。

图4-1 孔系的分类

孔系加工不仅孔本身的精度要求较高,而且孔距精度和相互位置精度的要求也高,因此是箱体加工的关键。

孔系的加工方法根据箱体批量不同和孔系精度要求的不同而不同,现分别予以讨论。平行孔系的加工

平行孔系的主要技术要求是各平行孔中心线之间及中心线与基准面之间的距离尺寸精度和相互位置精度。生产中采用以下几种方法。

1.找正法

2)心轴和块规找正法 3)样板找正法 4)定心套找正法

2.镗模法

镗模法即利用镗模夹具加工孔系。镗孔时,工件装夹在镗模上,镗杆被支承在镗模的导套里,增加了系统刚性。

3.坐标法

坐标法镗孔是在普通卧式镗床、坐标镗床或者数控镗铣床等设备上,借助于测量装置,第 8 页 调整机床主轴与工件间在水平和垂直方向的相对位置,来保证孔距精度的一种镗孔方法。

同轴孔系的加工

成批生产中,一般采用镗模加工孔系,其同轴度由镗模保证。单位小批生产,其同轴度用以下几种方法来保证。

1.利用已加工孔作支承导向

2.利用镗床后立柱上的导向套支承镗杆

这种方法其镗杆系两端支承,刚性好,但此法调整麻烦,镗杆要长,很笨重,故只适于大型箱体的加工。

3.采用调头镗

当箱体箱壁相距较远时,可采用调头镗,如图5-7所示。交叉孔系的加工

交叉孔系的主要技术要求是控制有关孔的垂直度误差。在普通镗床上主要靠机床工作台上的90度对准装置。因为它是挡块装置,结构简单,但对准精度低。

第 9 页

结 论

此次毕业设计所设计的题目是“分离式减速箱箱体机械加工工艺规程设计”通过这次设计,我对箱体的发展现状有了一个全面地了解,了解了箱体技术在现在以及以后机械工业中所起的作用,为自己今后更好的学习数控技术指明了方向。

通过这次毕业设计,使我对大学期间所学的知识,进行了融会贯通,有了一个全新的认识,对以前许多不太清楚的地方,通过问老师和查资料的方法,已经明白了很多,知道了自己以前学习的不足,并对自己不足的地方进行了复习,所以以后应该更加努力。

第 10 页

致 谢

时间总是过的很快,转眼间大学生活即将在这次艰辛又充满乐趣的毕业设计中结束。对所有帮助我完成毕业设计的老师和同学表示感谢。

这次设计,不仅使我学到了箱体技术方面的知识,端正了我的学习态度,对我以后工作起到了至关重要的作用。

通过这次设计,我对大学所学的知识进行了一次全面的总结和应用。初步了解了整个机械设计的过程,学会了怎样利用有关资料和手册去获得所需的数据,更重要的是,在这次设计中,我明白了,无论做什么事情都必须严谨,认真,不能有丝毫马虎,要有吃苦耐劳的精神。

第 11 页

参考文献

[1] 成大先.机械设计手册.北京:化学工业出版社,1993.[2] 申永胜.机械原理教程(第2版).北京:清华大学出版社,2003.[3] 陈宏钧.典型零件机械加工生产实例.北京:机械工业出版社,1996。[4] 王茂元.机械制造技术.北京:机械工业出版社,2000.[5] 祁红志.机械制造基础.西安:电子工业出版社,1976.[6] 王林玉.机修手册.北京:机械工业出版社,2001.[7] 吴宗泽.机械零件设计手册.北京:机械工业出版社,2005.[8] 吴宗泽机械设机师手册.北京:机械工业出版社,1999.[9] 姚振浦.实用机械传动设计手册.北京:科学技术出版社,1996 [10] 唐锡杰.公差与配合技术手册.北京:机械工业出版社,1986.第 12 页

第四篇:铣床传动箱体加工工艺及铣床夹具毕业设计论文

X225铣床传动箱体加工工艺及铣床夹具设计

摘要

本设计是铣床传动后箱体零件的加工工艺规程及一些工序的专用夹具设计。铣床传动后箱体零件的主要加工表面是平面及孔系。一般来说,保证平面的加工精度要比保证孔系的加工精度容易。因此,本设计遵循先面后孔的原则。并将孔与平面的加工明确划分成粗加工和精加工阶段以保证孔系加工精度基准的选择分为粗基准和精基准,粗基准选择首先保证工件某重要表面的余量均匀,表面应平整,没有浇口或飞边等缺陷,而且只能用一次,以免产生较大的的位置误差。应选择该表面作粗基准。精基准的选择应尽可能使各个工序的定位都采用同一基准,当精加工或光整加工工序要求余量小而无效均匀时,应选择加工表面本身作为精基准。

机械夹具在我国的发展前景是十分广泛,有着很大的发展空间。机械夹具的要求结构简单,使用方便,制造精度高。就本次设计而言,整个加工过程均选用组合机床。夹具选用专用夹具,夹紧方式多选用气动夹紧,夹紧可靠,机构可以不必自锁。因此生产效率较高。适用于大批量、流水线上加工。能够满足设计要求。关键词 工艺路线;夹具设计;工序

-I

operate and has a high production efficiency.Mechanical fixture in the structure should be toward the direction of the simple, easy-to-use, high-precision.Keywords Process route;Fixture designing;Operation

-III

4.2.4 确定切削用量及基本工时................................................................14 4.2.5 切削力的计算....................................................................................16 4.3 本章小结..................................................................................................16 第5章 夹具设计...............................................................................................17 5.1 设计方法和步骤.....................................................错误!未定义书签。5.2 方案设计.................................................................错误!未定义书签。5.3 定位机构的设计及误差分析.................................错误!未定义书签。5.3.1 确定定位元件,计算定位误差........................................................18 5.3.2 定位销的选择....................................................................................21 5.3.3 定位误差的分析与计算....................................................................21 5.4 夹紧机构的设计及夹紧力的计算..........................................................22 5.5 加紧元件的强度校核..............................................................................24 5.6 夹具设计技术的发展.............................................错误!未定义书签。5.6.1 柔性夹具的研究和发展...................................................................25 5.6.2 计算机辅助夹具设计(CAFD)..........................................................26 5.6.3 自动化夹具(AFD)...........................................................................26 5.7本章小结...................................................................................................27 结论.....................................................................................................................28 致谢.....................................................................................................................29 参考文献.............................................................................................................29 附 录...................................................................................................................30

-V

-VII

程中有朝着下列方向发展的趋势

1.功能柔性化。2.传动高效化。3.自动化。

4.制造的精密化。5.旋转夹具的高速化。6.机构标准化 7.模块化。

8.设计自动化。

1.3 机床夹具的组成

1.定位装置。2.夹紧装置。

3.导向、对刀元件。4.连接元件。

5.其它装置或元件。6.夹具体。

本设计说明书的设计题目是 所给的题目是X225铣床传动箱体加工工艺及钻床夹具设计。本说明书分为以下几部分 第一部分 零件的分析,第二部分 零件的工艺规程设计,第三部分 机械加工余量及工序尺寸,第四部分 夹具设计,绘制工程图,第五部分 夹具体受力分析。树种详尽列列出了各个加工工序,在每个加工工序中,又详细的列出了每切削工时,都进行了精密的计算,对每个加工工序所需的机床进行合理的选择,且编写了《机械加工工艺规程卡片》单独装订成册。

本设计属于工艺设计范围,机械加工工艺设计在零件的加工制造过程中有着重要的作用。工艺性的好坏,直接影响着零件的加工质量及生产成本,在本设计中为了适应大批量生产情况以提高产品的生产效率[2]。在设计中所采用的零件尽量采用标准件,以降低产品的生产费用。

就个人而言,毕业设计是在学完大学全部基础课程和专业课程后进行的,是对思念的大学学习的一种综合检验。是大学学习中不可缺少的重要部分,也可是说将学校生活和工作联系起来的一座桥梁,为我们提供了很好的实践机会。我希望通过毕业设计能对自己将来所从事的工作进行一次

第2章 零件的设计

2.1 零件的作用

所给的题目是铣床传动后箱体钻削卡具及加工工艺设计,其主要作用是箱体两侧的190、90、85、80安装轴承的孔,以便于变速箱体中的齿轮配合变速,使铣床获得前进后退的各级速度。[3]各孔周围均匀分布螺纹孔,用来连接一些轴承盖,而且箱体顶部和上下端都有螺纹孔,可使箱体直接连接到机床上。

2.2 零件的工艺分析

由零件图可知,此铣床传动前箱体的加工可以分为两部分

1.平面加工 其中包括箱体的顶面、底面,和顶、底面上安装操纵杆的190、90、85、80的孔的平面,以及锁定箱盖的加工表面。还有箱体的上下外侧面,以及以及锁定箱盖的加工表面,总的来说,零件所需加工的平面并不多,位置精度要求不太高,用半精加工就可以实现其设计要求。

2.孔加工 该零件的孔加工较多,而且要求较高,对于大于50的孔只需铸出,比如190、90、80系列孔铸出后再对其进行一次半精加工就可以。对于其他小于50的孔其中大部分是以顶、采用一面两孔定位方式,这些孔包括垂直于箱体表面的四个阶梯孔,以及其他定位孔,剩余的螺纹孔按同样的加工方法加工[4]。

以上分析可知,对这两部分的加工而言,我们可以先进行平面加工,然后进行孔的加工,加工孔时使用一面两孔的定位方式,采用专用夹具,并且保证他们的尺寸精度要求。

零件如图2-1零件仰视图所示

第3章 工艺规程的设计

3.1 确定毛坯制造形式

3.1.1 零件材料的选择

考虑到铣床箱体在工作过程中并不承受夹大的交变及冲击性载荷,选用灰口铸铁铸造毛坯件。

3.1.2 确定生产类型的依据

生产纲领公式查看公式(3-1)

Np =N * n *(1+2%+b%)(3-1)

其中 Np——零件的生产纲领,件/年

N——产品的年生产量,台/年 A%——备用品率 B%——废品率

N——每台机械生产中该零件的数量 所以 Np =2000*1*(1+4%+1%)=2010件/年

由于零件结构不是很复杂,毛坯质量小于100公斤,年产量在500到5000件内,零件属于轻型,中批量生产,考虑到现有条件和技术水平,采用砂型铸造是较合适的。[5]

3.2 基面的选择

基面的选择是工艺规程设计中的重要的工作之一,选择定位基准必须从零件整个工艺过程的全局出发,具体情况具体分析,使先行工序为后续工序创造条件,使每个工序都有合适的基准和定位 夹紧方式。基面选择的正确与合理,可以使加工量得到保证,生产率得以提高,否则,不但使加工工艺过程中问题百出,甚至还会造成零件大批报废,使生产无法正常运行。

(2)主要表面的粗精加工要分开,以消除切削力带来的变形;

(3)次要表面的加工,经可能在同一次装夹中加工,以减少装夹次 数,节省辅助时间,提高个表面的相对位置精度。

2.热处理工序的安排 退火安排在机械加工之前。

3.辅助工序的安排

(1)划线工序安排在机械加工之前;

(2)清洗工序紧接在光整加工之后;

(3)油漆工序安排在机械加工之前,热处理之后。

4.检验工序的安排

(1)粗加工全部结束后,精加工之前;

(2)零件从一车间到另一个车之前;

(3)重要工序之前后;

(4)零件全部加工结束之后。

3.2.5 工艺路线的拟定

此零件为成批生产,可采用专用夹具使工序集中,以提高生产效率,由于该零件平面的位置精度要求较高,所以在制定工艺路线先考虑加工平面,然后再采用专用夹具进行孔加工。工艺路线方案如下。

工艺方案 1.毛胚铸造 2.时效处理 3.粗铣顶面 4.粗铣底面 5.精铣顶面 6.精铣顶面

7.粗镗顶面孔190,孔90,孔85,孔80 8.半精镗顶面孔190,孔90,孔85,孔80 9.在箱体顶面钻、攻16-M8,钻深18攻深15的螺纹孔 10.钻、扩孔21 工艺方案的分析

所给的零件的孔和孔周围的面加工精度要求较高,属于箱体类零件,平面加工应用铣削,孔加工主要是钻削和扩削,而一些特殊的孔应用镗削。

第4章 确定加工余量,工序及毛坯尺寸

4.1 毛坯余量余与工序的确定

加工余量是指加工过程中所切除的金属厚度,加工余量可分为加工总余量(毛坯余量)和工序余量。加工余量等于各工序余量之和。

影响工序余量的因素有

1.上工序的各种表面缺陷和误差因素,包括表面粗糙度和缺陷层、尺寸公差和行为误差

2.本工序的装夹误差 确定加工余量的方法(1)经验估计法(2)查表法

(3)分析计算法 这里采用查表法,为了防止余量不够而产生废品,在查表所得的数量上稍大一些。

此零件材料为灰铸铁,硬度为HB190,生产类型为成批生产,采用砂型铸造,2级精度。

根据以上原始材料及加工工艺要求,分别确定各加工表面的机械加工余量,工序尺寸及毛坯尺寸如下

4.1.1平面加工

1.顶面 最大加工尺寸 195mm 半精加工余量 Z2=1.5mm 粗加工余量 Z1=2.5mm 毛坯余量 Z=1.5+2.5=4.0mm 粗铣后尺寸H1=195+1.5=196.5mm 毛坯尺寸 H2=195+4.0=199.0mm 2.底面 最大加工尺寸195mm 半精加工余量 Z2=1.5mm 粗加工余量 Z1=2.5mm 毛坯余量 Z=1.5+2.5=4.0mm 粗铣后尺寸 H1=195+1.5=196.5mm

