小学六年级数学应用题分类(答案及详解)

时间:2019-05-14 11:10:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学六年级数学应用题分类(答案及详解)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学六年级数学应用题分类(答案及详解)》。

第一篇:小学六年级数学应用题分类(答案及详解)

小学六年级数学应用题分类(答案及详解)

公约公倍问题

需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。

【数量关系】绝大多数要用最大公约数、最小公倍数来解答。

【解题思路和方法】先确定题目中要用最大公约数或者最小公倍数,再求出答案。最大公约数和最小公倍数的求法,最常用的是“短除法”。

1、一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?

解:硬纸板的长和宽的最大公约数就是所求的边长。

60和56的最大公约数是4。

答:正方形的边长是4厘米。

2、甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?

解:要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。36、30、48的最小公倍数是720。

答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。

3、一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?

解:相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12。

所以,至少应植树(60+72+96+84)÷12=26(棵)

答:至少要植26棵树。

4、一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。又知棋子总数在150到200之间,求棋子总数。

解:如果从总数中取出1个,余下的总数便是4、5、6的公倍数。因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为

60×3+1=181(个)

答:棋子的总数是181个。

行船问题

行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。

【数量关系】

(顺水速度+逆水速度)÷2=船速

(顺水速度-逆水速度)÷2=水速

顺水速=船速×2-逆水速=逆水速+水速×逆水速=船速×2-顺水速=顺水速-水速×2

【解题思路和方法】大多数情况可以直接利用数量关系的公式。

1、一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?

解:由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25(千米)

船的逆水速为25-15=10(千米)

船逆水行这段路程的时间为320÷10=32(小时)

答:这只船逆水行这段路程需用32小时。

2、甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?

解:由题意得甲船速+水速=360÷10=36

甲船速-水速=360÷18=20

可见(36-20)相当于水速的2倍,所以,水速为每小时(36-20)÷2=8(千米)

又因为,乙船速-水速=360÷15,所以,乙船速为360÷15+8=32(千米)

乙船顺水速为32+8=40(千米)

所以,乙船顺水航行360千米需要

360÷40=9(小时)

答:乙船返回原地需要9小时。

3、一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?

解:这道题可以按照流水问题来解答。

(1)两城相距多少千米?

(576-24)×3=1656(千米)

(2)顺风飞回需要多少小时?

1656÷(576+24)=2。76(小时)

列成综合算式[(576-24)×3]÷(576+24)=2.76(小时)

答:飞机顺风飞回需要2.76小时。

工程问题

工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

工作量=工作效率×工作时间

工作时间=工作量÷工作效率

工作时间=总工作量÷(甲工作效率+乙工作效率)

【解题思路和方法】变通后可以利用上述数量关系的公式。

1、一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

解:题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。

由于甲队独做需10天完成,那么每天完成这项工程的1/10;

乙队单独做需15天完成,每天完成这项工程的1/15;

两队合做,每天可以完成这项工程的(1/10+1/15)。

由此可以列出算式:1÷(1/10+1/15)=1÷1/6=6(天)

答:两队合做需要6天完成。

2、一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

解:设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。

因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以

(1)每小时甲比乙多做多少零件?

24÷[1÷(1/6+1/8)]=7(个)

(2)这批零件共有多少个?

7÷(1/6-1/8)=168(个)

答:这批零件共有168个。

解二:上面这道题还可以用另一种方法计算:

两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3

由此可知,甲比乙多完成总工作量的4-3/4+3=1/7

所以,这批零件共有24÷1/7=168(个)例

3、一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

解:必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是

60÷12=560÷10=660÷15=因此余下的工作量由乙丙合做还需要

(60-5×2)÷(6+4)=5(小时)

答:还需要5小时才能完成。

4、一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

解:注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。

只要设某一个量为单位1,其余两个量便可由条件推出。

我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知

每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1

即一个排水管与每个进水管的工作效率相同。由此可知

一池水的总工作量为1×4×5-1×5=15

又因为在2小时内,每个进水管的注水量为1×2,所以,2小时内注满一池水

至少需要多少个进水管?(15+1×2)÷(1×2)=8。5≈9(个)

答:至少需要9个进水管。

正反比例问题

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。

【数量关系】判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

【解题思路和方法】解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

正反比例问题与前面讲过的倍比问题基本类似。

1、修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?

解:由条件知,公路总长不变。

原已修长度∶总长度=1∶(1+3)=1∶4=3∶12

现已修长度∶总长度=1∶(1+2)=1∶3=4∶12

比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为300÷(4-3)×12=3600(米)

答:这条公路总长3600米。

2、张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?

解:做题效率一定,做题数量与做题时间成正比例关系

设91分钟可以做X应用题则有28∶4=91∶X

28X=91×4X=91×4÷28X=1答:91分钟可以做13道应用题。

3、孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?

解:书的页数一定,每天看的页数与需要的天数成反比例关系

设X天可以看完,就有24∶36=X∶15

36X=24×15X=10

答:10天就可以看完。

按比例分配问题

所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

【数量关系】从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和

【解题思路和方法】先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

1、学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?

解:总份数为47+48+45=140

一班植树560×47/140=188(棵)

二班植树560×48/140=192(棵)

三班植树560×45/140=180(棵)

答:一、二、三班分别植树188棵、192棵、180棵。

2、用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米?

解:3+4+5=1260×3/12=15(厘米)

60×4/12=20(厘米)

60×5/12=25(厘米)

答:三角形三条边的长分别是15厘米、20厘米、25厘米。

3、从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。

解:如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到

1/2∶1/3∶1/9=9∶6∶2

9+6+2=1717×9/17=9

17×6/17=617×2/17=2

答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。

方阵问题

将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。

【数量关系】

(1)方阵每边人数与四周人数的关系:

四周人数=(每边人数-1)×每边人数=四周人数÷4+(2)方阵总人数的求法:

实心方阵:总人数=每边人数×每边人数

空心方阵:总人数=(外边人数)?-(内边人数)?

内边人数=外边人数-层数×2

(3)若将空心方阵分成四个相等的矩形计算,则:

总人数=(每边人数-层数)×层数×4

【解题思路和方法】方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。

1、在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?

解:22×22=484(人)

答:参加体操表演的同学一共有484人。

2、有一个3层中空方阵,最外边一层有10人,求全方阵的人数。

解:10-(10-3×2)=84(人)

答:全方阵84人。

3、有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?

解:(1)中空方阵外层每边人数=52÷4+1=14(人)

(2)中空方阵内层每边人数=28÷4-1=6(人)

(3)中空方阵的总人数=14×14-6×6=160(人)

答:这队学生共160人。

4、一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?

解:(1)纵横方向各增加一层所需棋子数=4+9=13(只)

(2)纵横增加一层后正方形每边棋子数=(13+1)÷2=7(只)

(3)原有棋子数=7×7-9=40(只)

答:棋子有40只。

5、有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?

解:第一种方法:1+2+3+4+5=15(棵)

第二种方法:(5+1)×5÷2=15(棵)

答:这个三角形树林一共有15棵树。

追及问题

两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。

【数量关系】

追及时间=追及路程÷(快速-慢速)

追及路程=(快速-慢速)×追及时间

【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

1、好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?

解:(1)劣马先走12天能走多少千米?75×12=900(千米)

(2)好马几天追上劣马?900÷(120-75)=20(天)

列成综合算式75×12÷(120-75)=900÷45=20(天)

答:好马20天能追上劣马。

2、小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

解:小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)

答:小亮的速度是每秒3米。

3、我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

解:敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。由此推知

追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)

答:解放军在11小时后可以追上敌人。

4、一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

解:这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)

所以两站间的距离为(48+40)×4=352(千米)

列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)

答:甲乙两站的距离是352千米。

5、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?

解:要求距离,速度已知,所以关键是求出相遇时间。

从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)

家离学校的距离为90×12-180=900(米)

答:家离学校有900米远。

6、孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。

解:手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。

如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。

所以步行1千米所用时间为1÷[9-(10-5)]=0.25(小时)=15(分钟)

跑步1千米所用时间为15-[9-(10-5)]=11(分钟)

跑步速度为每小时1÷11/60=5.5(千米)

答:孙亮跑步速度为每小时5.5千米。

倍比问题

有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】

总量÷一个数量=倍数

另一个数量×倍数=另一总量

【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

例1、100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?

解:(1)3700千克是100千克的多少倍?3700÷100=37(倍)

(2)可以榨油多少千克?40×37=1480(千克)

列成综合算式40×(3700÷100)=1480(千克)

答:可以榨油1480千克。

2、今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?

解:(1)48000名是300名的多少倍?48000÷300=160(倍)

(2)共植树多少棵?400×160=64000(棵)

列成综合算式400×(48000÷300)=64000(棵)

答:全县48000名师生共植树64000棵。

3、凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?

解:(1)800亩是4亩的几倍?800÷4=200(倍)

(2)800亩收入多少元?11111×200=2222200(元)

(3)16000亩是800亩的几倍?16000÷800=20(倍)

(4)16000亩收入多少元?2222200×20=44444000(元)

答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。

溶液浓度问题

在生产和生活中,我们经常会遇到溶液浓度问题。这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。

【数量关系】

溶液=溶剂+溶质

浓度=溶质÷溶液×100%

【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

1、爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成30%的糖水,需加糖多少克?

解:(1)需要加水多少克?50×16%÷10%-50=30(克)

(2)需要加糖多少克?50×(1-16%)÷(1-30%)-50=10(克)

答:(1)需要加水30克,(2)需要加糖10克。

2、要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?

解:假设全用30%的糖水溶液,那么含糖量就会多出

600×(30%-25%)=30(克)

这是因为30%的糖水多用了。

于是,我们设想在保证总重量600克不变的情况下,用15%的溶液来“换掉”一部分30%的溶液。

这样,每“换掉”100克,就会减少糖100×(30%-15%)=15(克)所以需要“换掉”30%的溶液(即“换上”15%的溶液)100×(30÷15)=200(克)

由此可知,需要15%的溶液200克。

需要30%的溶液600-200=400(克)

答:需要15%的糖水溶液200克,需要30%的糖水400克。

最值问题

科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。这类应用题叫做最值问题。

【数量关系】一般是求最大值或最小值。

【解题思路和方法】按照题目的要求,求出最大值或最小值。

1、在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?

解:先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。这样做,用的时间最少,为9分钟。

答:最少需要9分钟。

2、在一条公路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?

解:我们采用尝试比较的方法来解答。

集中到1号场总费用为1×200×10+1×400×40=18000(元)

集中到2号场总费用为1×100×10+1×400×30=13000(元)

集中到3号场总费用为1×100×20+1×200×10+1×400×10=12000(元)

集中到4号场总费用为1×100×30+1×200×20+1×400×10=11000(元)

集中到5号场总费用为1×100×40+1×200×30=10000(元)

经过比较,显然,集中到5号煤场费用最少。

答:集中到5号煤场费用最少。

时钟问题

时钟问题就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。

时钟问题可与追及问题相类比。

【数量关系】分针的速度是时针的12倍,二者的速度差为11/12。

通常按追及问题来对待,也可以按差倍问题来计算。

【解题思路和方法】变通为“追及问题”后可以直接利用公式。

1、从时针指向4点开始,再经过多少分钟时针正好与分针重合?

解:钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。

每分钟分针比时针多走(1-1/12)=11/12格。4点整,时针在前,分针在后,两针相距20格。

所以分针追上时针的时间为20÷(1-1/12)≈22(分)

答:再经过22分钟时针正好与分针重合。

2、四点和五点之间,时针和分针在什么时候成直角?

解:钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。

四点整的时候,分针在时针后(5×4)格,如果分针在时针后与它成直角,那么分针就要比时针多走(5×4-15)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5×4+15)格。

再根据1分钟分针比时针多走(1-1/12)格就可以求出二针成直角的时间。

(5×4-15)÷(1-1/12)≈6(分)

(5×4+15)÷(1-1/12)≈38(分)

答:4点06分及4点38分时两针成直角。

3、六点与七点之间什么时候时针与分针重合?

解:六点整的时候,分针在时针后(5×6)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。

(5×6)÷(1-1/12)≈33(分)

答:6点33分的时候分针与时针重合。

列车问题

这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。

【数量关系】

火车过桥:过桥时间=(车长+桥长)÷车速

火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)

火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)

【解题思路和方法】大多数情况可以直接利用数量关系的公式。

1、一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?

解:火车3分钟所行的路程,就是桥长与火车车身长度的和。

(1)火车3分钟行多少米?900×3=2700(米)

(2)这列火车长多少米?2700-2400=300(米)

列成综合算式900×3-2400=300(米)

答:这列火车长300米。

2、一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?

解:火车过桥所用的时间是2分5秒=125秒,所走的路程是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)答:大桥的长度是800米。

3、一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?

解从追上到追过,快车比慢车要多行(225+140)米,而快车比慢车每秒多行(22-17)米,因此,所求的时间为(225+140)÷(22-17)=73(秒)

答:需要73秒。

4、一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?

解:如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。

150÷(22+3)=6(秒)

答:火车从工人身旁驶过需要6秒钟。

5、一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。求这列火车的车速和车身长度各是多少?

解:车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。可知火车在(88-58)秒的时间内行驶了(2000-1250)米的路程,因此,火车的车速为每秒(2000-1250)÷(88-58)=25(米)

进而可知,车长和桥长的和为(25×58)米,因此,车长为25×58-1250=200(米)

答:这列火车的车速是每秒25米,车身长200米。

年龄问题

这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。

【解题思路和方法】可以利用“差倍问题”的解题思路和方法。

①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的;

③两个人的年龄的倍数是发生变化的。

常用的计算公式是:

成倍时小的年龄=大小年龄之差÷(倍数-1)

几年前的年龄=小的现年-成倍数时小的年龄

几年后的年龄=成倍时小的年龄-小的现在年龄

1、爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?

解:35÷5=7(倍)

(35+1)÷(5+1)=6(倍)

答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。

2、母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?

解:(1)母亲比女儿的年龄大多少岁?37-7=30(岁)

(2)几年后母亲的年龄是女儿的4倍?30÷(4-1)-7=3(年)

列成综合算式(37-7)÷(4-1)-7=3(年)

答:3年后母亲的年龄是女儿的4倍。

例3、3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?

解:今年父子的年龄和应该比3年前增加(3×2)岁,今年二人的年龄和为49+3×2=55(岁)

把今年儿子年龄作为1倍量,则今年父子年龄和相当于(4+1)倍,因此,今年儿子年龄为55÷(4+1)=11(岁)

今年父亲年龄为11×4=44(岁)

答:今年父亲年龄是44岁,儿子年龄是11岁。

构图布数问题

这是一种数学游戏,也是现实生活中常用的数学问题。所谓“构图”,就是设计出一种图形;所谓“布数”,就是把一定的数字填入图中。“构图布数”问题的关键是要符合所给的条件。

【数量关系】根据不同题目的要求而定。

【解题思路和方法】通常多从三角形、正方形、圆形和五角星等图形方面考虑。按照题意来构图布数,符合题目所给的条件。

1、十棵树苗子,要栽五行子,每行四棵子,请你想法子。

解:符合题目要求的图形应是一个五角星。

4×5÷2=10

因为五角星的5条边交叉重复,应减去一半。

2、九棵树苗子,要栽十行子,每行三棵子,请你想法子。

解:符合题目要求的图形是两个倒立交叉的等腰三角形,一个三角形的顶点在另一个三角形底边的中线上。

3、九棵树苗子,要栽三行子,每行四棵子,请你想法子。

解:符合题目要求的图形是一个三角形,每边栽4棵树,三个顶点上重复应减去,正好9棵。

4×3-3=9

4、把12拆成1到7这七个数中三个不同数的和,有几种写法?请设计一种图形,填入这七个数,每个数只填一处,且每条线上三个数的和都等于12。

解:共有五种写法,即12=1+4+712=1+5+612=2+3+712=2+4+612=3+4+5

在这五个算式中,4出现三次,其余的1、2、3、5、6、7各出现两次,因此,4应位于三条线的交点处,其余数都位于两条线的交点处。

据此,我们可以设计出三种图形。

第二篇:【精品推荐】小学数学应用题分类

六年级数学应用题大全

一、方程的应用

1.学校建校舍计划投资45万元,实际投资40万元。实际投资节约了百分之几?