0

铰孔至21 先钻孔至6,深度5mm 铰孔至8,深度5mm 3.粗镗、半精镗顶面孔190,孔90,孔85,孔80 粗镗至187 半精镗至190 粗镗至83 半精镗至85 粗镗至88 半精镗至90 粗镗至78 半精镗至80 4.2 切削用量的选择

正确的选择切削用量,对提高切削效率,保证必要的工具耐用度和经济性,保证加工质量,具有相当重要的作用。

4.2.1 粗加工切削用量的选择原则

粗加工时,加工精度与表面粗糙度要求不高,毛坯余量较大。因此,选择粗加工切削用量时,要尽量保证较高的单位时间金属切除量(金属切除率)和必要的刀具耐用三要素(切削速度V、进给量F和切削深度αp)中,提高任何一项,都能提高金属切削率。但是对刀具耐用度影响最大的是切削速度,其次是进给量。切削深度影响最小。[8]所以,粗加工切削用量的选择原则是 首先考虑选择一个尽可能大的切削深度αp,其次选择一个较大的进给量F,最后确定一个合适的切削速度V。

4.2.2 精加工时切削用量的选择原则

精加工时加工精度和表面质量要求比较高,加工余量要求小而均匀。因此,选取精加工切削用量时应着重考虑,如何保证加工质量,并在此前提下尽量提高生产率。所以,在精加工时,应选用较小的切削深度αp和进给量F,并在保证合理刀具耐用度的前提下,选取尽可能高的切削速度V,以保证加工质量和表面质量。

度。[9]4.2.4 确定切削用量及基本工时

用查表法确定余用计算方法相结合而得到的切削用量,并计算切削力,作为以后核算夹具之用。

1.钻8孔

加工条件 Z35立式钻床,高速钢麻花钻头 其直径d08mm。钻头几何形状 双锥修磨横刃,β=30°,2=118°,21=70°,b3.5 mm,a012,55,b=2 mm,l=4 mm。

决定进给量f 按加工要求决定进给量 根据[6]表2.7,灰铸铁的硬度位于168~218HBS之间,f=0.52~0.64 mm/r。由于l/d=47/12=4,d08 mm时,故应乘孔深修正系数kt0.95,则进给量

f0.52~0.640.95 mm/r0.50~0.61 mm/r 按钻头强度决定进给量,当灰铸铁硬度为190HBS ,d08 mm,钻头强度允许的进给量f=0.55mm/r

根据Z35钻床说明书f=0.43mm/r

当f=0.43,d012 mm时,Ff2900N

Fmax15969mm FfFmax,故f=0.43 mm/r可用。

决定钻头磨钝标准及寿命 根据文献[6]表2.12,当d08mm时,钻头后刀面最大磨损量取为0.6mm,寿命T=60min。

切削速度如公式(4-4)所示

4.2.5 切削力的计算

1.轴向力

轴向力的计算公式如(4-8)所示

FfgFd0zffyFkF

(4-8)

跟据文献[1]kf1.0,yF0.8,zf1.0

F42010.71.00.430.81 2287.7N

2.切削扭矩

切削扭矩的计算公式如(4-9)所示

Mcmd0zmfymkm

(4-9)

根据文献[1]km1.0,ym0.8,zm1.0

M0.20610.720.430.8km

12.0 N·m 3.切削功率

切削功率的计算公式如(4-10)所示

PM2Md0

212.09.57521.47Km10.7

(4-10)

4.3 本章小结

本章介绍了零件加工的毛坯余量,定位基准的选择,时间定额的计算,重点是切削用量的计算以及切削力的计算。

位元件不能由来承受力和力矩,所以要选辅助支撑,辅助支撑用来提高共建的装夹刚度和稳定性,不起定位作用。[10]

上述特点在夹具设计中应给予足够的重视。夹具体设计的好坏关系到加工精度、加工效率、加工成本及工人的劳动强度。

5.3 定位机构的设计及误差分析

工件在夹具中的定位是指在夹具中,工件的定位基准与定位元件相接触或配合,从而使同一批 工件在夹具中都能获得一致的正确位置。加工零件的位置精度取决于工件在机床或夹具中定位的准确性,所以夹具定为基准的选择,既要保证本身的定位精度。[11]又要保证被加工零件的各种精度要求。定位机构的设计是非常重要的。

5.3.1 确定定位元件,计算定位误差

由于定位方案为一面两销定位,一两个圆柱销作为定位元件,则会产生重复定位现象,即一销套上工件孔以后,另一个销很难同时套上。为了避免这种定位干涉,补偿工件两定位孔直径和中心距误差及夹距两定位销直径和中心距误差。夹具两定位销采用一圆柱销,另一销在连心线的垂直方向削去两边,即削边销。

1.确定定位销中心距及尺寸公差

销间距的基本尺寸和孔间距的基本尺寸相同,1尺寸公差一般取为L销~3孔间距的计算

1L1 5L销L1

2L1y215sin45398)218.028mm

L1x(215cos4555)2120.028mm

22L1L1.665mm xL1y430L1L1xcosL1ysin

L销LIX1min(5-1)

0.033由于零件圆柱孔销的尺寸为12H80

X1min0(0.020)0.020mm

10.0650.0200.070.021mm

24.确定削边销圆弧部分与其相配合得工件定位孔的最小间隙

2b20.0713X2min0.020mm

D221式中D2为与削边销相配合的工件定位孔的最小直径。

5.销边销的最大直径d2

公差配合取h7,其下偏差为ei=0.025mm

d2D2X2min

0.0200.020 d2420.025000.020420.045

6.确定转角误差

由于定位孔和定位销作上下销移接触,造成工件两定位孔连心线相对夹具上量定位销连心线发生偏移,产生最大转角误差,其式可按下面公式(5-2)计算

tg'(X1maxX2max)/2L(5-2)

其中 X1max为夹具圆柱销与其配合的工件定位孔间的最大间隙。

X2max为夹具体削边销与其配合的工件定位孔间的最大间隙。

X1max0.0330.0200.052mm X2max0.0390.0450.084mm

tg(0.0520.084)/2591.6650.000115

0.0077.确定基准定位误差1

这一误差取决于定位孔和圆柱销之间的最大间隙,工件在平面内任何方向上的基准位移误差如(5-3)式

1△1TD1Td1(5-3)

式中 TD1为工件孔直径的公差

0

1315

产生定位误差的原因有以下两个方面 一是定位基准与工序基准不重合,产生基准不重合误差,用符号B表示;另一主要误差是由工件的定位基面与定位元件的工作表面的制造误差及配合的最小间隙的存在,引起定位基准产生位移,即基准位移误差,用符号w来表示,公式如(5-4)

对工序尺寸 120.2

w△1TD1Td1(5-4)

其中式中 TD1—工件孔直径的公差 TD10.033mm

Td1—圆柱销直径公差 Td10.021mm △1—圆柱销与工件孔最小间隙 由以上计算可知 △10.020mm w0.0330.0210.0200.074mm 根据图中计算可知

cos550.0280.843591.665sin218.0280.539591.625x0.074cos0.0610.8430.051

y0.074sin0.0610.5390.0331水平方向:x0.051Tg0.673合格,所以对钻孔为制度误差要求,可根据定位误差小于其零件公差1的而确定。35.4 夹紧机构的设计及夹紧力的计算

设计和选用夹紧装置时必须满足以下基本要求

1.夹紧过程中应能保持工件定位时所获得的正确位置 2.夹紧应可靠和适当

3.夹紧装置应操作方便、省力、安全

4.夹紧装置的自动化程度和复杂程度应与生产批量和生产条件相适应

ri—第I个螺栓的轴线到螺栓组对称中心的距离(这里

[15]ri相等,均为r94mm)

ks—防滑系数,取KS=1.2 QP1.224.0589N

0.13494103实际预紧力Q实Q理K KK1K2K3K4 K为安全系数 其中 K1 一般安全系数,考虑到增加夹紧的可靠性和因工件材料性质及余量不均匀等引起的切削力的变化。一般取K11.5~2

K2 加工性质系数,粗加工取K21.2。精加工取K21.5

K3 刀具钝化系数,考虑刀具磨损钝化后,切削力增加。一般取K31~1.3 取K31.2

K4 断续切削系数,断续切削时取K41.2。连续切削时,取K41

KK1K2K3K41.51.21.21.22.592

.69N

Q5892.59215265.5 加紧元件的强度校核

分析夹具体中各零件的受力情况,可知连接上下压板的螺栓畏罪薄弱环节。

受力分析 当压紧工件时,螺栓除受夹紧力Q作用产生拉应力外,还受转矩T的扭转而产生扭转剪应力的作用。[15]

拉伸应力 Q4d21536.6913.5Mpa

3.142124扭转剪应力 0.56.75Mpa

由第四强度理论,可知螺栓预紧状态下的计算应力公式如(5-5)

C23

2(5-5)

5.6.2 计算机辅助夹具设计(CAFD)

在过去的十几年中, 制造研究团体将研究的重点放在了发展和改善诸如计算机辅助设计计算机辅助制造(CAD/CAM)和计算机辅助工艺规划(CAPP)等方面只是在最近20年来,CAFD才发展成为(CAD/CAM)集成技术的一个重要组成部分 , 并且成为CAPP的一个重要方面。它是CIMS环境下设计和制造之间的连接纽带.随着CAD/CAM系统在工业中的建立, CAFD很自然地应用到了夹具设计当中。

CAFD领域的主要研究方面有:(1)夹具设计时基于成组技术的分类方法及基于案例的推理;(2)通过运动学分析确定定位点和夹紧点;(3)利用基于知识的专家系统选择定位面和夹紧面;(4)基于几何分析的夹具规划;(5)用于定位基准选择的精度关系分析;(6)组合夹具的构形设计。

5.6.3 自动化夹具(AFD)

近年来组合夹具系统的设计受到了夹具行业的普遍关注, 并且在一些文献中对该领域的最新发展成果进行了回顾,通过几何计算的方法验证了夹具构形中力的锁合问题, 在确定优化的夹紧点和夹紧顺序中提出了几何推理的方法, 这种方法在考虑到力的锁合后, 从候选的夹紧点布局中确定最优化的夹紧点, 是非常简单并行之有效的。通过变形一种是由于装夹所产生的接触变形, 另一种是由于切割力所引起的工件的弯曲变形分析, 对支撑和夹紧位置进行所需的重新布置, 以在给定的工件上设计出最好的支撑、定位和夹紧位置, 完成加工过程中牢固精确地夹紧工件的功能,并在自动夹具设计原型系统中贯彻了这样的推理机制该系统提供了一种智能化的自动夹具设计环境系统由个主要模块构成完全信息化的产品模型知识库推理机制最终的夹具构型。按照自动化程度区分, 夹具设计系统分为交互式, 半自动化式和自动化式交互式的夹具。设计系统是计算机为使用者提供一种信息化的用户界面, 基于设计者的知识, 辅助用户选择合适夹具元件的一种系统系统由于要由用户根据工件的几何形状及加工要求来选择装夹表面、装夹点及夹具元件, 所以是非常耗时的, 而且并未完全开发出计算机的功能半自动化式的夹具设计系统是在交互式的基础上加以改进而来的, 它降低了对设计者专业知识的要求而自动化式的夹具设计系统用以进一步提高夹具设计过程的效率和质量, 可以自动确定夹紧点, 自动从一系列候选点

结论

为期四个月的工艺、夹具毕业设计基本结束,回顾整个过程,虽然我深深体会到了工作的艰辛,但面对着独立完成的毕业设计,我觉得受益匪浅,成功的喜悦油然而生。毕业设计使我对四年中所学的知识有了进一步的理解,也巩固和补充了所学到的东西,使理论与实践更加接近,强化了生产实习中的感性认识,是对大学四年学习知识的综合运用,这也是走上工作岗位前的一次有益的锻炼。

本次毕业设计主要分两个阶段。第一阶段是机械加工工艺规程设计,第二阶段是专用夹具设计。第一阶段本人认真复习了有关书本知识学会了如何分析零件的工艺性,学会如何查有关手册,选择加工余量、确定毛坯的类型、形状、大小等,绘制出了毛坯图。有根据毛坯图和零件图构想出工艺方案,确定了合理的方案来编制工艺。其中运用了基准选择、切削用量选择计算,时间定额计算等方面的知识。还结合了我们生产实习中所看到的实际情况选定设备,填写了工艺文件。运用工件定位、夹紧及零件结构设计等方面的知识。

通过这次设计,我基本掌握了一个中等复杂零件的加工过程分析、工艺文件的编制、专用夹具设计的方法和步入等。学会查阅手册,选择使用工艺装备等。

总的来说,这次设计,使我在基本理论的综合运用以及正确解决实际问题等方面得到了一次较好的训练。提高了我独立思考问题、解决问题创新设计的能力,为以后设计工作打下了较好的基础。

由于自己水平有限,缺少设计经验,在设计中存在错误之处在所难免,请各位老师给予批评指正。

最后,衷心的感谢各位老师的精心指导,使我顺利的完成此次设计。谢谢!!