2.学校五月份计划用电480度,实际少用60度。实际用电节省百分之几?(福建云宵小学)

3.某厂计划三月份生产电视机400台,实际上半个月生产了250台,下半个月生产了230台,实际超额完成计划的百分之几?(南昌市青云谱区)

4.现有甲、乙、丙三个水管,甲水管以每秒4克的流量流出含盐20%的盐水,乙水管以每秒6克的流量流出含盐15%的盐水,丙水管以每秒10克的流量流出水,丙管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒……三管同时打开,1分钟后都关上,这时流出的混合液含盐百分之几?(武汉大学附属外国语学校)

5.新光小学书画班有75人,舞蹈班有48人,书画班人数比舞蹈班多百分之几?(南宁市)

6.小明用一包绿豆做实验,其中发芽的种子有100粒,没有发芽的种子有25粒,求这包绿豆的发芽率。(浙江温岭市)

8.为灾区捐款,小华捐4.2元,比小丽多捐了0.4元,小华比小丽多捐几分之几?(河南安阳市)

9.一件衣服打八折出售卖100元,实际90元卖出。实际几折卖出?(浙江仙居县)

10.食堂运来600千克大米,已经吃了4天,每天吃50千克。剩下的5天吃完,平均每天吃多少千克?(南京市建邺区)

11.3箱橘子比3筐苹果少24千克。平均每箱橘子重20千克,每筐苹果重多少千克?(浙江台州市市区)

12.在绿化祖国采集树种的活动中,某校四年级5个班级,每班采集树种20千克,五年级3个班共采集60千克,平均每班采集树种多少千克?(上海市)

13.大桥乡修一条长2100米的水渠,已修了5天,平均每天修240米。余下的任务要在3天内完成,平均每天应修多少米?(南京市秦淮区)

14.小明到商店买了3个小型足球付出20元,找回1.85元,每个足球多少元?(银川市实验小学)

15.某班有4个小队,每个小队有12名少先队员,在“希望工程”捐款活动中,共捐款240元。平均每个少先队员捐款多少元?(上海市)

16.育才小学买来2个小足球和25根长绳,共用去408.5元,每个小足球的价钱是48元,每根长绳的售价是多少元?(江苏无锡市南长区)

17.王华买《趣味数学》和《故事大王》各5本,一共用了20元。每本《趣味数学》2.6元,每本《故事大王》多少元?(西安市雁塔区)

18.运输队要运走89吨货物,前三次每次运走10.5吨。其余的分5次运完,平均每次要运走多少吨?(上海市)

19.4个同学在一张乒乓球台上单打60分钟,平均每人打了多少分钟?(福建建瓯市)

20.期末考试语文、数学、常识三门功课的平均分是95分,语文、数学两门功课的平均分是93分,问:常识考了多少分?(浙江江山市)

21.五(1)班同学植树,26个男生平均每人植6棵,24个女生平均每人植5棵。男、女生平均每人植树多少棵?(南昌市东湖区)

22.李东拿5元钱买文具。他买铅笔已用去1.5元,剩下的钱买练习簿,每本0.35元。他可以买多少本练习簿?(上海市长青学校)

23.一批苹果,若平分给幼儿园大班的小朋友,每人可分得6个;若平分给幼儿园小班的小朋友,每人可分得3个;若平分给大、小两个班的小朋友,每人可分得多少个?(南京市建邺区)

24.时新手表厂原计划每天生产75块手表,12天完成任务。实际10天完成任务,实际平均每天生产多少块?(武汉市青山学校)

25.实验小学开展“环保周种盆花”活动,前3天平均每天种114盆,后4天共种750盆,“环保周”内平均每天栽种盆花多少盆?(长沙市实验小学)

剩下的7.5小时要耕完,平均每小时要耕地多少?(湖北阳新县)

27.一台织布机7小时织布105米,照这样的速度,再织8小时,一共可以织布多少米?(浙江临安市)

28.一辆汽车3小时行135千米,照这样计算,8小时行多少千米?(广西桂林市)

29.120千克大豆可榨出豆油16.2千克,2000千克大豆可榨出豆油多少千克?(用比例解)(浙江泰顺县)

30.某加工厂2台磨粉机3小时能磨面粉14.4吨。照这样计算,6台磨粉机8小时一共能磨面粉多少吨?(福建建瓯市)

31.某服装厂接到生产1200件衬衫任务,前3天完成了40%,照这样计算,完成任务还需要多少天?(写出两种不同解法)(合肥市中市区寿春学校)

32.某工程队要铺建一条公路,前20天已铺建了2.8千米,照这样计算,剩下的4.2千米的路段,还需要多少天才能铺建完成?(用比例方法解)(浙江临海市)

33.丰收农具厂制造一批镰刀。原计划每天制造360把,18天完成。实际每天多制造72把,照这样计算,多少天就能完成任务?(武汉市青山区)

34.长风电扇厂计划生产2800台电扇。前6天已经生产了672台,照这样计算,还要生产多少天才能完成任务?(南京市白下区)

35.育民小学校办厂,原计划12天装订21600本练习本,实际每天比原计划多装订360本。实际完成生产任务用了多少天?(天津市红桥区)

36.小青看一本260页的故事书,前3天每天看20页,如果剩下的每天看25页,还要几天看完?(西宁市城中区)

37.学校买来塑料绳342米做短跳绳,先剪下同样长的5根,一共用去9米,照这样计算,买来的塑料绳可以做短跳绳多少根?(南京市鼓楼区)

38.两筐苹果单价相同,甲筐苹果重64千克,乙筐苹果重48千克,两筐都卖出一部分后,剩下的苹果重量相等,已知乙筐比甲筐少卖了56元,甲筐苹果可卖多少元?(合肥市中市区寿春学校)

39.时新手表厂原计划25天生产1000块手表,实际每天生产了50块,实际比计划提前几天完成任务?(河南开封市)

40.电视机厂计划30天生产电视机1200台,实际每天比计划多生产10台,实际多少天完成任务?(浙江东阳市)

41.服装厂要加工一批校服,原计划每天生产250套,30天可以完成,实际每天生产300套,实际多少天完成?(用比例解答)(江西景德镇市)

42.一批货物,原计划每天运走18吨,84天运完,实际每天运21吨,实际要几天运完?(用比例解)(银川市二十一小学)

43.装配小组要装配一批洗衣机,计划每天装配27台,20天完成任务。实际每天装配了30台,只需几天就可以完成任务?(江苏无锡市北塘区)

44.大庆小学食堂运来24吨煤,计划烧50天。实际每天节约0.08吨,实际烧了多少天?(浙江乐清市)

45.车间生产一批零件,每天生产65套,生产12天后还差130套,这批零件一共有多少套?(武汉市江汉区滑坡路小学)

46.希望小学装修多媒体教室。计划用边长30厘米的釉面方砖铺地,需要900块,实际用边长50厘米的方大理石铺地,需要多少块?(用比例知识解答)(南昌市东湖区)

47.装订一批同样的练习本,原计划每本装16页,可以装订250本,如果要装订成200本,每本应装多少页?(用比例解)(广西桂林市)

48.服装厂原计划做120套西服,每套西服用布4.8米,改进裁剪方法后,每套节约用布0.3米。节约下来的布,可以做多少套西服?(上海市长青学校)

49.师傅比徒弟多加工192个零件,已知师傅加工的零件个数是徒弟的4倍,师徒二人各加工多少个零件?(用方程解)(银川市二十一小学)

50.红光农具厂五月份生产农具600件,比四月份多生产25%,四月份生产农具多少件?(武汉市青山区)

51.红星纺织厂有女职工174人,比男职工人数的3倍少6人,全厂共有职工多少人?(浙江绍兴县)

53.蓓蕾小学三年级有学生86人,比二年级学生人数的2倍少4人,二年级有学生多少人?(长沙市实验小学)

54.某校有男生630人,男、女生人数的比是7∶8,这个学校女生有多少人?(杭州市上城区)

55.张华看一本故事书,第一天看了全书的15%少4页,这时已看的页数与剩下页数的比是1∶7。这本故事书共有多少页?(浙江平阳县)

56.一个书架有两层,上层放书的本数是下层的3倍;如果把上层的书取30本放到下层,那么两层书的本数正好相等。原来两层书架上各有书多少本?(上海市虹口区)

57.第一层书架放有89本书,比第二层少放了16本,第三层书架上放有的书是一、二两层和的1.5倍,第三层放有多少本书?(南昌市青云谱区)

艺书的本数与其他两种书的本数的比是1∶5,工具书和文艺书共有180本。图书箱里共有图书多少本?(江苏无锡市)

59.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的数量比是3∶4,乙同学原来有积蓄多少元?(江西景德镇市)

60.小红和小芳都积攒了一些零用钱。她们所攒钱的比是5∶3,在“支援灾区”捐款活动中小红捐26元,小芳捐10元,这时她们剩下的钱数相等。小红原来有多少钱?(武汉市青山区)

61.学校买回315棵树苗,计划按3∶4分给中、高年级种植,高年级比中年级多植树多少棵?(石家庄市长安区)

62.三、四、五年级共植树180棵,三、四、五年级植树的棵树比是3∶5∶7。那么三个年级各植树多少棵?(浙江常山县)

63.学校计划把植树任务按5∶3分给六年级和其它年级。结果六年级植树的棵数占全校的75%,比计划多栽了20棵。学校原计划栽树多少棵?(西安市雁塔区)

64.一杯80克的盐水中,有盐4克,现在要使这杯盐水中盐与水的比变为1∶9,需加多少克盐或蒸发多少克水?(浙江德清县)

65.水果店运来苹果和梨共540千克,苹果和梨重量的比是12∶15。运来梨多少千克?(南京市白下区)

66.水果店运来橘子300千克,运来的葡萄比橘子多50千克,运来苹果的重量是葡萄的2倍,苹果比橘子多运来多少千克?(上海市虹口区)

67.把960千克的饲料按7∶5分给甲、乙两个养鸡专业户。甲专业户比乙专业户多分得饲料多少千克?(南京市秦淮区)

68.甲、乙两个仓库原存放的稻谷相等。现在甲仓运出稻谷14吨,乙仓运出稻谷26吨,这时甲仓剩下的稻谷比乙仓剩下的稻谷多40%。甲、乙两个仓库原来各存放稻谷多少吨?(浙江嘉兴市)

69.学校操场是一个长方形,周长是280米,长、宽的比是4∶3,这个操场的长、宽各是多少米?(湖北松滋市)

70.碧波幼儿园内有一块巧而美的长方形花坛,周长是64米,长与宽的比是5∶3,这块花坛占地多少平方米?(长沙市实验小学)

71.在一幅比例尺是 的地图上,量得甲、乙两地的距离是5厘米,甲、乙两地的实际距离是多少千米?(南昌市东湖区)

72.某玩具厂生产一批儿童玩具,原计划每天生产120件,75天完成。为了迎接“六一”儿童节,实际只用60天就完成了任务。实际每天生产玩具多少件?(用两种方法解答)(浙江温岭市)

73.甲、乙两个家具厂生产同一规格的单人课桌、椅,由于甲、乙两厂特

可生产1500套课桌椅。现在两厂联合生产,经过合理安排,尽量发挥各自特长。现在两厂每月比过去可多生产课桌椅多少套?(武汉市外国语学校)

74.建筑工地要运122吨水泥,用一辆载重4吨的汽车运了18次后,余下的用一辆载重2.5吨的汽车运,还要运多少次?(浙江诸暨市)

75.空调机厂四月份生产空调机1800台,五月份比四月份增产10%。

四、五月份共生产空调机多少台?(江苏无锡市北塘区)

76.师徒两人合作生产一批零件,师傅每小时生产40个,徒弟每小时生产30个,如完成任务时徒弟正好生产了450个,这批零件共几个?(武汉市青山区)

77.甲每小时加工48个零件,乙每小时加工 36个零件,两人共同工作 8小时后,检验出64个废品。两人平均每小时共加工多少个合格的零件?(上海市)

弟生产了540个,这批零件有多少个?(浙江慈溪市)

79.要生产350个零件,甲、乙两人共同生产3.5小时后,完成了任务的80%。已知甲每小时做42个,乙每小时做几个?(浙江宁海县)

80.甲、乙两人同时加工同样多的零件,甲每小时加 提高工作效率,又用了7.5小时完成了全部加工任务。这时甲还剩下20个零件没完成。求乙提高工效后,每小时加工零件多少个。(浙江宁波市江东区)

81.师徒加工一批零件,徒弟已经加工了总数的20%,师傅加工了总数 谱区)

82.某化肥厂第一季度平均每月生产化肥2.4万吨,前两个月生产化肥的总量比三月份多0.8万吨,三月份生产化肥多少万吨?(浙江临安市)

吨。这批水泥共有多少吨?(湖北当阳市)

84.红星乡今年收玉米3600吨,比去年增产二成,去年收玉米多少吨?(广州市黄埔区)

85.买6个排球和8个篮球共用去249.6元。已知排球的单价是15.6元。篮球的单价是多少元?(浙江鄞县)的和没修的就同样多。这段公路长多少米?(武汉市青山区)

87.筑路队第一天筑路55米,第二天筑的路是第一天的3倍,第三天筑的比前两天的总数少30米,第三天筑路多少米?(江苏无锡市北塘区)

4700米没有铺。这条公路全长多少米?(浙江乐清市)

89.工程队铺运动场,4天铺了200平方米。照这样的进度,32天铺好了运动场,求这运动场的面积。(两种方法解答,其中一种用比例解)(浙江东阳市)

90.时新手表厂原计划每天生产75块手表,12天完成任务。实际比计划每天多生产15块,实际多少天完成任务?(武汉市青山区)

91.装配小组要装配一批洗衣机,计划每天装配20台,15天完成任务。实际每天装配30台,只需几天就可以完成任务?(用比例方法解)(西安市城中区)

92.机械厂制造一批零件,原计划每天生产250个,12天完成,实际每天生产的个数是原来的1.5倍。完成这批零件,实际用了多少天?(上海市长青学校)

93.筑路队修一条路,原计划每天修3.2千米,45天可以修完,实际每天修3.6千米,多少天可以修完?(广西桂林市)

94.一项工程,甲队独做要12小时完成,乙队独做要15小时完成,现在两队合做几小时完成工程的一半?(广州市黄埔区)

95.加工一批零件,师傅单独加工要30小时完成,如果徒弟先加工了9小时,其余的再由师傅加工,还要24小时,那么徒弟单独加工要多少小时完成?(江西景德镇市)

独打,10小时可以打完。求如果由小张单独打,几小时可以打完。(湖北当阳市)

97.一批货物,由大、小卡车同时运送,6小时可运完,如果用大卡车单独运,10小时可运完。用小卡车单独运,要几小时运完?(浙江常山县)

98.甲休息了3天,乙休息了2天,丙没有休息。如果甲一天的工作量是丙一天工作量的3倍,乙一天的工作量是丙一天的工作量的2倍,那么这项工作,从开始计算起,是第几天完成的?(南昌市外国语学校)

99.一项工程,甲单独做16天可以完成,乙单独做12天可以完成。现在由乙先做3天,剩下的由甲来做,还需要多少天能完成这项工程?(石家庄市长安区)

如果乙队单独完成要24天,甲队单独做几天完成?(武汉市青山区)

2天后,余下的乙还要做几天?(银川市二十一小学)

102.一项工程,甲队独做15天完成,乙队独做12天完成。现在甲、乙合作4天后,剩下的工程由丙队8天完成。如果这项工程由丙队独做,需几天完成?(浙江德清县)

现由两队合做,多少天可以完成?(湖北阳新县)

如果两队合修,多少天可以修完?(浙江象山县)

105.一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成?(浙江江山市)

107.一件工作,甲单独完成需要8天,乙的工作效率是甲的2倍,两人同时合作,几天能完成这件工作?(天津市红桥区)

108.师徒共同完成一件工作,徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成?(银川市实验小学)

110.一项工作,甲单独做要10天完成,乙单独做要15天完成。甲、乙合做几天可以完成这项工作的80%?(浙江温岭市)

111.甲、乙两地相距6千米,张明骑车从甲地到乙地办事,55分钟内必须赶回。若办事需5分钟,张明骑车平均速度至少应是多少?(浙江仙居县)

112.小明从家到学校,步行需要35分钟,骑自行车只要10分钟。他骑自行车从家出发,行了8分钟自行车发生故障,即改步行,小明从家到学校共用了多少分钟?(浙江台州市市区)

113.张华从家到学校,步行需要15分钟,骑车需要5分钟。他从家骑车出发,3分钟后车子发生故障,改为步行,他到达学校步行了多少分钟?(河南开封市)

114.甲、乙两地相距240千米,一辆汽车从甲地开往乙地,2小时行了80千米,照这样计算,行完全程需要几小时?(石家庄长安区)

115.一辆汽车从甲地开往乙地,每小时行50千米,6小时到达;返回时,每小时行60千米,几小时可以到达?(上海市虹口区)

116.从甲城到乙城的铁路长760千米,一列火车3小时行285千米,照这样计算,从甲城到乙城需行多少小时?(用两种方法解答,其中一种要用比例解)(浙江上虞市)

117.科学考察船计划每小时行驶25千米,48小时到达预定海域进行科学实验。如果要提前8小时到达,每小时需行驶多少千米?(浙江嘉兴市)

118.两列火车同时从相距432千米的两地相对开出,4小时后两车相遇。快车每小时行60千米,求慢车每小时行多少千米。(列方程解)(湖北当阳市)

119.甲、乙两车同时从相距520千米的两地相向而行,5小时相遇,已知甲车每小时比乙车每小时多行6千米。甲、乙两车每小时各行多少千米?(上海市)

千米,乙车每小时行多少千米?(武汉市江汉区滑坡路小学)

121.甲、乙两列火车分别从A、B两地同时相对开出,经过6小时相遇,相遇后两车按原来的速度继续行驶,又经过4小时,甲车到达B地。已知甲车每小时比乙车多行12千米,求甲车每小时行多少千米。(南京市鼓楼区)

122.一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问当客车到达甲地时,货车离乙地还有多少千米?(南昌市外国语学校)

123.同学们去参观展览馆,一部分同学骑自行车,他们的时速是24千米;一部分同学步行,他们的时速是6千米。从学校同时出发,15分钟后骑自行车的同学到了展览馆,步行的同学离展览馆还有多远?(江苏无锡市南长区)