参考文献 王绍俊.机械制造工艺设计手册.哈尔滨工业大学出版社,1995 35~50 2 龚定安,蔡建国.机床夹具设计原理.陕西科技大学出版社,1981 84~90 3 黄克孚,王光逵.机械制造工程学.机械工业出版社,1992 25~36 4 邱宣怀.机械设计.高等教育出版社,2002 33~65 5 李哲. 夹具设计手册.机械工业出版社,1993 40~55 6 东北重型机械学院,洛阳农业机械学院,长春汽车厂工人大学.机床夹具设计手册.上海科学技术出版社,1979 103~121 7 陈露. AutoCAD2006基础及应用教程.电子工业出版社,2006 56~74 8 王启平.机械制造工艺学.哈尔滨工业大学出版社,1998 15~35 9 刘品.机械加工工艺编制手册.机械工业出版社,1993 45~63 10 浦林祥.机械零件设计手册.机械工业出版社,1997 46~63 11 赵家齐.机械制造工艺学课程设计指导书.机械工业出版社,1994 47~62 12 上海柴油机厂工艺设备研究所.金属切削机床夹具设计手册.机械工艺出版社,1982 65~78 13 石光源.机械制图.高等教育出版社,1997 56~6 14 张耀辰.机械加工工艺设计实用手册.航空工业出版社,1999 120~146 15 李益民.机械制造工艺设计简明手册.机械工业出版社,1993 36~58 16 Naki, D.Wagen.Rubber crumb toughened polystyrene prepared by Reinforcing reaction molding.American Syvthellc Rubber Industry,2003, 5(4)78~91 17 Liao Jianmin.Fixturing analysis for stability consideration in an automated fixture design system[J].Journal of Manufacturing Science and Engineering,2002,124(2)98~104 18 Subramani can V ,Kumar Senthil A agent approach to fixture design [J] Journal of I ntelligent manufaturing,2001,12(1)31~42

0

environment.Fortunately, a bearing failure caused by environment or handling contamination is preventable,and a simple visual examination can easily identify the cause.

Conducting a postmortem il1ustrates what to look for on a failed or failing bearing.Then,understanding the mechanism behind the failure, such as brinelling or fatigue, helps eliminate the source of the problem.Brinelling is one type of bearing failure easily avoided by proper handing and assembly.It is characterized by indentations in the bearing raceway caused by shock loading-such as when a bearing is dropped-or incorrect assembly.Brinelling usually occurs when loads exceed the material yield point(350,000 psi in SAE 52100 chrome steel).It may also be caused by improper assembly, Which places a load across the races.Raceway dents also produce noise,vibration,and increased torque.A similar defect is a pattern of elliptical dents caused by balls vibrating between raceways while the bearing is not turning.This problem is called false brinelling.It occurs on equipment in transit or that vibrates when not in operation.In addition, debris created by false brinelling acts like an abrasive, further contaminating the bearing.Unlike brinelling, false binelling is often indicated by a reddish color from fretting corrosion in the lubricant.False brinelling is prevented by eliminating vibration sources and keeping the bearing well lubricated.Isolation pads on the equipment or a separate foundation may be required to reduce environmental vibration.Also a light preload on the bearing helps keep the balls and raceway in tight contact.Preloading also helps prevent false brinelling during transit.Seizures can be caused by a lack of internal clearance, improper lubrication, or excessive loading.Before seizing, excessive, friction and heat softens the bearing steel.Overheated bearings often change color,usually to blue-black or straw colored.Friction also causes stress in the retainer,which can break and hasten bearing failure.

Avoiding failures The best way to handle bearing failures is to avoid them.This can be done in the selection process

by

recognizing

critical

performance characteristics.These include noise,starting and running torque,stiffness,nonrepetitive runout,and radial and axial play.In some applications, these items are so critical that specifying an ABEC level alone is not sufficient.

Torque requirements are determined by the lubricant,retainer,raceway quality(roundness cross curvature and surface finish),and whether seals or shields are used.Lubricant viscosity must be selected carefully because inappropriate lubricant,especially in miniature bearings,causes excessive torque.Also,different lubricants have varying noise characteristics that should be matched to the application.For example,greases produce more noise than oil.

Nonrepetitive runout(NRR)occurs during rotation as a random eccentricity between the inner and outer races,much like a cam action.NRR can be caused by retainer tolerance or eccentricities of the raceways and balls.Unlike repetitive runout, no compensation can be made for NRR.NRR is reflected in the cost of the bearing.It is common in the industry to provide different bearing types and grades for specific applications.For example,a bearing with an NRR of less than 0.3um is used when minimal runout is needed,such as in disk—drive spindle motors.Similarly,machine—tool spindles tolerate only minimal deflections to maintain precision cuts.Consequently, bearings are manufactured with low NRR just for machine-tool applications.

Contamination is unavoidable in many industrial products,and shields and seals are commonly used to protect bearings from dust and dirt.However,a perfect bearing seal is not possible because of the movement between inner and outer races.Consequently,lubrication migration and contamination are always problems.

per revolution and indicate closely spaced chatter marks or widely spaced, rough irregularities.Classifying bearings by their noise characteristics allows users to specify a noise grade in addition to the ABEC standards used by most manufacturers.ABEC defines physical tolerances such as bore, outer diameter, and runout.As the ABEC class number increase(from 3 to 9), tolerances are tightened.ABEC class, however, does not specify other bearing characteristics such as raceway quality, finish, or noise.Hence, a noise classification helps improve on the industry standard.6 的麻花钻如复合麻花钻(又称阶梯麻花钻)更合理,而在一般加工条件下选用标准麻还钻被认为是唯一合理的选择。

2.麻花钻尺寸 一般是根据被加工孔直径选择麻花钻直径,同时,还虑经验加工数据,如 用麻花钻钻孔结果,实际孔直径比麻花钻直径大0.1mm甚至更大,另外,有时还考虑钻孔后续加工需要的最少余量。

麻花钻的夹持 麻花钻夹持方法选用应考虑经济、合理,并满足加工精度要求。

麻花钻材料 高速钢麻花钻韧性好,易重磨,但允许使用的切削速度比较低;硬质合金麻花钻硬度高,耐磨性好,允许使用的切削速度比较高,重磨比较困难。选择材料既考虑生产需要同时考虑工艺条件可能。

先进涂层的出现,使一些工具厂家开发出了几何形状更加合理的钻头,如干式加工用钻头。正确确定钻头的合理几何形状取决于所用钻头的尺寸和特定用途。在先进的CNC加工设备上进行大批量加工,一般要求有较高的切削速度和进给量,所以要求钻头具有更为合理的切削刃几何形状。

要想获得满意的加工效果,夹持钻头的夹具性能至关重要。如果钻夹具达不到所要求的刚性,即使获得了驱动钻头的功率,也不能进行有效的切削。先进的钻夹具可获得很小的钻孔公差,尽管多数钻削加工不需要太高精度,但仍有些钻削加工的精度要求仍较高。最近,Bilz/RMT Tool公司和TM Smith Tool International公司引入了一个用于精密钻削加工的新型的刀夹具系统——Thermo-Grip刀夹具,这是一种新型的热装夹紧工具系统,Thermo-Grip刀夹具不用紧固螺钉装夹刀柄,也不用螺母和垫片固定刀具,由于在夹具的一侧无紧固螺钉,因此不会引起振动,所以刀具和夹具从一开始就具有良好的动态平衡,使钻削可在平衡状态下更好地进行高速加工。Thermo-Grip夹具的孔比切削刀具稍小,用一个感应线圈加热夹具前端,热膨胀使夹具孔胀开,将切削刀具插入,当夹具冷却后,刀柄四周在冷却压缩效应下即可产生足够的刀具夹持力。

TM Smith Tool公司开发了两种新型钻削工具系统 HSK和近心钻削系统。据该公司预测,这两种系统承受冷却液压力指标是6895kPa(实际可达8274kPa)。

钻削加工的三大要素

在钻孔过程中,要提高生产率,似乎不是最复杂的加工问题,但如下三个最重要的因素将直接影响钻削速度、公差和刀具寿命。尽管有多种不同的旋转切削刀具能够加工孔,但钻削仍是主要的孔加工方式。当今正不

粒硬质合金材料开发领域。一种新型工艺使制造商能够获得小于微米级的硬质合金晶粒,这种毫微晶粒硬质合金兼具硬质合金的高硬度的高速钢的高拉伸强度。在钻削加工中,无论钻头转速多快,钻头尖端的切削速度几乎为零,当加工硬材料时,钻头有被压碎的可能,采用微晶硬质合金钻头则可避免这种危险。

Iscar公司在硬质合金烧结前,通过在硬质合金中加入不同的添加剂,生产出亚微晶粒硬质合金,通常在加热和烧结硬质合金到形成最终形态的冶金工艺过程中,晶粒尺寸是趋于长大的,这种亚微晶粒硬质合金是一种刚性类同于高速钢、硬度又与硬质合金相似的材料,它可采用非常高的切削速度,其刀具寿命是原来刀具寿命的8~10倍。

先进涂层的出现,使一些工具厂家开发出了几何形状更加合理的钻头,如干式加工用钻头。正确确定钻头的合理几何形状取决于所用钻头的尺寸和特定用途。在先进的CNC加工设备上进行大批量加工,一般要求有较高的切削速度和进给量,所以要求钻头具有更为合理的切削刃几何形状。

先进的钻头夹具系统

要想获得满意的加工效果,夹持钻头的夹具性能至关重要。如果钻夹具达不到所要求的刚性,即使获得了驱动钻头的功率,也不能进行有效的切削。先进的钻夹具可获得很小的钻孔公差,尽管多数钻削加工不需要太高精度,但仍有些钻削加工的精度要求仍较高。最近,Bilz/RMT Tool公司和TM Smith Tool International公司引入了一个用于精密钻削加工的新型的刀夹具系统——Thermo-Grip刀夹具,这是一种新型的热装夹紧工具系统,Thermo-Grip刀夹具不用紧固螺钉装夹刀柄,也不用螺母和垫片固定刀具,由于在夹具的一侧无紧固螺钉,因此不会引起振动,所以刀具和夹具从一开始就具有良好的动态平衡,使钻削可在平衡状态下更好地进行高速加工。Thermo-Grip夹具的孔比切削刀具稍小,用一个感应线圈加热夹具前端,热膨胀使夹具孔胀开,将切削刀具插入,当夹具冷却后,刀柄四周在冷却压缩效应下即可产生足够的刀具夹持力。

TM Smith Tool公司开发了两种新型钻削工具系统 HSK和近心钻削系统。据该公司预测,这两种系统承受冷却液压力指标是6895kPa(实际可达8274kPa)。

为了提高切削速度和延长刀具寿命,许多用户已将HSK短锥柄、高速

0

第五篇:机械加工工艺规程

机械加工工艺规程

10.1 工艺过程

10.1.1 生产过程与工艺过程(1)生产过程

生产过程是指把原材料(半成品)转变为成品的全过程.机械产品的生产过程,一般包括: ①生产与技术的准备,如工艺设计和专用工艺装备的设计和制造,生产计划的编制,生产资料的准备;②毛坯的制造,如铸造,锻造,冲压等;③零件的加工,如切削加工,热处理,表面处理等;④产品的装配,如总装,部装,调试检验和油漆等;⑤生产的服务,如原材料,外购件和工具的供应,运输,保管等.机械产品的生产过程一般比较复杂,目前很多产品往往不是在一个工厂内单独生产,而是由许多专业工厂共同完成的.例如:飞机制造工厂就需要用到许多其他工厂的产品(如发动机,电器设备,仪表等),相互协作共同完成一架飞机的生产过程.因此,生产过程即可以指整台机器的制造过程,也可以是某一零部件的制造过程.(2)工艺过程

工艺过程是指在生产过程中改变生产对象的形状,尺寸,相对位置和性质等,使其成为成品或半成品的过程.如毛坯的制造,机械加工,热处理,装配等均为工艺过程.在工艺过程中,若用机械加工的方法直接改变生产对象的形状,尺寸和表面质量,使之成为合格零件的工艺过程,称为机械加工工艺过程.同样,将加工好的零件装配成机器使之达到所要求的装配精度并获得预定技术性能的工艺过程,称为装配工艺过程.机械加工工艺过程和装配工艺过程是机械制造工艺学研究的两项主要内容.10.1.2 机械加工工艺过程的组成

机械加工工艺过程是由一个或若干个顺序排列的工序组成的,而工序又可分为若干个安装,工位,工步和走刀,毛坯就是依次通过这些工序的加工而变成为成品的.(1)工序

工序是指一个或一组工人,在一个工作地点对一个或同时对几个工件所连续完成的那一部分工艺过程.区分工序的主要依据,是工作地点(或设备)是否变动和完成的那部分工艺内容是否连续.如图 4.1所示的零件,孔1需要进行钻孔和铰孔,如果一批工件中,每个工件都是在一台机床上依次地先钻孔,而后铰孔,则钻孔和铰孔就构成一个工序.如果将整批工件都是先进行钻孔,然后整批工件再进行铰孔,这样钻孔和铰孔就分成两个工序了.工序不仅是组成工艺过程的基本单元,也是制订工时定额,配备工人,安排作业和进行质量检验的依据.通常把仅列出主要工序名称的简略工艺过程称为工艺路线.(2)安装与工位

工件在加工前,在机床或夹具上先占据一正确位置(定位),然后再夹紧的过程称为装夹.工件(或装配单元)经一次装夹后所完成的那一部分工艺内容称为安装.在一道工序中可以有一个或多个安装.工件加工中应尽量减少装夹次数,因为多一次装夹就多一次装夹误差,而且增加了辅助时间.因此生产中常用各种回转工作台,回转夹具或移动夹具等,以便在工件一次装夹后,可使其处于不同的位置加工.为完成—定的工序内容,一次装夹工件后,工件(或装配单元)与夹具或设备的可动部分一起相对刀具或设备固定部分所占据的每一个位置,称为工位.图4.2所示为一种利用回转工作台在—次装夹后顺序完成装卸工件,钻孔,扩孔和铰孔四个工位加工的实例.(3)工步与走刀

1)工步 工步是指被加工表面(或装配时的连接表面)和切削(或装配)工具不变的情况下所连续完成的那一部分工序.一个工序可以包括几个工步,也可以只有一个工步.一般来说,构成工步的任一要素(加工表面,刀具及加工连续性)改变后,即成为一个新工步.但下面指出的情况应视为一个工步.①对于那些一次装夹中连续进行的若干相同的工步应视为一个工步.如图 4.1所示,两孔1的加工,可以作为一个工步.② 为了提高生产率,有时用几把刀具同时加工一个或几个表面,此时也应视为一个工步.称为复合工步.2)走刀 在一个工步内,若被加工表面切去的金属层很厚,需分几次切削,则每进行一次切削就是一次走刀.一个工步可以包括一次走刀或几次走刀.10.1.3 机械加工生产类型和特点(1)生产纲领

企业在计划期内生产的产品的数量和进度计划称为生产纲领.零件的年生产纲领.可按下式计算 N=Qn(1+a%+b%)

式中 N——零件的年生产纲领,件/年;Q——产品的年生产纲领,台/年;n——每台产品中该零件的数量,件/台;a%--备品的百分率;b%--废品的百分率.生产纲领的大小对生产组织形式和零件加工过程起着重要的作用,它决定了各工序所需专业化和自动化的程度,决定了所应选用的工艺方法和工艺装备.(2)生产类型和工艺特点

企业(或车间,工段,班组,工作地)生产专业化程度的分类称为生产类型.生产类型一般可分为:单件生产,成批生产,大量生产三种.1)单件生产 单件生产的基本特点是:生产的产品种类繁多,每种产品的产量很少,而且很少重复生产.例如,重型机械产品制造和新产品试制等都属于单间生产.2)成批生产 成批生产的基本特点是:分批的生产相同的产品,生产呈周期性重复.如机床制造,电机制造等属于成批生产,成批生产又可按其批量大小分为小批量生产,中批量生产,大批量生产三种类型.其中,小批量生产和大批生产的工艺特点分别与单件生产和大量生产的工艺特点类似;中批量生产的工艺特点.介于小批生产和大批生产之间.3)大量生产 大量生产的基本特点是:产量大,品种少,大多数工作长期重复的进行某个零件的某一道工序的加工.例如,汽车,拖拉机,轴承等的制造都属于大量生产.生产类型的划分除了与生产纲领有关外,还应考虑产品的大小及复杂程度,生产类型不同,产品制造的工艺方法,所用的设备和工艺装备以及生产的组织形式等均不同.大批大量生产应尽可能采用高效率的设备和工艺方法,以提高生产率;单件小批生产应采用通用设备和工艺装备,也可采用先进的数控机床,以降低各类生产类型的生产成本.10.2 机械加工工艺规程 10.2.1 概述

机械加工工艺规程是规定零件机械加工工艺过程和操作方法等的工艺文件之一,它是在具体的生产条件下,把较为合理的工艺过程和操作方法,按照规定的形式书写成工艺文件,经审批后用来指导生产.机械加工工艺规程一般包括以下内容:工件加工的工艺路线,各工序的具体内容及所用的设备和工艺装备,工件的检验项目及检验方法,切削用量,时间定额等.10.2.1.1 机械加工艺规程的作用(1)是指导生产的重要技术文件

工艺规程是依据工艺学原理和工艺试验,经过生产验证而确定的,是科学技术和生产经验的结晶.所以,它是获得合格产品的技术保证,是指导企业生产活动的重要文件.正因为这样,在生产中必须遵守工艺规程,否则常常会引起产品质量的严重下降,生产率显著降低,甚至造成废品.但是,工艺规程也不是固定不变的,工艺人员应总结工人的革新创造,可以根据生产实际情况,及时地汲取国内外的先进工艺技术,对现行工艺不断地进行改进和完善,但必须要有严格的审批手续.(2)是生产组织和生产准备工作的依据

生产计划的制订,产品投产前原材料和毛坯的供应,工艺装备的设计,制造与采购,机床负荷的调整,作业计划的编排,劳动力的组织,工时定额的制订以及成本的核算等,都是以工艺规程作为基本依据的.(3)是新建和扩建工厂(车间)的技术依据

在新建和扩建工厂(车间)时,生产所需要的机床和其它设备的种类,数量和规格,车间的面积,机床的布置,生产工人的工种,技术等级及数量,辅助部门的安排等都是以工艺规程为基础,根据生产类型来确定.除此以外,先进的工艺规程也起着推广和交流先进经验的作用,典型工艺规程可指导同类产品的生产.10.2.1.2 工艺规程制订的原则

工艺规程制订的原则是优质,高产和低成本,即在保证产品质量的前提下,争取最好的经济效益.在具体制定时,还应注意下列问题: 1)技术上的先进性 在制订工艺规程时,要了解国内外本行业工艺技术的发展,通过必要的工艺试验,尽可能采用先进适用的工艺和工艺装备.2)经济上的合理性 在一定的生产条件下,可能会出现几种能够保证零件技术要求的工艺方案.此时应通过成本核算或相互对比,选择经济上最合理的方案,使产品生产成本最低.3)良好的劳动条件及避免环境污染 在制订工艺规程时,要注意保证工人操作时有良好而安全的劳动条件.因此,在工艺方案上要尽量采取机械化或自动化措施,以减轻工人繁重的体力劳动.同时,要符合国家环境保护法的有关规定,避免环境污染.产品质量,生产率和经济性这三个方面有时相互矛盾,因此,合理的工艺规程应用该处理好这些矛盾,体现这三者的统一.10.2.1.3 制订工艺规程的原始资料 1)产品全套装配图和零件图.2)产品验收的质量标准.3)产品的生产纲领(年产量).4)毛坯资料 毛坯资料包括各种毛坯制造方法的技术经济特征;各种型材的品种和规格,毛坯图等;在无毛坯图的情况下,需实际了解毛坯的形状,尺寸及机械性能等.5)本厂的生产条件 为了使制订的工艺规程切实可行,一定要考虑本厂的生产条件.如了解毛坯的生产能力及技术水平;加工设备和工艺装备的规格及性能;工人技术水平以及专用设备与工艺装备的制造能力等.6)国内外先进工艺及生产技术发展情况 工艺规程的制订,要经常研究国内外有关工艺技术资料,积极引进适用的先进工艺技术,不断提高工艺水平,以获得最大的经济效益.7)有关的工艺手册及图册.10.2.1.4 制订工艺规程的步骤

1)计算年生产纲领,确定生产类型.2)分析零件图及产品装配图,对零件进行工艺分析.3)选择毛坯.4)拟订工艺路线.5)确定各工序的加工余量,计算工序尺寸及公差.6)确定各工序所用的设备及刀具,夹具,量具和辅助工具.7)确定切削用量及工时定额.8)确定各主要工序的技术要求及检验方法.9)填写工艺文件.在制订工艺规程的过程中,往往要对前面已初步确定的内容进行调整,以提高经济效益.在执行工艺规程过程中,可能会出现前所未料的情况,如生产条件的变化,新技术,新工艺的引进,新材料,先进设备的应用等,都要求及时对工艺规程进行修订和完善.10.2.1.5 工艺文件的格式

将工艺规程的内容,填入一定格式的卡片,即成为生产准备和施工依据的工艺文件.常用的工艺文件格式有下列几种:(1)综合工艺过程卡片

这种卡片以工序为单位,简要地列出了整个零件加工所经过的工艺路线(包括毛坯制造,机械加工和热处理等),它是制订其它工艺文件的基础,也是生产技术准备,编排作业计划和组织生产的依据.在这种卡片中,由于各工序的说明不够具体,故一般不能直接指导工人操作,而多作生产管理方面使用.但是,在单件小批生产中,由于通常不编制其它较详细的工艺文件,而是以这种卡片指导生产.机械加工工艺卡片是以工序为单位,详细说明整个工艺过程的工艺文件.它是用来指导工人生产和帮助车间管理人员和技术人员掌握整个零件加工过程的一种主要技术文件,广泛用于成批生产的零件和小批生产中的重要零件.(3)机械加工工序卡片

机械加工工序卡片是根据工艺卡片为毎一道工序制订的.它更详细地说明整个零件各个工序的加工要求,是用来具体指导工人操作的工艺文件.在这种卡片上,要画出工序简图,注明该工序每一工步的内容,工艺参数,操作要求以及所用的设备和工艺装备.工序简图就是按一定比例用较小的投影绘出工序图,可略去图中的次要结构和线条,主视图方向尽量与零件在机床上的安装方向相一致,本工序的加工表面用粗实线或红色粗实线表示,零件的结构,尺寸要与本工序加工后的情况相符合,并标注出本工序加工尺寸及上下偏差,加工表面粗糙度和工件的定位及夹紧情况.用于大批量生产的零件.10.2.2 零件的工艺分析

在制订零件的机械加工工艺规程时,首先要对照产品装配图分析零件图,熟悉该产品的用途,性能及工作条件,明确零件在产品中的位置,作用及相关零件的位置关系;了解并研究各项技术条件制定的依据,找出其主要技术要求和技术关键,以便在拟定工艺规程时采用适当的措施加以保证.然后着重对零件进行结构分析和技术要求的分析.10.2.2.1 零件结构分析

零件的结构分析主要包括以下三方面:(1)零件表面的组成和基本类型

尽管组成零件的结构多种多样,但从形体上加以分析,都是由一些基本表面和特形表面组成的.基本表面有内外圆柱表面,圆锥表面和平面等;特形表面主要有螺旋面,渐开线齿形表面,圆弧面(如球面)等.在零件结构分析时,根据机械零件不同表面的组合形成零件结构上的特点,就可选择与其相适应的加工方法和加工路线,例如外圆表面通常由车削或磨削加工;内孔表面则通过钻,扩,铰,镗和磨削等加工方法获得.机械零件不同表面的组合形成零件结构上的特点.在机械制造中,通常按零件结构和工艺过程的相似性,将各类零件大致分为轴类零件,套类零件,箱体类零件,齿轮类零件和叉架类零件等.(2)主要表面与次要表面区分

根据零件各加工表面要求的不同,可以将零件的加工表面划分为主要加工表面和次要加工表面;这样,就能在工艺路线拟定时,做到主次分开以保证主要表面的加工精度.(3)零件的结构工艺性

所谓零件的结构工艺性是指零件在满足使用要求的前提下,制造该零件的可行性和经济性.功能相同的零件,其结构工艺性可以有很大差异.所谓结构工艺性好,是指在现有工艺条件下,既能方便制造又有较低的制造成本.10.2.2.2 零件的技术要求分析