124.甲、乙两辆汽车同时从两地相向而行。相遇时,甲车行的路程比乙

125.甲、乙两车同时由A点出发向不同方向开出,4小时后乙车到达C点,这时甲车比乙车多行30千米,已知甲车7小时可绕长方形环路一周,这条环路全长多少千米?(浙江象山县)

126.甲、乙两人绕环形跑道竞走一圈,他俩同时从A点同向行走。在甲 程的比为4∶5,求这个环形跑道的全长。(福建建瓯市)

127.两辆汽车分别从甲、乙两地同时相对开出。已知甲车每小时行70 少千米?(广州市黄埔区)

128.客车和货车同时从甲、乙两地相向开出,客车行完全程需10小时,货车每小时行42千米,3小时后,两车行驶的路程之和与剩下路程相等,甲、乙两地相距多少千米?(南昌市青云谱区)

129.甲、乙两列火车从两站同时相向开出,甲车平均每小时行90千米,的距离是多少千米?(浙江泰顺县)

130.一条步行街上甲、乙两处相距600米,张华每小时走4千米,王伟每小时走5千米。8时整他们两人从甲、乙两处同时出发相向而行,1分钟后他们调头,反向而行,再过3分钟,他们又调头相向而行,依次按照1、3、5、7……(连续奇数)分钟调头行走。那么张华、王伟两人相遇时间是8时多少分?(武汉大学附属外国语学校)

131.从A地到B地,甲车需6小时,乙车需10小时。两车同时从A地出发到B地,甲车到达B地后立即返回。两车出发后几小时相遇?(湖北松滋县)

132.甲、乙两地相距210千米,A车和B车分别从甲、乙两地同时出发 可以相遇?(武汉市青山区)

如果两车同时从这条公路两端相向而行,几小时相遇?(合肥市中市区寿春学校)

米的方砖铺地,需用多少块?(福建云霄实验小学)

135.一只内直径为8厘米的圆柱形量杯,内装药水的高度为16厘米,恰 小学)

136.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面半径是10厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)(西宁市城中区)

137.一只木箱长9分米,宽6分米,高4分米,做这样的木箱10只(有盖),至少需用木板多少平方米?(浙江上虞市)

138.一个装满小麦的圆柱形粮囤,底面积是3.5平方米,高是1.8米。如果把这些小麦堆成高是1.5米的圆锥形麦堆,占地面积是多少平方米?(江苏无锡市南长区)

体的体积是多少立方分米?(西安市雁塔区)

140.一个圆柱形水桶,底面直径和高都是6分米,这个水桶可盛水多少立方分米?(河南安阳市)

141.一个长方形的游泳池,长50米,宽25米,深2米

二、比的应用题

1、一个长方形的周长是24厘米,长与宽的比是 2:1,这个长方形的面积是多少平方厘米?

2、一个长方体棱长总和为 96 厘米,长、宽、高的比是 3∶2 ∶1,这个长方体的体积是多少?

3、一个长方体棱长总和为 96 厘米,高为4厘米,长与宽的比是 3 ∶2,这个长方体的体积是多少?

4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?

5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?

6、做一个600克豆沙包,需要面粉 红豆和糖的比是3:2:1,面粉 红豆和糖各需多少克?

7、小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?

8、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?

三、百分数的应用题

1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?

2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10,这时有苹果多少箱?

3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?

4、教育储蓄所得的利息不用纳税。爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。爸爸为笑笑存的教育储蓄基金的本金 是多少?

5、服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了?

6、爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%?

6、比5分之2吨少20%是()吨,()吨的30%是60吨。

7、一本200页的书,读了20%,还剩下()页没读。甲数的40%与乙数的50% 相等,甲数是120,乙数是()。

8、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?

9、张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的, 年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?

10、小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时 由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?

11、一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨。

四、圆的应用题

1、画一个周长 12.56 厘米的圆,并用字母标出圆心和一条半径,再求出这个圆的面积。

2、学校有一块圆形草坪,它的直径是30米,这块草坪的面积是多少平方米?如果沿着草坪的周围每隔1.57米摆一盆菊花,要准备多少盆菊花?

3、一个圆和一个扇形的半径相等,圆面积是30平方厘米,扇形的圆心角是36度。求扇形的面积。

4、前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

5、一个圆形花坛的直径是10厘米,在它的四周铺一条2米宽的小路,这条小路面积是多少平方米?

6、学校有一块直径是40M的圆形空地,计划在正中央修一个圆形花坛,剩下部分铺一条宽6米的水泥路面,水泥路面的面积是多少平方米?

7、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?

8、一只挂钟的分针长20厘米,经过45分钟后,这根分针的尖端所走的路程是多少厘米?

9、一只大钟的时针长0.3米,这根时针的尖端1天走过多少米?扫过的面积是多少平方米?

五,分数的应用题

1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?

3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?

4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?

7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?

8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?

9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?

六年级数学应用题5

1、救生员和游客一共有56人,每个橡皮艇上有上名救生员和7名游客。一共有多少名游客?多少名救生员?

2、王伯伯家里的菜地一共有800平方米,准备用 种西红柿。剩下的按2︰1的面积比种黄瓜和茄子,三种蔬菜的面积分别是多少平方米?

3、用28米长的铁丝围成一个长方形,这个长方形的长与宽的比是5:2,这个长方形的长和宽各是多少?

4、用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3︰4︰5。这个三角形三条边各是多少厘米?

5、一个三角形的三个内角度数的比是1︰2︰3,这个三角形中最大的角是多少度?这个三角形是什么三角形?

6、修路队要修一条长432米的公路,已经修好了全长的,剩余的任务按5︰4分给甲、乙两个修路队。两个修路队各要修多少米?

7、在“学雷锋”活动中,五年级和六年级同学平均做好事80件,其中五、六年级做好事件数的比是3︰5。

五、六年级同学各做好事多少件?

8、两个城市相距225千米,一辆客车和一辆货车同时从这两城市相对开出,2.5小时后相遇,已知货车与客车速度比是4︰5,客车和货车每小时各行多少千米?

9、用一根长282.6厘米的铁条焊接成一个圆形铁环,它的半径是多少厘米?

10、一个底面是圆形的锅炉,底面圆的周长是1.57米.底面积是多少平方米?(得数保留两位小数)

11、小东有一辆自行车,车轮的直径大约是66厘米,如果平均每分钟转100周,从家到学校的路程是4144.8米,大约需要多少分钟?

12、一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是多少厘米?

13、一个圆形牛栏的半径是15厘米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计。)如果每隔2米装一根木桩,大约要装多少根木桩?

14、公园草地上一个自动旋转喷灌装置的射程是10米,它能喷灌多大的范围?

15、一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

16、街心花园修建一个圆形花坛,周长是31.4米,在花坛的周围修建一条宽是1米的环形小路。这条小路的面积多少?

17、小明购买了5角和8角的邮票共16张,共用去10.7元。小明买这两种邮票各多少张? 18、2002年,中国科学院、中国工程院共有院士1263人,其中男院士有1185人。女院士占院士人数的百分之几?

19、甲、乙两队开挖一条水渠。甲队单独挖要8天完成,乙队单独挖要12天完成。现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。乙队挖了多少天?

20、有一个两位数,它的各位数字的和是7,若从这个数减去27,所得的数恰好是这个数各位数字的次序倒转。求这个数。

六年级数学应用题6

1、一根绳长4/5米,先用去1/4,又用去1/4米,一共用去多少米?

2、山羊50只,绵羊比山羊的 4/5多3只,绵羊有多少只?

3、看一本120页的书,已看全书的 1/3,再看多少页正好是全书的 5/6?

4、一瓶油4/5千克,已用去3/10千克,再用去多少千克正好是这桶油的 1/2?

5、一袋大米120千克,第一天吃去1/4,第二天吃去余下的 1/3,第二天吃去多少千克?

6、一批货物,汽车每次可运走它的 1/8,4次可运走它的几分之几?如果这批货物重116吨,已经运走了多少吨?

7、某厂九月份用水28吨,十月份计划比九月份节约 1/7,十月份计划比九月份节约多少吨?

8、一块平行四边形地底边长24米,高是底的 3/4,它的面积是多少平方米?

9、人体的血液占体重的 1/13,血液里约 2/3是水,爸爸的体重是78千克,他的血液大约含水多少千克?

10、六年级学生参加植树劳动,男生植了160棵,女生植的比男生的 3/4多5棵。女生植树多少棵?

11、新光小学四年级人数是五年级的 4/5,三年级人数是四年级的 2/3,如果五年级是120人,那么三年级是多少人?

12、甲、乙两车同时从相距420千米的A、B两地相对开出,5小时后甲车行了全程的 3/4,乙车行了全程的 2/3,这时两车相距多少千米?

13、五年级植树120棵,六年级植树的棵数是五年级的7/5,五、六年级一共植树多少棵?

14、修一条12/5千米的路,第一周修了2/3千米,第二周修了全长的1/3,两周共修了多少千米?