零件图样上的技术要求,既要满足设计要求,又要便于加工,而且齐全和合理.其技术要求包括下列几个方面: 1)加工表面的尺寸精度,形状精度和表面质量;2)各加工表面之间的相互位置精度;3)工件的热处理和其它要求,如动平衡,镀铬处理,去磁等.零件的尺寸精度,形状精度,位置精度和表面粗糙度的要求,对确定机械加工工艺方案和生产成本影响很大.因此,必须认真审查,以避免过高的要求使加工工艺复杂化和增加不必要的费用.在认真分析了零件的技术要求后,结合零件的结构特点,对零件的加工工艺过程便有一个初步的轮廓.加工表面的尺寸精度,表面粗糙度和有无热处理要求,决定了该表面的最终加工方法,进而得出中间工序和粗加工工序所采用的加工方法.如,轴类零件上 IT7 级精度,表面粗糙度 R a 1.6 μ m 的轴颈表面,若不淬火,可用粗车,半精车,精车最终完成;若淬火,则最终加工方法选磨削,磨削前可采用粗车,半精车(或精车)等加工方法加工.表面间的相互位置精度,基本上决定了各表面的加工顺序.10.2.3 毛坯的选择

毛坯的确定,不仅影响毛坯制造的经济性,而且影响机械加工的经济性.所以在确定毛坯时,既要考虑热加工方面的因素,也要兼顾冷加工方面的要求,以便从确定毛坯这一环节中,降低零件的制造成本.10.2.3.1 机械加工中常用毛坯的种类

毛坯的种类很多,同一种毛坯又有多种制造方法,机械制造中常用的毛坯有以下几种:(1)铸件

形状复杂的零件毛坯,宜采用铸造方法制造.目前铸件大多用砂型铸造,它又分为木模手工造型和金属模机器造型.木模手工造型铸件精度低,加工表面余量大,生产率低,适用于单件小批生产或大型零件的铸造.金属模机器造型生产率高,铸件精度高,但设备费用高,铸件的重量也受到限制,适用于大批量生产的中小铸件.其次,少量质量要求较高的小型铸件可采用特种铸造(如压力铸造,离心制造和熔模铸造等).(2)锻件

机械强度要求高的钢制件,一般要用锻件毛坯.锻件有自由锻造锻件和模锻件两种.自由锻造锻件可用手工锻打(小型毛坯), 机械锤锻(中型毛坯)或压力机压锻(大型毛坯)等方法获得.这种锻件的精度低,生产率不高,加工余量较大,而且零件的结构必须简单;适用于单件和小批生产,以及制造大型锻件.模锻件的精度和表面质量都比自由锻件好,而且锻件的形状也可较为复杂,因而能减少机械加工余量.模锻的生产率比自由锻高得多,但需要特殊的设备和锻模,故适用于批量较大的中小型锻件.(3)型材

型材按截面形状可分为:圆钢,方钢,六角钢,扁钢,角钢,槽钢及其它特殊截面的型材.型材有热轧和冷拉两类.热轧的型材精度低,但价格便宜,用于一般零件的毛坯;冷拉的型材尺寸较小,精度高,易于实现自动送料,但价格较高,多用于批量较大的生产,适用于自动机床加工.(4)焊接件

焊接件是用焊接方法而获得的结合件,焊接件的优点是制造简单,周期短,节省材料,缺点是抗振性差,变形大,需经时效处理后才能进行机械加工.除此之外,还有冲压件,冷挤压件,粉末冶金等其它毛坯.10.2.3.2 毛坯种类选择中应注意的问题(1)零件材料及其力学性能

零件的材料大致确定了毛坯的种类.例如材料为铸铁和青铜的零件应选择铸件毛坯;钢质零件形状不复杂,力学性能要求不太高时可选型材;重要的钢质零件,为保证其力学性能,应选择锻件毛坯.(2)零件的结构形状与外形尺寸

形状复杂的毛坯,一般用铸造方法制造.薄壁零件不宜用砂型铸造;中小型零件可考虑用先进的铸造方法;大型零件可用砂型铸造.一般用途的阶梯轴,如各阶梯直径相差不大,可用圆棒料;如各阶梯直径相差较大,为减少材料消耗和机械加工的劳动量,则宜选择锻件毛坯.尺寸大的零件一般选择自由锻造;中小型零件可选择模锻件;一些小型零件可做成整体毛坯.(3)生产类型

大量生产的零件应选择精度和生产率都比较高的毛坯制造方法,如铸件采用金属模机器造型或精密铸造;锻件采用模锻,精锻;型材采用冷轧或冷拉型材;零件产量较小时应选择精度和生产率较低的毛坯制造方法.(4)现有生产条件

确定毛坯的种类及制造方法,必须考虑具体的生产条件,如毛坯制造的工艺水平,设备状况以及对外协作的可能性等.(5)充分考虑利用新工艺,新技术和新材料

随着机械制造技术的发展,毛坯制造方面的新工艺,新技术和新材料的应用也发展很快.如精铸,精锻,冷挤压,粉末冶金和工程塑料等在机械中的应用日益增加.采用这些方法大大减少了机械加工量,有时甚至可以不再进行机械加工就能达到加工要求,其经济效益非常显著.我们在选择毛坯时应给予充分考虑,在可能的条件下,尽量采用.10.2.3.3 毛坯形状和尺寸的确定

毛坯形状和尺寸,基本上取决于零件形状和尺寸.零件和毛坯的主要差别,在于在零件需要加工的表面上,加上一定的机械加工余量,即毛坯加工余量.毛坯制造时,同样会产生误差,毛坯制造的尺寸公差称为毛坯公差.毛坯加工余量和公差的大小,直接影响机械加工的劳动量和原材料的消耗,从而影响产品的制造成本.所以现代机械制造的发展趋势之一,便是通过毛坯精化,使毛坯的形状和尺寸尽量和零件一致,力求作到少,无切削加工.毛坯加工余量和公差的大小,与毛坯的制造方法有关,生产中可参考有关工艺手册或有关企业,行业标准来确定.在确定了毛坯加工余量以后,毛坯的形状和尺寸,除了将毛坯加工余量附加在零件相应的加工表面上外,还要考虑毛坯制造,机械加工和热处理等多方面工艺因素的影响.下面仅从机械加工工艺的角度,分析确定毛坯的形状和尺寸时应考虑的问题.(1)工艺搭子的设置

有些零件,由于结构的原因,加工时不易装夹稳定,为了装夹方便迅速,可在毛坯上制出凸台,即所谓的工艺搭子.工艺搭子只在装夹工件时用,零件加工完成后,一般都要切掉,但如果不影响零件的使用性能和外观质量时,可以保留.(2)整体毛坯的采用

在机械加工中,有时会遇到如磨床主轴部件中的三瓦轴承,发动机的连杆和车床的开合螺母等类零件.为了保证这类零件的加工质量和加工时方便,常做成整体毛坯,加工到一定阶段后再切开.(3)合件毛坯的采用

为了便于加工过程中的装夹,对于一些形状比较规则的小形零件,如 T 形键,扁螺母,小隔套等,应将多件合成一个毛坯,待加工到一定阶段后或者大多数表面加工完毕后,再加工成单件.图5.3a 为 T815 汽车上的一个扁螺母.毛坯取一长六方钢, 图 5.3b 表示在车床上先车槽,倒角;图 5.3c 表示在车槽及倒角后,用 24.5mm 的钻头钻孔.钻孔的同时也就切成若干个单件.合件毛坯,在确定其长度尺寸时,既要考虑切割刀具的宽度和零件的个数,还应考虑切成单件后,切割的端面是否需要进一步加工,若要加工,还应留有一定的加工余量.在确定了毛坯种类,形状和尺寸后,还应绘制一张毛坯图,作为毛坯生产单位的产品图样.绘制毛坯图,是在零件图的基础上,在相应的加工表面上加上毛坯余量.但绘制时还要考虑毛坯的具体制造条件,如铸件上的孔,锻件上的孔和空档,法兰等的最小铸出和锻出条件;铸件和锻件表面的起模斜度(拔模斜度)和圆角;分型面和分模面的位置等.并用双点划线在毛坯图中表示出零件的表面,以区别加工表面和非加工表面.10.2.4 工艺路线的拟订

工艺路线的拟订是制订工艺规程的关键,它制订的是否合理,直接影响到工艺规程的合理性,科学性和经济性.工艺路线拟订的主要任务是选择各个表面的加工方法和加工方案,确定各个表面的加工顺序以及工序集中与分散的程度,合理选用机床和刀具,确定所用夹具的大致结构等.关于工艺路线的拟订,经过长期的生产实践已总结出一些带有普遍性的工艺设计原则,但在具体拟订时,特别要注意根据生产实际灵活应用.10.2.4.1 表面加工方案的选择

(1)各种加工方法所能达到的经济精度及表面粗糙度

为了正确选择表面加工方法,首先应了解各种加工方法的特点和掌握加工经济精度的概念.任何一种加工方法可以获得的加工精度和表面粗糙度均有一个较大的范围.例如,精细的操作,选择低的切削用量,可以获得较高的精度,但又会降低生产率,提高成本;反之,如增大切削用量提高生产率,虽然成本降低了,但精度也降低了.所以对一种加工方法,只有在一定的精度范围内才是经济的,这一定范围的精度是指在正常的加工条件下(采用符合质量的标准设备,工艺装备和标准技术等级的工人,不延长加工时间)所能保证的加工精度.这一定范围的精度称为经济精度.相应的粗糙度称为经济表面粗糙度.各种加工方法所能达到的加工经济精度和表面粗糙度,以及各种典型表面的加工方案在机械加工手册中都能查到.这里要指出的是,加工经济精度的数值并不是一成不变的,随着科学技术的发展,工艺技术的改进,加工经济精度会逐步提高.(2)选择表面加工方案时考虑的因素

选择表面加工方案,一般是根据经验或查表来确定,再结合实际情况或工艺试验进行修改.表面加工方案的选择,应同时满足加工质量,生产率和经济性等方面的要求,具体选择时应考虑以下几方面的因素: 1)选择能获得相应经济精度的加工方法 例如加工精度为 IT7 ,表面粗糙度为 Ra0.4 m 的外圆柱面,通过精细车削是可以达到要求的,但不如磨削经济.2)零件材料的可加工性能 例如淬火钢的精加工要用磨削,有色金属圆柱面的精加工为避免磨削时堵塞砂轮,则要用高速精细车或精细镗(金刚镗).3)工件的结构形状和尺寸大小 例如对于加工精度要求为 IT7 的孔,采用镗削,铰削,拉削和磨削均可达到要求.但箱体上的孔,一般不宜选用拉孔或磨孔,而宜选择镗孔(大孔)或铰孔(小孔).4)生产类型 大批量生产时,应采用高效率的先进工艺,例如用拉削方法加工孔和平面,用组合铣削或磨削同时加工几个表面,对于复杂的表面采用数控机床及加工中心等;单件小批生产时,宜采用刨削,铣削平面和钻,扩,铰孔等加工方法,避免盲目地采用高效加工方法和专用设备而造成经济损失.5)现有生产条件 充分利用现有设备和工艺手段,发挥工人的创造性,挖掘企业潜力,创造经济效益.10.2.4.2 加工阶段的划分(1)划分方法

零件的加工质量要求较高时,都应划分加工阶段.一般划分为粗加工,半精加工和精加工三个阶段.如果零件要求的精度特别高,表面粗糙度很细时,还应増加光整加工和超精密加工阶段.各加工阶段的主要任务是: 1)粗加工阶段 主要任务是切除毛坯上各加工表面的大部分加工余量,使毛坯在形状和尺寸上接近零件成品.因此,应采取措施尽可能提高生产率.同时要为半精加工阶段提供精基准,并留有充分均匀 的加工余量,为后续工序创造有利条件.2)半精加工阶段 达到一定的精度要求,并保证留有一定的加工余量,为主要表面的精加工作准备.同时完成一些次要表面的加工(如紧固孔的钻削,攻螺纹,铣键槽等).3)精加工阶段 主要任务是保证零件各主要表面达到图纸规定的技术要求.4)光整加工阶段 对精度要求很高(IT6 以上),表面粗糙度很小(小于 R a 0.2 m)的零件,需安排光整加工阶段.其主要任务是减小表面粗糙度或进一步提高尺寸精度和形状精度.(2)划分加工阶段的原因

1)保证加工质量的需要 零件在粗加工时,由于要切除掉大量金属,因而会产生较大的切削力和切削热,同时也需要较大的夹紧力,在这些力和热的作用下,零件会产生较大的变形.而且经过粗加工后零件的内应力要重新分布,也会使零件发生变形.如果不划分加工阶段而连续加工,就无法避免和修正上述原因所引起的加工误差.加工阶段划分后,粗加工造成的误差,通过半精加工和精加工可以得到修正,并逐步提高零件的加工精度和表面质量,保证了零件的加工要求.2)合理使用机床设备的需要 粗加工一般要求功率大,刚性好,生产率高而精度不高的机床设备.而精加工需采用精度高的机床设备,划分加工阶段后就可以充分发挥粗,精加工设备各自性能的特点,避免以粗干精,做到合理使用设备.这样不但提高了粗加工的生产效率,而且也有利于保持精加工设备的精度和使用寿命.3)及时发现毛坯缺陷 毛坯上的各种缺陷(如气孔,砂眼,夹渣或加工余量不足等),在粗加工后即可被发现,便于及时修补或决定报废,以免继续加工后造成工时和加工费用的浪费.4)便于安排热处理 热处理工序使加工过程划分成几个阶段,如精密主轴在粗加工后进行去除应力的人工时效处理,半精加工后进行淬火,精加工后进行低温回火和冰冷处理,最后再进行光整加工.这几次热处理就把整个加工过程划分为粗加工——半精加工——精加工——光整加工阶段.在零件工艺路线拟订时,一般应遵守划分加工阶段这一原则,但具体应用时还要根据零件的情况灵活处理,例如对于精度和表面质量要求较低而工件刚性足够,毛坯精度较高,加工余量小的工件,可不划分加工阶段.又如对一些刚性好的重型零件,由于装夹吊运很费时,也往往不划分加工阶段而在一次安装中完成粗精加工.还需指出的是,将工艺过程划分成几个加工阶段是对整个加工过程而言的,不能单纯从某一表面的加工或某一工序的性质来判断.例如工件的定位基准,在半精加工阶段甚至在粗加工阶段就需要加工得很准确,而在精加工阶段中安排某些钻孔之类的粗加工工序也是常有的.10.2.4.3 工序的划分

工序集中就是零件的加工集中在少数工序内完成,而每一道工序的加工内容却比较多;工序分散则相反,整个工艺过程中工序数量多,而每一道工序的加工内容则比较少.(1)工序集中的特点

① 有利于采用高生产率的专用设备和工艺装备,如采用多刀多刃,多轴机床,数控机床和加工中心等,从而大大提高生产率.② 减少了工序数目,缩短了工艺路线,从而简化了生产计划和生产组织工作.③ 减少了设备数量,相应地减少了操作工人和生产面积.④ 减少了工件安装次数,不仅缩短了辅助时间,而且在一次安装下能加工较多的表面,也易于保证这些表面的相对位置精度.⑤ 专用设备和工艺装置复杂,生产准备工作和投资都比较大,尤其是转换新产品比较困难.(2)工序分散特点 ① 设备和工艺装备结构都比较简单,调整方便,对工人的技术水平要求低.② 可采用最有利的切削用量,减少机动时间.③ 容易适应生产产品的变换.④ 设备数量多,操作工人多,占用生产面积大.工序集中和工序分散各有特点;在拟订工艺路线时,工序是集中还是分散,即工序数量是多还是少,主要取决于生产规模和零件的结构特点及技术要求.在一般情况下,单件小批生产时,多将工序集中.大批量生产时,既可采用多刀,多轴等高效率机床将工序集中,也可将工序分散后组织流水线生产;目前的发展趋势是倾向于工序集中.10.2.4.4 工序顺序的安排(1)机械加工工序的安排

1)基准先行 零件加工一般多从精基准的加工开始,再以精基准定位加工其它表面.因此,选作精基准的表面应安排在工艺过程起始工序先进行加工,以便为后续工序提供精基准.例如轴类零件先加工两端中心孔,然后再以中心孔作为精基准,粗,精加工所有外圆表面.齿轮加工则先加工内孔及基准端面,再以内孔及端面作为精基准,粗,精加工齿形表面.2)先粗后精 精基准加工好以后,整个零件的加工工序,应是粗加工工序在前,相继为半精加工,精加工及光整加工.按先粗后精的原则先加工精度要求较高的主要表面,即先粗加工再半精加工各主要表面,最后再进行精加工和光整加工.在对重要表面精加工之前,有时需对精基准进行修整,以利于保证重要表面的加工精度,如主轴的高精度磨削时,精磨和超精磨削前都须研磨中心孔;精密齿轮磨齿前,也要对内孔进行磨削加工.3)先主后次 根据零件的功用和技术要求.先将零件的主要表面和次要表面分开,然后先安排主要表面的加工,再把次要表面的加工工序插入其中.次要表面一般指键槽,螺孔,销孔等表面.这些表面一般都与主要表面有一定的相对位置要求,应以主要表面作为基准进行次要表面加工,所以次要表面的加工一般放在主要表面的半精加工以后,精加工以前一次加工结束.也有放在最后加工的,但此时应注意不要碰伤已加工好的主要表面.4)先面后孔 对于箱体,底座,支架等类零件,平面的轮廓尺寸较大,用它作为精基准加工孔,比较稳定可靠,也容易加工,有利于保证孔的精度.如果先加工孔,再以孔为基准加工平面,则比较困难,加工质量也受影响.(2)热处理工序的安排

热处理可用来提高材料的力学性能,改善工件材料的加工性能和消除内应力,其安排主要是根据工件的材料和热处理目的来进行.热处理工艺可分为两大类:预备热处理和最终热处理.1)预备热处理 预备热处理的目的是改善加工性能,消除内应力和为最终热处理准备良好的金相组织.其热处理工艺有退火,正火,时效,调质等.① 退火和正火.退火和正火用于经过热加工的毛坯.含碳量高于 0.5 %的碳钢和合金钢,为降低其硬度易于切削,常采用退火处理;含碳量低于 0.5 %的碳钢和合金钢,为避免其硬度过低切削时粘刀,而采用正火处理.退火和正火尚能细化晶粒,均匀组织,为以后的热处理做准备.退火和正火常安排在毛坯制造之后,粗加工之前进行.② 时效处理.时效处理主要用于消除毛坯制造和机械加工中产生的内应力.为减少运输工作量,对于一般精度的零件,在精加工前安排一次时效处理即可.但精度要求较高的零件(如坐标镗床的箱体等),应安排两次或数次时效处理工序.简单零件一般可不进行时效处理.除铸件外,对于一些刚性较差的精密零件(如精密丝杠),为消除加工中产生的内应力,稳定零件加工精度,常在粗加工,半精加工之间安排多次时效处理.有些轴类零件加工,在校直工序后也要安排时效处理.③ 调质.调质即是在淬火后进行高温回火处理,它能获得均匀细致的回火索氏体组织,为以后的表面淬火和渗氮处理时减少变形做准备,因此调质也可作为预备热处理.由于调质后零件的综合力学性能较好,对某些硬度和耐磨性要求不高的零件,也可作为最终热处理工序.2)最终热处理 最终热处理的目的是提高硬度,耐磨性和强度等力学性能.① 淬火.淬火有表面淬火和整体淬火.其中表面淬火因为变形,氧化及脱碳较小而应用较广,而且表面淬火还具有外部强度高,耐磨性好,而内部保持良好的韧性,抗冲击力强的优点.为提高表面淬火零件的机械性能,常需进行调质或正火等热处理作为预备热处理.其一般工艺路线为:下料一锻造一正火(退火)一粗加工一调质一半精加工一表面淬火一精加工.② 渗碳淬火.渗碳淬火适用于低碳钢和低合金钢,先提高零件表层的含碳量,经淬火后使表层获得高的硬度,而心部仍保持一定的强度和较高的韧性和塑性.渗碳分整体渗碳和局部渗碳.局部渗碳时对不渗碳部分要采取防渗措施(镀铜或镀防渗材料).由于渗碳淬火变形大,且渗碳深度一般在 0.5~2mm 之间,所以渗碳工序一般安排在半精加工和精加工之间.其工艺路线一般为:下料一锻造一正火一粗,半精加工一渗碳淬火一精加工.当局部渗碳零件的不渗碳部分,采用加大余量后切除多余的渗碳层的工艺方案时,切除多余渗碳层的工序应安排在渗碳后,淬火前进行.③ 渗氮处理.渗氮是使氮原子渗入金属表面获得一层含氮化合物的处理方法.渗氮层可以提高零件表面的硬度,耐磨性,疲劳强度和抗蚀性.由于渗氮处理温度较低,变形小,且渗氮层较薄(一般不超过 0.6 ~ 0.7mm),因此渗氮工序应尽量靠后安排,常安排在精加工之间进行.为减小渗氮时的变形,在切削后一般需进行消除应力的高温回火.(3)检验工序的安排

检验工序一般安排在粗加工后,精加工前;送往外车间前后;重要工序和工时长的工序前后;零件加工结束后,入库前.(4)其它工序的安排

1)表面强化工序 如滚压,喷丸处理等,一般安排在工艺过程的最后.2)表面处理工序 如发蓝,电镀等一般安排在工艺过程的最后.3)探伤工序 如 X 射线检查,超声波探伤等多用于零件内部质量的检查,一般安排在工艺过程的开始.磁力探伤,荧光检验等主要用于零件表面质量的检验,通常安排在该表面加工结束以后.4)平衡工序 包括动,静平衡,一般安排在精加工以后.在安排零件的工艺过程中,不要忽视去毛刺,倒棱和清洗等辅助工序.在铣键槽,齿面倒角等工序后应安排去毛刺工序.零件在装配前都应安排清洗工序,特别在研磨等光整加工工序之后,更应注意进行清洗工序,以防止残余的磨料嵌入工件表面,加剧零件在使用中的磨损.10.2.5 加工余量的确定

10.2.5.1 加工余量的概念及其影响因素

在选择了毛坯,拟订出加工工艺路线之后,就需确定加工余量,计算各工序的工序尺寸.加工余量大小与加工成本有密切关系,加工余量过大不仅浪费材料,而且增加切削工时,增大刀具和机床的磨损,从而增加成本;加工余量过小,会使前一道工序的缺陷得不到纠正,造成废品,从而也使成本增加,因此,合理地确定加工余量,对提高加工质量和降低成本都有十分重要的意义.(1)加工余量的概念

在机械加工过程中从加工表面切除的金属层厚度称为加工余量.加工余量分为工序余量和加工总余量.工序余量是指为完成某一道工序所必须切除的金属层厚度,即相邻两工序的工序尺寸之差.加工总余量是指由毛坯变为成品的过程中,在某加工表面上所切除的金属层总厚度,即毛坯尺寸与零件图设计尺寸之差.由于毛坯尺寸和各工序尺寸不可避免地存在公差,因此无论是加工总余量还是工序余量实际上是个变动值,因而加工余量又有基本余量,最大余量和最小余量之分,通常所说的加工余量是指基本余量.加工余量,工序余量的公差标注应遵循“入体原则”即:“毛坯尺寸按双向标注上,下偏差;被包容表面尺寸上偏差为零,也就是基本尺寸为最大极限尺寸(如轴);对包容面尺寸下偏差为零,也就是基本尺寸为最小极限尺寸(如内孔).加工过程中,工序完成后的工件尺寸称为工序尺寸.由于存在加工误差,各工序加工后的尺寸也有一定的公差,称为工序公差.工序公差带的布置也采用”入体原则“法.表示加工余量及其公差的关系,不论是被包容面还是包容面,其加工总余量均等于各工序余量之和.Z = Z + Z + Z + …

加工余量还有双边余量和单边余量之分,平面加工余量是单边余量,它等于实际切削的金属层厚度.对于外圆和孔等回转表面,加工余量是指双边余量,即以直径方向计算,实际切削的金属为加工余量数值的一半.(2)确定加工余量应考虑的因素

为切除前工序在加工时留下的各种缺陷和误差的金属层,又考虑到本工序可能产生的安装误差而不致使工件报废,必须保证一定数值的最小工序余量.为了合理确定加工余量,首先必须了解影响加工余量的因素.影响加工余量的主要因素有: 1)前工序的尺寸公差 由于工序尺寸有公差,上工序的实际工序尺寸有可能出现最大或最小极限尺寸.为了使上工序的实际工序尺寸在极限尺寸的情况下,本工序也能将上工序留下的表面粗糙度和缺陷层切除,本工序的加工余量应包括上工序的公差.2)前工序的形状和位置公差 当工件上有些形状和位置偏差不包括在尺寸公差的范围内时,这些误差又必须在本工序加工纠正,在本工序的加工余量中必须包括它.3)前工序的表面粗糙度和表面缺陷 为了保证加工质量,本工序必须将上工序留下的表面粗糙度和缺陷层切除.4)本工序的安装误差 安装误差包括工件的定位误差和夹紧误差,若用夹具装夹,还应有夹具在机床上的装夹误差.这些误差会使工件在加工时的位置发生偏移,所以加工余量还必须考虑安装误差的影响.10.2.5.2 确定加工余量的方法

确定加工余量的方法有 3 种:分析计算法,经验估算法和查表修正法.(1)分析计算法

本方法是根据有关加工余量计算公式和一定的试验资料,对影响加工余量的各项因素进行分析和综合计算来确定加工余量.用这种方法确定加工余量比较经济合理,但必须有比较全面和可靠的试验资料.目前,只在材料十分贵重,以及军工生产或少数大量生产的工厂中采用.(2)经验估算法

本方法是根据工厂的生产技术水平,依靠实际经验确定加工余量.为防止因余量过小而产生废品,经验估计的数值总是偏大,这种方法常用于单件小批量生产.(3)查表修正法

此法是根据各工厂长期的生产实践与试验研究所积累的有关加工余量数据,制成各种表格并汇编成手册,确定加工余量时,查阅有关手册,再结合本厂的实际情况进行适当修正后确定,目前此法应用较为普遍.10.2.6 工序尺寸及其公差的确定