15、一条公路长7/8千米,第一天修了1/8千米,再修多少千米就正好是 1/2全长的 ?

16、小华看一本96页的故事书,第一天看了 1/4,第二天看了 1/8。两天共看了多少页?

17、一本书有150页,小王第一天看了总数的1/10,第二天看了总数的 1/15,第三天应从第几页看起?

18、学校运来2/5 吨水泥,运来的黄沙是水泥的5/8 还多 1/8吨,运来黄沙多少吨?

19、小伟和小英给希望工程捐款钱数的比是2 :5。小英捐了35元,小伟捐了多少元?

20、电视机厂今年计划比去年增产2/5。去年生产电视机1/5万台,今年计划增产多少万台?

六年级数学应用题7

1、某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖完这条水渠的2/3?

2、某校少先队员采集树种,四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五年级的6/5。六年级采集树种多少千克?

3、仓库运来大米240吨,运来的大豆是大米吨数的5/6,大豆的吨数又是面粉的3/4。运来面粉多少吨?

4、甲筐苹果9/10千克,把甲的1/9给乙筐,甲乙相等,求乙筐苹果多少千克?

5、一桶油倒出2/3,刚好倒出36千克,这桶油原来有多少千克?

6、甲、乙两个工程队共修路360米,甲乙两队长度比是5 : 4,甲队比乙队多修了多少米?

7、服装厂第一车间有工人150人,第二车间的工人数是第一车间的2/5,两个车间的人数正好是全厂工人总数的5/6,全厂有工人多少人?

8、一批水果120吨,其中梨占总数的2/5,又是苹果的4/5,苹果有多少千克?

9、甲乙两数的和是120,把甲的1/3给乙,甲、乙的比是2:3,求原来的甲是多少?

10、小红采集标本24件,送给小芳4件后,小红恰好是小芳的4/5,小芳原有多少件?

11、两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是3:2。求大桶里原来装有多少千克油?

12、一个长方体的棱长和是144厘米,它的长、宽、高之比是4:3:2,长方体的体积是多少?

13、小红有邮票60张,小明有邮票40张,小红给多少张小明,两人的邮票张数比为1:4?

14、王华以每小时4千米的速度从家去学校,1/6小时行了全程的2/3,王华家离学校有多少千米? 15、3台织布机3/2小时织布72米,平均每台织布机每小时织布多少米?

16、一辆汽车行9/2千米用汽油9/25升,用3/5升汽油可以行多少米?

17、有一块三角形的铁皮,面积是3/5平方米。它的底是3/2米,高是多少米?

18、水果店运来梨和苹果共50筐,其中梨的筐数是苹果的2/3,运来梨和苹果各多少筐?

19、用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形的面积是多少平方厘米?斜边上的高是多少厘米?

20、一个长方形的周长是49米,长和宽的比是4∶3,这个长方形的面积是多少平方米?

六年级数学应用题8

1、甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的3/5,A、B两地相距多少米?

2、一所小学扩建校舍,原计划投资28万元,实际投资比原计划节省了 1/7,实际投资多少万元?

3、玩具厂计划生产游戏机2000台,实际超额完成 1/10,实际生产多少台?

4、一根电线长40米,先用去 3/8,后又用去 3/8米,这根电线还剩多少米?

5、某种书先提价 1/6,又降价 1/6,这种书的原价高还是现价高?

6、一本书共100页,小明第一天看了1/5,第二天看了1/4,剩下的第三天看完,第三天看了多少页?

7、光明小学十月份比九月份节约用水 1/9,十月份用水72吨,九月份用水多少吨?

8、修一条公路,修了全长的 3/7后,离这条公路的中点还有1.7米,求这条公路的长?

9、光明小学有60台电脑,比五爱小学多 1/5,五爱小学有多少台电脑?

10、光明小学有60台电脑,比五爱小学少1/5,五爱小学有多少台电脑?

11、一袋大米两周吃完,第一周吃了1/3,第二周比第一周多吃了5千克,这袋大米共重多少千克?

12、小明读一本书,已读的页数是未读的页数的3/2,他再读30页,这时已读的页数是未读的7/3,这本书共多少页?

13、饲养小组养的小白兔是小灰兔的3/5,小灰兔比小白兔多24只,小白兔和小灰兔共多少只?

14、某渔船一天上午捕鱼1200千克,比下午少1/7,全天共捕鱼多少千克?

15、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,还剩25/3千克,这桶油原有多少千克?

16、一条路已经修了全长的1/3,如果再修60米,就正好修了全长的一半,这条路长多少米?

17、牧场养牛480头,比去年养的多1/5,比去年多多少头?

18、一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半?

19、打扫多功能教师,甲组同学1/3小时可以打扫完,乙组同学1/4小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室?

20、一项工程,甲独做18天完成,乙独做15天完成,甲、乙两人合做,但甲中途有事请假4天,那么甲完成任务时实际做了多少天?

六年级数学应用题9

1、有一批零件,甲、乙两人同时加工,12天完成,乙、丙两人同时加工,9天完成,甲、丙两人同时加工,18天完成,三人同时加工,几天可以完成?

2、小明身上的钱可以买12枝铅笔或4块橡皮,他先买了3枝铅笔,剩下的钱可以买几块橡皮?

3、加工一批零件,第一天和第二天各完成了这批零件的2/9,第三天加工了80个,正好完成了加工任务,这批零件共有多少个?

4、电视机厂五月份计划生产电视机5000台,实际生产了6000台,超额完成百分之几?

5、一种电脑原价6800元,现降价1700元,降价百分之几?

6、一段路,甲走完全程需20分钟,乙走完全成需15分钟,甲的速度是乙速度的百分之几?

7、一份稿件,原计划5天抄完,结果只用4天就抄完了,实际工作效率比计划提高了百分之几?

8、从甲堆煤中,取出1/5给乙堆,这时两堆煤重量就相等了,原来乙堆煤的重量比甲堆煤的重量少百分之几?

9、六(1)班有男生32人,女生28人。六(2)班人数是六(1)班的95%,六(2)班有多少人?

10、一条围巾,如果卖100元,可赚25%,如果卖120元,可赚百分之几?

11、买来足球55个,买来的篮球比足球少20%,买来篮球多少个?

12、一堆沙子,第一次运走40%。第二次运走30%,还剩下48吨。这堆沙子有多少吨?

13、一个面粉厂,用20吨小麦能磨出13000千克的面粉。求小麦的出粉率?

14、在100克水中,加入25克盐。这盐水的含盐率是多少?

15、某种菜籽出油率为33%,要想榨出100千克菜籽油。至少要多少千克菜籽。

16、李师傅加工200个零件,经检验4个是废品,合格率是多少?照这样计算,加工700个零件,不合格的有多少个。

17、小红的爸爸将5000元钱存入银行活期储蓄,月利率是0.60%,4个月后,他可得税后利息多少元?可取回本金和利息共有多少元?

18、王老师每月工资1450元,超出1200元的部分按5%交纳个人所得税。王老师每月税后工资是多少元?

19、一种篮球原价180元,现在按原价的七五折出售。这种篮球现价每只多少元?每只便宜了多少元?

20、李丹家去年收玉米300千克,前年收玉米249千克,去年比前年的玉米增产了几成?

六年级数学应用题10

1、明明在商店里买了一个计算器,打八五折,花了68元,这个计算器原价多少元?

2、小华家前年收了4000千克稻谷,去年因为虫害,比前年减产三成五,去年小华家收稻谷多少千克?

3、某商品现价18元,亏了25%,亏了多少元?如果想赢利25%,应按多少元出售该商品?

4、含盐率10%的盐水30千克,加入多少千克盐后,才能制成含盐率25%的盐水?

5、某件皮衣原价1800元,现降价270元该商品是打了几折出售的?

6、保险公司有员工120人,其中男职工是女职工人的50%,这个保险公司有男职工多少人?

7、某工程队,第一天修600米,第二天修全长的20%,第三天修了全长的25%,这时修了的占全长的75%,这条公路全长多少米?

8、小军以每套72元的价格买了一套打折服装,比原价便宜8元。这套服装打了几折出售的? 9、1520千克的盐水中,含盐率为25%,要使这些盐水变为含盐率为50%的盐水,需蒸发掉多少千克水?

10、玩具商店同时出售两种玩具售价都是120元,一件可赚25%,另一件赔25%。如果同时出售这两件玩具,算下来是赔还是赚,如赔,赔多少元,如赚,赚多少元?

11、一个圆形鱼塘,周长314米,这个鱼塘的面积是多少平方米?

12、一块圆形菜地,直径20米,现在要在菜地上覆盖一层塑料薄膜,至少需要薄膜多少平方米?如果每平方米薄膜价格0.5元,这些薄膜要花多少元?