机械加工过程中,工件的尺寸在不断地变化,由毛坯尺寸到工序尺寸,最后达到设计要求的尺寸.在这个变化过程中,加工表面本身的尺寸及各表面之间的尺寸都在不断地变化,这种变化无论是在一个工序内部,还是在各个工序之间都有一定的内在联系.应用尺寸链理论去揭示它们之间的内在关系,掌握它们的变化规律是合理确定工序尺寸及其公差和计算各种工艺尺寸的基础,因此,本节先介绍工艺尺寸链的基本概念,然后分析工艺尺寸链的计算方法以及工艺尺寸链的应用.10.2.6.1 工艺尺寸链的概念(1)工艺尺寸链的定义

在零件的加工过程中,为了加工和检验的方便,有时需要进行一些工艺尺寸的计算.为使这种计算迅速准确,按照尺寸链的基本原理,将这些有关尺寸以一定顺序首尾相连排列成一封闭的尺寸系统,即构成了零件的工艺尺寸链,简称工艺尺寸链.(2)工艺尺寸链的组成

① 环 组成工艺尺寸链的各个尺寸都称为工艺尺寸链的环.② 封闭环 工艺尺寸链中间接得到的环称为封闭环.封闭环以下角标” 0 “表示,如” A 0 “,” L “.③ 组成环 除封闭环以外的其它环都称为组成环.组成环分增环和减环两种.④ 增环 当其余各组成环保持不变,某一组成环增大,封闭环也随之增大,该环即为增环.一般在该环尺寸的代表符号上,加一向右的箭头表示.⑤ 减环 当其余各组成环保持不变,某一组成环增大,封闭环反而减小,该环即为减环.一般在该尺寸的代表符号上,加一向左的箭头表示.(3)工艺尺寸链的特征

① 关联性 组成工艺尺寸链的各尺寸之间必然存在着一定的关系,相互无关的尺寸不组成工艺尺寸链.工艺尺寸链中每一个组成环不是增环就是减环,其尺寸发生变化都要引起封闭环的尺寸变化.对工艺尺寸链中的封闭环尺寸没有影响的尺寸,就不是该工艺尺寸链的组成环.② 封闭性 尺寸链必须是一组首尾相接并构成一个封闭图形的尺寸组合,其中应包含一个间接得到的尺寸.不构成封闭图形的尺寸组合就不是尺寸链.(4)建立工艺尺寸链的步骤

① 确定封闭环 即加工后间接得到的尺寸.② 查找组成环 从封闭环一端开始,按照尺寸之间的联系,首尾相连,依次画出对封闭环有影响的尺寸,直到封闭环的另一端,形成一个封闭图形,就构成一个工艺尺寸链.查找组成环必须掌握的基本特点为:组成环是加工过程中”直接获得“的,而且对封闭环有影响.③ 按照各组成环对封闭环的影响,确定其为增环或减环 确定增环或减环可先给封闭环任意规定一个方向,然后沿此方向,绕工艺尺寸链依次给各组成环画出箭头,凡是与封闭环箭头方向相同的就是减环,相反的就是增环.10.2.6.2 工艺尺寸链的计算

尺寸链的计算方法有两种:极值法与概率法.极值法是从最坏情况出发来考虑问题的,即当所有增环都为最大极限尺寸而减环恰好都为最小极限尺寸,或所有增环都为最小极限尺寸而减环恰好都为最大极限尺寸,来计算封闭环的极限尺寸和公差.事实上,一批零件的实际尺寸是在公差带范围内变化的.在尺寸链中,所有增环不一定同时出现最大或最小极限尺寸,即使出现,此时所有减环也不一定同时出现最小或最大极限尺寸.概率法解尺寸链,主要用于装配尺寸链,其计算方法在装配中讲授.10.2.6.3 工序尺寸及其公差的确定(1)基准重合时工序尺寸及公差的确定

当零件定位基准与设计基准(工序基准)重合时,零件工序尺寸及其公差的确定方法是:先根据零件的具体要求确定其加工工艺路线,再通过查表确定各道工序的加工余量及其公差,然后计算出各工序尺寸及公差;计算顺序是:先确定各工序余量的基本尺寸,再由后往前逐个工序推算,即由工件上的设计尺寸开始,由最后一道工序向前工序推算直到毛坯尺寸.(2)测量基准与设计基准不重合时工序尺寸及其公差的计算

在加工中,有时会遇到某些加工表面的设计尺寸不便测量,甚至无法测量的情况,为此需要在工件上另选一个容易测量的测量基准,通过对该测量尺寸的控制来间接保证原设计尺寸的精度.这就产生了测量基准与设计基准不重合时,测量尺寸及公差的计算问题.(3)定位基准与设计基准不重合时工序尺寸计算

在零件加工过程中有时为方便定位或加工,选用不是设计基准的几何要素作定位基准,在这种定位基准与设计基准不重合的情况下,需要通过尺寸换算,改注有关工序尺寸及公差,并按换算后的工序尺寸及公差加工.以保证零件的原设计要求.(4)中间工序的工序尺寸及其公差的求解计算

在工件加工过程中,有时一个基面的加工会同时影响两个设计尺寸的数值.这时,需要直接保证其中公差要求较严的一个设计尺寸,而另一设计尺寸需由该工序前面的某一中间工序的合理工序尺寸间接保证.为此,需要对中间工序尺寸进行计算.(5)保证应有渗碳或渗氮层深度时工艺尺寸及其公差的计算

零件渗碳或渗氮后,表面一般要经磨削保证尺寸精度,同时要求磨后保留有规定的渗层深度.这就要求进行渗碳或渗氮热处理时按一定渗层深度及公差进行(用控制热处理时间保证),并对这一合理渗层深度及公差进行计算.10.2.7 机械加工的生产率及技术经济分析 10.2.7.1 机械加工时间定额的组成(1)时间定额的概念

所谓时间定额是指在一定生产条件下,规定生产一件产品或完成一道工序所需消耗的时间.它是安排作业计划,核算生产成本,确定设备数量,人员编制以及规划生产面积的重要依据.(2)时间定额的组成

1)基本时间 T 基本时间是指直接改变生产对象的尺寸,形状,相对位置以及表面状态或材料性质等工艺过程所消耗的时间.对于切削加工来说,基本时间就是切除金属所消耗的时间(包括刀具的切入和切出时间在内).2)辅助时间T 辅助时间是为实现工艺过程所必须进行的各种辅助动作所消耗的时间.它包括:装卸工件,开停机床,引进或退出刀具,改变切削用量,试切和测量工件等所消耗的时间.基本时间和辅助时间的总和称为作业时间.它是直接用于制造产品或零部件所消耗的时间.辅助时间的确定方法随生产类型而异.大批大量生产时,为使辅助时间规定得合理,需将辅助动作分解,再分别确定各分解动作的时间,最后予以综合;中批生产则可根据以往统计资料来确定;单件小批生产常用基本时间的百分比进行估算.3)布置工作地时间 T 布置工作地时间是为了使加工正常进行,工人照管工作地(如更换刀具,润滑机床,清理切屑,收拾工具等)所消耗的时间.它不是直接消耗在每个工件上的.而是消耗在一个工作班内的时间,再折算到每个工件上的.一般按作业时间的 2% ~ 7% 估算.4)休息与生理需要时间 T 休息与生理需要时间是工人在工作班内恢复体力和满足生理上的需要所消耗的时间.T 是按一个工作班为计算单位,再折算到每个工件上的.对机床操作工人一般按作业时间的 2% 估算.以上四部分时间的总和称为单件时间 T ,即 T = T +T + T + T

5)准备与终结时间T 准备与终结时间是指工人为了生产一批产品或零部件,进行准备和结束工作所消耗的时间.在单件或成批生产中,每当开始加工一批工件时,工人需要熟悉工艺文件,领取毛坯,材料,工艺装备,安装刀具和夹具,调整机床和其它工艺装备等所消耗的时间以及加工一批工件结束后,需拆下和归还工艺装备,送交成品等所消耗的时间.T 既不是直接消耗在每个工件上的,也不是消耗在一个工作班内的时间,而是消耗在一批工件上的时间.因而分摊到每个工件的时间为T / n ,其中 n 为批量.故单件和成批生产的单件工时定额的计算公式 T 应为: T = T +T / n

大批大量生产时,由于 n 的数值很大,T / n ≈ 0,故不考虑准备终结时间,即: T = T 10.2.7.2 提高机械加工生产率的途径

劳动生产率是指工人在单位时间内制造的合格产品的数量或制造单件产品所消耗的劳动时间.劳动生产率是一项综合性的技术经济指标.提高劳动生产率,必须正确处理好质量,生产率和经济性三者之间的关系.应在保证质量的前提下,提高生产率,降低成本.劳动生产率提高的措施很多,涉及到产品设计,制造工艺和组织管理等多方面,这里仅就通过缩短单件时间来提高机械加工生产率的工艺途径作一简要分析.由式(5.8)所示的单件时间组成,不难得知提高劳动生产率的工艺措施可有以下几个方面:(1)缩短基本时间

在大批大量生产时,由于基本时间在单位时间中所占比重较大,因此通过缩短基本时间即可提高生产率.缩短基本时间的主要途径有以下几种: 1)提高切削用量 增大切削速度,进给量和背吃刀量,都可缩短基本时间,但切削用量的提高受到刀具耐用度和机床功率,工艺系统刚度等方面的制约.随着新型刀具材料的出现,切削速度得到了迅速的提高,目前硬质合金车刀的切削速度可达 200m/min ,陶瓷刀具的切削速度达 500m/min.近年来出现的聚晶人造金刚石和聚晶立方氮化硼刀具切削普通钢材的切削速度达 900m/min.在磨削方面,近年来发展的趋势是高速磨削和强力磨削.国内生产的高速磨床和砂轮磨削速度已达 60m/s ,国外已达 90~120m/s;强力磨削的切入深度已达 6~12mm ,从而使生产率大大提高.2)采用多刀同时切削每把车刀实际加工长度只有原来的三分之一;每把刀的切削余量只有原来的三分之一;用三把刀具对同一工件上不同表面同时进行横向切入法车削.显然,采用多刀同时切削比单刀切削的加工时间大大缩短.3)多件加工 这种方法是通过减少刀具的切入,切出时间或者使基本时间重合,从而缩短每个零件加工的基本时间来提高生产率.多件加工的方式有以下三种: ① 顺序多件加工.即工件顺着走刀方向一个接着一个地安装,这种方法减少了刀具切入和切出的时间,也减少了分摊到每一个工件上的辅助时间.②平行多件加工.即在一次走刀中同时加工 n 个平行排列的工件.加工所需基本时间和加工一个工件相同,所以分摊到每个工件的基本时间就减少到原来的 1/n ,其中 n 是同时加工的工件数.这种方式常见于铣削和平面磨削.③平行顺序多件加工.这种方法为顺序多件加工和平行多件加工的综合应用,.这种方法适用于工件较小,批量较大的情况.4)减少加工余量 采用精密铸造,压力铸造,精密锻造等先进工艺提高毛坯制造精度,减少机械加工余量,以缩短基本时间,有时甚至无需再进行机械加工,这样可以大幅度提高生产效率.(2)缩短辅助时间

辅助时间在单件时间中也占有较大比重,尤其是在大幅度提高切削用量之后,基本时间显著减少,辅助时间所占比重就更高.此时采取措施缩减辅助时间就成为提高生产率的重要方向.缩短辅助时间有两种不同的途径,一是使辅助动作实现机械化和自动化,从而直接缩减辅助时间;二是使辅助时间与基本时间重合,间接缩短辅助时间.1)直接缩减辅助时间 采用专用夹具装夹工件,工件在装夹中不需找正,可缩短装卸工件的时间.大批大量生产时,广泛采用高效气动,液动夹具来缩短装卸工件的时间.单件小批生产中,由于受专用夹具制造成本的限制,为缩短装卸工件的时间,可采用组合夹具及可调夹具.此外,为减小加工中停机测量的辅助时间,可采用主动检测装置或数字显示装置在加工过程中进行实时测量,以减少加工中需要的测量时间.主动检测装置能在加工过程中测量加工表面的实际尺寸,并根据测量结果自动对机床进行调整和工作循环控制,例如磨削自动测量装置.数显装置能把加工过程或机床调整过程中机床运动的移动量或角位移连续精确地显示出来,这些都大大节省了停机测量的辅助时间.2)间接缩短辅助时间 为了使辅助时间和基本时间全部或部分地重合,可采用多工位夹具和连续加工的方法.(3)缩短布置工作地时间

布置工作地时间,大部分消耗在更换刀具上,因此必须减少换刀次数并缩减每次换刀所需的时间,提高刀具的耐用度可减少换刀次数.而换刀时间的减少,则主要通过改进刀具的安装方法和采用装刀夹具来实现.如采用各种快换刀夹,刀具微调机构,专用对刀样板或对刀样件以及自动换刀装置等,以减少刀具的装卸和对刀所需时间.例如在车床和铣床上采用可转位硬质合金刀片刀具,既减少了换刀次数,又可减少刀具装卸,对刀和刃磨的时间.(4)缩短准备与终结时间