13一辆自行车车轮外直径70厘米,如果平均每分钟车轮转100周,从望直港镇到宝应县城大约需要25分钟。望直港镇到宝应县城大约多少千米?

14、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?

15、六年级数学兴趣小组活动时,参加的同学是未参加的3/7,后来又有30人参加,这时参加的同学是未参加的2/3,六年级一共有多少人?

16、学校美术小组人数的5/6正好是科技小组人数的5/8。已知美术小组有24人。这学校科技小组有多少人?

17、一批化肥先运走25%,又运走18吨,这时还剩45%没有运,这批化肥共有多少吨?

18、学校用40米长的铁丝(接头处不计)围成一块长方形菜地,已知长方形宽是长的1/4,学校的这块菜地面积是多少?

19、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?

20、汽车的速度是火车速度的4/7。两车同时从两地相向而行,在离中点15千米处相遇,这时火车行了多少千米?

第三篇:小学数学六年级应用题

小学数学六年级应用题大全

1.某个体户,去年12月份营业收入5000元,按规定要缴纳3%的营业税。纳税后还剩多少钱?

2.一块合金内,铜和锌的比是2:3,现在再加入6克锌,共得新合金36克。求新合金中锌的重量。

3、草地上有180只羊在吃草,其中 是山羊,其余的都是绵羊。绵羊占总只数的几分之几?绵羊有多少只?

4、阳山小学参加植树活动,把240棵树按2 ∶ 3 ∶ 5分配给四、五、六三个年级。六年级比四年级多植了多少棵?

5.小明要买不同档次的文具盒。高档的5个,中档的占总数的75%,低档的占总数的。你知道小明一共要买多少个文具盒吗?

6.为了学生的卫生安全,学校给每个住宿生配一个水杯,每只水杯3元,大洋商城打九折,百汇商厦“买八送一”。学校想买180只水杯,请你当“参谋”,算一算:到哪家购买较合算?请写出你的理由。

7.某村去年产粮食40吨,今年比去年增产二成五,今年计产粮食多少吨?

8.果园里有果树1200棵,其中梨树占40%,桃树占20%,两种果树共有多少棵?

9.修路队修一条路,已经修了4.5千米,还剩下55%没有修,这条路长多少千米?

10.李大伯饲养鸡的只数的60%与鹅的只数的相等。已知李大伯饲养了120只鸡,那么李大伯饲养了多少只鹅?

11.一批树苗540棵,分给五、六年级同学去种,五年级有120人,六年级有150人,如果按照人数进行分配,每个年级各应分得多少棵树苗?

12.李师傅加工一批零件,第一天完成的个数与零件总数的比是1:3。如果再加工15个,就可以完成这批零件的一半。这批零件共有多少个?

13.一项工程,甲队独做要10天完成,乙队独做要15天完成,甲队先做2天后,剩下的再由两队合做,还要多少天可以完成任务?

甲仓库存粮食100吨,乙仓库存粮食80吨,甲仓库运了一批粮食到乙仓库,这时乙仓库的粮食正好是甲仓库的。甲仓库运了多少吨粮食到乙仓库?

五年级体育“达标”人数比四年级多,实际多12人。四年级体育“达标”的有多少人?

小明把他的压岁钱1300元买了三年期国库券,年利率为5.85%,三年后他可得本金和利息共多少元。

17.工程队做一条公路,第一周做了全长的20%,第二周做了全长的,两周共做了180米。这条公路全长多少米?

18.车站有90吨货物,两辆汽车合运12次可以运完。由甲车单独运要20次可以运完,由乙车单独运几次可以运完?

19.求图中阴影部分的面积和周长(单位:分米)。

求面积:20.解方程:X÷= 7.2-2X=3.8

21.一项工程,甲队独修15天完成,乙队独修20天完成。两队合修5天后,甲队调走,剩下的由乙队继续修完。乙队还要几天修完?

22.一套课桌椅的价格是60元,其中椅子的价格是课桌的。椅子的价格是多少元?

23.有一批书,小亮9天可装订,小冬20天可装订,小亮和小冬合作,几天能完成这批书的?

24.一个打字员打一篇稿件。第一天打了30页,第二天比第一天多打20页,两天共打了这篇稿件的。这篇稿件有多少页?

25.、有一批货物,第一天运走总数的,第二天比第一天多运14吨,第三天把剩下的28吨全部运完。这批货物共有多少吨?

26.一项工程,甲单独做20天完成,乙单独做30天完成。甲乙合做了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。乙请假多少天?

27、李冬看一本故事书,第一天看了全书的还少5页,第二天看了全书的还多3页,还剩206页。这本故事书有多少页?

28.一批零件,甲单独做6天完成,乙单独做9天完成,两人合做4天后,还剩下260个零件。这批零件有多少个?

29.能简算简算 6÷+4÷ 4÷-÷4

×+÷ ÷(—)

30.化简比、求比值 0.4∶

0.3吨∶150千克 0.6∶

水池中有两水管,单开甲水管10小时可将空池放满水,单开乙水管15小时可将满池水放完,现两管齐开,几小时可将空池放满?

从甲地到乙地,甲船要8天,乙船要12天,两船同时从甲地开出,多少天后两船之间的距离是全程的?

一段铁路,已修的长度是未修的长度的比是4:5,如果再修50千米,已修的长度就占全长的。这段铁路全长多少千米?

工程队修一段公路,当修完全长的,已经超过中点320千米。这段公路全长多少千米?

甲乙两船同时从两港相对开出,甲船行完全程要10小时,乙船行完全程要15小时,两船开出5小时后还相距75千米。两港相距多少千米?

学校数学兴趣小组原来男生人数占,后来又有6名男生参加进来,这样男生就占数学兴趣小组的。现在数学兴趣小组有男生多少人?

某水池装有甲乙两个进水管和丙一个出水管。单开甲管6分钟可以注满水池,单开乙管8分钟可以注满,单开丙管4分钟可以把满池水排完。三管齐开,几分钟能使水池注满?

甲乙两个小组合做一批航模,8天可完成。如果甲组单独做20天完成,乙组单独做几天完成?

被减数是40,减数与差的比是5:3,减数是多少?差是多少?

水结冰后体积比原来增加,冰化成水后体积减少几分之几?

一辆汽车以每小时45千米的速度行了全程的后,离中点还有90千米,照这样的速度,行完全程要多少小时?

商店都以60元的价格出售两件不同的衣服,按成本计算,一个赚了,另一件赔了,出售后是亏了还是赚了?相差几元?

一项工程,甲要20天完成,乙要30天完成,在两人合做中,甲休息了5天,共要多少天才能完成全工程?

一项工程,甲乙两队合做12天完成。现在由甲队先做18天,乙队再接替甲队做8天,这样正好完成全部任务。这项工程如果甲队独做,多少天完成?

学校准备用一笔捐款买课桌椅。若用全部捐款可买60套桌椅,若单买桌子,可买80张,若单买椅子可买多少张?如果每张椅子25元,这笔捐款是多少元?

某车间计划生产3000个零件,生产8天后,已经完成,照这样计算,这批零件多少天可完成?

看一本书240页的故事书,第一天看了,第二天看的是第一天的,两天一共看了多少页?

看一本300页的长篇小说,小红第一天看了,第二天看了第一天的,第三天从第几页看起?

一本书第一天看了,第二天看了6页,这时还剩下一半,这本书有几页?

一辆汽车4小时行了全程的,行完全程还要几小时?

长方体的棱长总和为220厘米,已知长、宽、高的比为5:4:2,这个长方体的体积和表面积各是多少?

学校的故事书占全校图书总数的,又买进400本故事书后,这时故事书占总数的,问学校原来共有多少本图书?

一根绳子剪去部分是剩下的,如果多剪10厘米,则剪去的部分是剩下的。这根绳子全长多少厘米?

54.计算。

一个数的是80,这个数的是多少?

与它的倒数的和,除以 与 的积,商是多少?

一个数的60%比32的60% 多32,这个数是多少?

一个数比20的2% 多4,这个数是多少?

÷7+7÷ 6-(÷2+3)

55.某车间计划生产360个零件,已经生产了60个,再生产多少个正好完成计划的?

挖一条千米的水渠,第一周已挖的是未挖的,第二周又挖了千米。两周共挖了多少千米?

把一根长米的钢材锯成相等的若干段,一共锯了5次,平均每段长多少米?

修一条堤坝,甲队修了全长的,正好是360米,乙队修了全长的,乙队修了多少米?

一个连续自然数中,最小的一个自然数,等于这五个数的和的,这五个数分别是多少?、一杯盐水200克,其中盐与水的比是1:24。现在要把这杯盐水变淡,使得盐与水的比为1:29,需加水多少克?

王叔叔卖梨、苹果、桔子三种水果,它们的重量比是3:4:6,其中桔子比苹果多80千克,梨有多少千克? 三个少先队员共种100棵蓖麻,甲种了总数的,乙与丙种的棵数比是7:5,乙比丙多种了蓖麻多少棵?