缩短准备与终结时间的途径有二:第一,扩大产品生产批量,以相对减少分摊到每个零件上的准备与终结时间;第二,直接减少准备与终结时间.扩大产品生产批量,可以通过零件标准化和通用化实现,并可采用成组技术组织生产.10.2.7.3 机械加工技术经济分析的方法

制订机械加工工艺规程时,在同样能满足工件的各项技术要求下,一般可以拟订出几种不同的加工方案,而这些方案的生产效率和生产成本会有所不同.为了选取最佳方案就需进行技术经济分析.所谓技术经济分析就是通过比较不同工艺方案的生产成本,选出最经济的加工工艺方案.生产成本是指制造一个零件或一台产品所必须的一切费用的总和.生产成本包括两大类费用:第一类是与工艺过程直接有关的费用叫工艺成本,约占生产成本的 70% ~ 75%;第二类是与工艺过程无关的费用,如行政人员工资,厂房折旧,照明取暧等.由于在同一生产条件下与工艺过程无关的费用基本上是相等的,因此对零件工艺方案进行经济分析时,只要分析与工艺过程直接有关的工艺成本即可.(1)工艺成本的组成

工艺成本由可变费用和不变费用两大部分组成.1)可变费用 可变费用是与年产量有关并与之成正比的费用,用” V “表示(元 / 件).包括:材料费,操作工人的工资,机床电费,通用机床折旧费,通用机床修理费,刀具费,通用夹具费.2)不变费用 不变费用是与年产量的变化没有直接关系的费用.当产量在一定范围内变化时,全年的费用基本上保持不变,用” S "表示(元 / 年).包括:机床管理人员,车间辅助工人,调整工人的工资,专用机床折旧费,专用机床修理费,专用夹具费.(2)工艺成本的计算 1)零件的全年工艺成本 E = V N +S

式中 E ——零件(或零件的某工序)全年的工艺成本(元 / 年);V ——可变费用(元 / 件);N ——年产量(件 / 年);S ——不变费用(元 / 年).由上述公式可见,全年工艺成本 E 和年产量 N 成线性关系.它说明全年工艺成本的变化Δ E与年产量的变化Δ N 成正比;又说明 S 为投资定值,不论生产多少,其值不变.2)零件的单件工艺成本

单件工艺成本 E 与年产量 N 呈双曲线关系.在曲线的 A 段, N 很小,设备负荷也低,即单件小批生产区,单件工艺成本 E 就很高,此时若产量 N 稍有增加(Δ N)将使单件成本迅速降低(ΔE).在曲线 B 段, N 很大,即大批大量生产区.此时曲线渐趋水平,年产量虽有较大变化,而对单件工艺成本的影响却很小.这说明对于某一个工艺方案,当 S 值(主要是专用设备费用)一定时,就应有一个与此设备能力相适应的产量范围.产量小于这个范围时,由于 S/N 比值增大,工艺成本就增加.这时采用这种工艺方案显然是不经济的,应减少使用专用设备数,即减少 S 值来降低工艺成本.当产量超过这个范围时,由于 S/N 比值变小,这时就需要投资更大而生产率更高的设备,以便减少 V 而获得更好的经济效益.10.3 典型零件机械加工工艺过程 10.3.1 轴类零件加工分析(1)轴类零件加工的工艺路线 1)基本加工路线

外圆加工的方法很多,基本加工路线可归纳为四条.① 粗车—半精车—精车

对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线.② 粗车—半精车—粗磨—精磨

对于黑色金属材料,精度要求高和表面粗糙度值要求较小,零件需要淬硬时,其后续工序只能用磨削而采用的加工路线.③ 粗车—半精车—精车—金刚石车

对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车.④ 粗车—半精—粗磨—精磨—光整加工

对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线.2)典型加工工艺路线

轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法.对普通精度的轴类零件加工,其典型的工艺路线如下: 毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽,沟槽)—热处理—磨削—终检.(1)轴类零件的预加工

轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺.校直 毛坯在制造,运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校值,(2)轴类零件加工的定位基准和装夹

1)以工件的中心孔定位 在轴的加工中,零件各外圆表面,锥孔,螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则.中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则.当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面.2)以外圆和中心孔作为定位基准(一夹一顶)用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大.粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工.这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法.3)以两外圆表面作为定位基准 在加工空心轴的内孔时,(例如:机床上莫氏锥度的内孔加工),不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准.当工件是机床主轴时,常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差.4)以带有中心孔的锥堵作为定位基准 在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准.锥堵或锥套心轴应具有较高的精度,锥堵和锥套心轴上的中心孔即是其本身制造的定位基准,又是空心轴外圆精加工的基准.因此必须保证锥堵或锥套心轴上锥面与中心孔有较高的同轴度.在装夹中应尽量减少锥堵的安装此书,减少重复安装误差.实际生产中,锥堵安装后,中途加工一般不得拆下和更换,直至加工完毕.图 10.1 锥堵和锥套心轴 a)锥堵 b)锥套心轴

10.3.2 典型套筒类零件的加工工艺分析 10.3.2.1 典型零件的工艺分析(1)轴承套加工工艺分析

图 10.2 所示为 1 轴承套,材料为 ZQSn6-6-3 ,每批数量为 400 只.加工时,应根据工件的毛坯材料,结构形状,加工余量,尺寸精度,形状精度和生产纲领,正确选择定位基准,装夹方法和加工工艺过程,以保证达到图样要求.其主要技术要求为: 34mmjs7 外圆对 22mmH7 孔的径向圆跳动公差为 0.01mm;左端面对 22mmH7 孔的轴线垂直度公差为 0.01mm.由此可见,该零件的内孔和外圆的尺寸精度和位置精度要求均较高.图 10.2 轴承套

该轴承套属于短套,其直径尺寸和轴向尺寸均不大,粗加工可以单件加工,也可以多件加工.由于单件加工时,每件都要留出工件备装夹的长度,因此原材料浪费较多,所以这里采用多件加工的方法.该轴承套的材料为 ZQSn6-6-3.其外圆为 IT7 级精度,采用精车可以满足要求;内孔的精度也是 IT7 级,铰孔可以满足要求.内孔的加工顺序为钻—车孔—铰孔.(2)液压缸加工工艺分析

图 10.3 所示某液压缸零件图,生产纲领为成批生产.该液压缸属长套筒类零件,与前述短套类零件在加工方法及工件安装方式上都有较大差别.该液压缸内孔与活塞相配,因此表面粗糙度,形状及位置精度要求都较高.毛坯可选用无缝钢管,如果为铸件,其组织应紧密,无砂眼,针孔及疏松缺陷.必要时要用泵验漏.该液压缸为成批生产.图 10.3 液压缸简图

该零件长而壁薄,为保证内外圆的同轴度,加工外圆时参照空心主轴的装夹方法.即采用双顶尖顶孔口 1 o 30 1 的锥面或一头夹紧一头用中心架支承.加工内孔与一般深孔加工时的装夹方法相同,多采用夹一头,另一端用中心架托住外圆.孔的粗加工采用镗削,半精加工多采用铰削(浮动铰孔).该液压缸内孔的表面质量要求很高,内孔精加工后需滚压.也有不少套筒类零件以精细镗,珩磨,研磨等精密加工作为最终工序.内孔经滚压后,尺寸误差在 0.01mm 以内,表面粗糙度为 Ra0.16 或更小,且表面经硬化后更为耐磨.但是目前对铸造液压缸尚未采用滚压工艺,原因是铸件表面的缺陷(如疏松,气孔,砂眼,硬度不均匀等),哪怕是很微小,都对滚压有很大影响,会导致滚压加工产生适得其反的效果.10.3.2.2 保证表面相互位置精度的方法及防止加工中工件变形的措施(1)保证表面相互位置精度的方法

套类零件内外表面的同轴度以及端面与孔轴线的垂直度要求一般都较高,一般可用以下方法来满足: ① 在 1 次安装中完成内外表面及端面的全部加工,这样可消除工件的安装误差并获得很高的相互位置精度.但由于工序比较集中,对尺寸较大的套筒安装不便,故多用于尺寸较小的轴套车削加工.② 主要表面的加工分在几次安装中进行(先加工孔),先加工孔至零件图尺寸,然后以孔为精基准加工外圆.由于使用的夹具(通常为心轴)结构简单,而且制造和安装误差较小,因此可保证较高的相互位置精度,在套筒类零件加工中应用较多.③ 主要表面的加工分在几次安装中进行(先加工外圆)先加工外圆至零件图尺寸,然后以外圆为精基准完成内孔的全部加工.该方法工件装夹迅速可靠,但一般卡盘安装误差较大,使得加工后工件的相互位置精度较低.如果欲使同轴度误差较小,则须采用定心精度较高的夹具,如弹性膜片卡盘,液性塑料夹头,经过修磨的三爪自定心卡盘和软爪等.(2)防止套类零件变形的工艺措施

套类零件的结构特点是孔的壁厚较薄,薄壁套类零件在加工过程中,常因夹紧力.切削力和热变形的影响而引起变形.为防止变形常采取—些工艺措施: 1)将粗,精加工分开进行 为减少切削力和切削热的影响,使粗加工产生的变形在精加工中得以纠正.2)减少夹紧力的影响 在工艺上采取以下措施减少夹紧力的影响: ① 采用径向夹紧时,夹紧力不应集中在工件的某一径向截面上,而应使其分布在较大的面积上,以减小工件单位面积上所承受的夹紧力.如可将工件安装在一个适当厚度的开口圆环中,在连同此环一起夹紧.也可采用增大接触面积的特殊卡爪.以孔定位时,宜采用张开式心轴装夹.② 夹紧力的位置宜选在零件刚性较强的部位,以改善在夹紧力作用下薄壁零件的变形.③ 改变夹紧力的方向,将径向夹紧改为轴向夹紧.④ 在工件上制出加强刚性的工艺凸台或工艺螺纹以减少夹紧变形,加工时用特殊结构的卡爪夹紧,加工终了时将凸边切去.3)减小切削力对变形的影响 ① 增大刀具主偏角和主前角,使加工时刀刃锋利,减少径向切削力.② 将粗,精加工分开,使粗加工产生的变形能在精加工中得到纠正,并采取较小的切削用量.③ 内外圆表面同时加工,使切削力抵销.4)热处理放在粗加工和精加工之间 这样安排可减少热处理变形的影响.套类零件热处理后一般会产生较大变形,在精加工时可得到纠正,但要注意适当加大精加工的余量.

下载减速器箱体加工工艺规程和工装设计论文word格式文档
下载减速器箱体加工工艺规程和工装设计论文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    箱体类零件工艺与工装设计毕设论文撰写提纲(5篇)

    箱体类零件工艺与工装设计毕设论文撰写提纲(参考) 摘要(中文)……Ⅰ 摘要(英文)……Ⅱ 目录………………Ⅲ 1 前言 ………………1 1.1课题背景及发展趋势.. 1 1.2毕业设计的目的、......

    蜗轮减速机箱体加工工艺毕业设计说明书(五篇)

    目录 摘要 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„3 1 前言 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„ 4 1.1 机械加工工艺规程......

    机械专业毕业(论文)文献综述 箱体夹具设计及工艺规程的研究

    文献综述 题目 箱体夹具设计及工艺规程的研究 学生姓名 专业班级机 设 0 7— 2 学号 院(系) 机 电 工 程 学 院 指导教师 完成时间 2 0 1 1 年 3 月 2 日 综述题目 专业班......

    行星减速器齿轮轴的加工工艺研究论文(共五则范文)

    摘要:行星减速器齿轮轴是行星重要的组成部分,主要用于行星减速,连接发动机与减速器齿轮,主要起到传输动力以及减速的作用。行星减速器齿轮轴又简称为轴,随着我国工业的发展,科学技......

    “杠杆”零件的机械加工工艺规程设计

    机械制造技术基础课程设计任务书 题目: 姓 名:易涛伟 班 级:A13机械2 学 号:130408331 指导老师:朱从容 日 期:2016-06-25 “杠杆”零件的机械加工工艺规程设计 目录 一、零件图......

    工艺工装设计及制作要点

    工装设计简介及制作装配保管要点 一:工装定义: 工装, 即工艺辅助装备:指制造过程中所用的各种工具的总称.包括刀具/夹具/模具/量具/检具/辅具/钳工工具/工位器具等.工装为其......

    机械加工工艺规程重要性和制订

    机械加工工艺规程 本文主要阐述机械加工工艺规程的重要性及制订。 所谓工艺规程,是指导生产的重要技术文件。是在给定的生产条件下,在总结实际生产经验和科学分析的基础上,由多......

    A6140车床法兰盘机械加工工艺规程及夹具设计

    《机械制造工艺学》课程设计说明书 题目: CA6140车床法兰盘机械加工工艺规程及夹具设计 学 院: 姓 名: 学 号:班 级:指导教师:二O一 二 年 十二 月CA6140车床法兰盘机械加工工艺......