两地相距630千米,甲、乙两辆汽车同时从两地相向开出,7小时相遇。甲乙两车的速度比是4:5,甲乙两车每小时各行多少千米?

64、饲养厂鸡的只数比鸭的只数多25%,那么,鸭的只数比鸡的只数少百分之几?

65、先看清题目要求,再回答。有一天,老师带了5000元钱到商店买电器,看见一款家电组合,TCL彩电2000元,DVD机的价钱是彩电的80%,音箱价钱比彩电贵20%。请你帮老师预算一下:买这三种家电,老师带的钱够吗

66、一辆汽车从甲地到乙地,平均每小时行驶80千米,行了小时,刚好行了全程的。甲地到乙地有多少千米?

67.东方广场有个圆形的喷泉,量得周长是37.68米,这个喷泉占地多少平方米?

68..甲有一套住房价值30万元,以九折(即90%)优惠卖给乙,过了一段时间后, 房价上涨了10%,乙又卖给甲,甲总共损失多少钱?

69.服装厂生产一批校服,前10天完成的套数与这批校服总套数的比是1:3。如果再生产150套,正好可以完成这批校服的40%。这批校服共有多少套?

70.桃树的棵数是梨树的,梨树的棵数是杨树的,已知桃树有30棵,杨树有多少棵?

71.一段木料长8米,先用去全长的,又用去米,一共用去多少米?

72、一种圆柱形的钢材,米重吨,现有这样的钢材2米,重多少吨?

评论(5)| 7354

384030724 | 来自团队 百晓 | 十级 采纳率60% 擅长: 海外地区

其他类似问题

     2012-02-13 小学数学六年级应用题解法大全18 2011-04-07 小学数学应用题大全347

2013-07-16 小学六年级数学计算题大全(附答案)74

2013-09-14 小学六年级上册数学应用题大全,急..............30 2011-05-03 小学数学六年级应用题254

更多关于六年级数学应用题大全的问题>>

网友都在找:

六年级上数学应用题

按默认排序 | 按时间排序

其他6条回答

2012-09-02 13:08 小数点75 | 三级

1.某家电卖场运来液晶电视机250台,是运来冰箱台数的3(5),运来洗衣机的台数是冰箱台数的10(3),运来洗衣机多少台?

2.某家电卖场运来液晶电视机台数的6(5)是250台,第一天卖出去这批液晶电视机的5(2),第一天卖出液晶电视机多少台?第一天后还剩多少台?

3.某家电卖场运来液晶电视机250台,第一天卖出5(2),第二天卖出台数是第一天的4(5)。第二天卖出液晶电视机多少台?比第一天多多少台?

4.某家电卖场运来液晶电视机250台,第一天卖出5(2),是第二天卖出台数的8(5)。第二天卖出液晶电视机多少台?比第一天多多少台?

5.某家电卖场运来一批液晶电视机,第一天卖出5(2),正好是200台。第二天卖出的台数是第一天的8(5)。第二天卖出液晶电视机多少台?第二天后还剩多多少台?

6.某家电卖场运来一批液晶电视机,第一天卖出5(2),正好是200台,相当于第二天卖出的台数的6(5)。第二天卖出液晶电视机多少台?第二天后还剩多多少台?

评论 | 1311

2012-08-21 11:31 wangjnaaa | 二级

1.某个体户,去年12月份营业收入5000元,按规定要缴纳3%的营业税。纳税后还剩多少钱?

解:5000x(1-3%)=4850元

2.一块合金内,铜和锌的比是2:3,现在再加入6克锌,共得新合金36克。求新合金中锌的重量。

解:36-6=30克。说明原来的铜锌总重为30克。铜和锌的比是2:3,即:铜10克,锌为20克;又加入6克锌,即。锌的总重为:26克

3、草地上有180只羊在吃草,其中90只是山羊,其余的都是绵羊。绵羊占总只数的几分之几?绵羊有多少只?

解:山羊90只。即绵羊为90只。绵羊占总数为90/180=1/2,4、阳山小学参加植树活动,把240棵树按2 ∶ 3 ∶ 5分配给四、五、六三个年级。六年级比四年级多植了多少棵?

解:四年级为48棵,五年级为72棵。六年级为120棵。120-48=72棵

5.小明要买不同档次的文具盒。高档的5个,中档的占总数的75%,低档的占总数的。你知道小明一共要买多少个文具盒吗?6.为了学生的卫生安全,学校给每个住宿生配一个水杯,每只水杯3元,大洋商城打九折,百汇商厦“买八送一”。学校想买180只水杯,请你当“参谋”,算一算:到哪家购买较合算?请写出你的理由。

7.某村去年产粮食40吨,今年比去年增产二成五,今年计产粮食多少吨?

8.果园里有果树1200棵,其中梨树占40%,桃树占20%,两种果树共有多少棵?

9.修路队修一条路,已经修了4.5千米,还剩下55%没有修,这条路长多少千米?

10.李大伯饲养鸡的只数的60%与鹅的只数的相等。已知李大伯饲养了120只鸡,那么李大伯饲养了多少只鹅? 11.一批树苗540棵,分给五、六年级同学去种,五年级有120人,六年级有150人,如果按照人数进行分配,每个年级各应分得多少棵树苗?

12.李师傅加工一批零件,第一天完成的个数与零件总数的比是1:3。如果再加工15个,就可以完成这批零件的一半。这批零件共有多少个?

13.一项工程,甲队独做要10天完成,乙队独做要15天完成,甲队先做2天后,剩下的再由两队合做,还要多少天可以完成任务?

甲仓库存粮食100吨,乙仓库存粮食80吨,甲仓库运了一批粮食到乙仓库,这时乙仓库的粮食正好是甲仓库的。甲仓库运了多少吨粮食到乙仓库?

五年级体育“达标”人数比四年级多,实际多12人。四年级体育“达标”的有多少人?

小明把他的压岁钱1300元买了三年期国库券,年利率为5.85%,三年后他可得本金和利息共多少元。

17.工程队做一条公路,第一周做了全长的20%,第二周做了全长的,两周共做了180米。这条公路全长多少米?

18.车站有90吨货物,两辆汽车合运12次可以运完。由甲车单独运要20次可以运完,由乙车单独运几次可以运完?

19.求图中阴影部分的面积和周长(单位:分米)。

求面积:

20.解方程:

X÷=

7.2-2X=3.8

21.一项工程,甲队独修15天完成,乙队独修20天完成。两队合修5天后,甲队调走,剩下的由乙队继续修完。乙队还要几天修完?

22.一套课桌椅的价格是60元,其中椅子的价格是课桌的。椅子的价格是多少元?

23.有一批书,小亮9天可装订,小冬20天可装订,小亮和小冬合作,几天能完成这批书的?

24.一个打字员打一篇稿件。第一天打了30页,第二天比第一天多打20页,两天共打了这篇稿件的。这篇稿件有多少页?

25.、有一批货物,第一天运走总数的,第二天比第一天多运14吨,第三天把剩下的28吨全部运完。这批货物共有多少吨?

26.一项工程,甲单独做20天完成,乙单独做30天完成。甲乙合做了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。乙请假多少天?

27、李冬看一本故事书,第一天看了全书的还少5页,第二天看了全书的还多3页,还剩206页。这本故事书有多少页?

28.一批零件,甲单独做6天完成,乙单独做9天完成,两人合做4天后,还剩下260个零件。这批零件有多少个?

29.能简算简算

6÷+4÷

4÷-÷4

×+÷

÷(—)

30.化简比、求比值

0.4∶

0.3吨∶150千克

0.6∶

水池中有两水管,单开甲水管10小时可将空池放满水,单开乙水管15小时可将满池水放完,现两管齐开,几小时可将空池放满?

从甲地到乙地,甲船要8天,乙船要12天,两船同时从甲地开出,多少天后两船之间的距离是全程的?

一段铁路,已修的长度是未修的长度的比是4:5,如果再修50千米,已修的长度就占全长的。这段铁路全长多少千米?

工程队修一段公路,当修完全长的,已经超过中点320千米。这段公路全长多少千米?

甲乙两船同时从两港相对开出,甲船行完全程要10小时,乙船行完全程要15小时,两船开出5小时后还相距75千米。两港相距多少千米?

学校数学兴趣小组原来男生人数占,后来又有6名男生参加进来,这样男生就占数学兴趣小组的。现在数学兴趣小组有男生多少人?

某水池装有甲乙两个进水管和丙一个出水管。单开甲管6分钟可以注满水池,单开乙管8分钟可以注满,单开丙管4分钟可以把满池水排完。三管齐开,几分钟能使水池注满?

甲乙两个小组合做一批航模,8天可完成。如果甲组单独做20天完成,乙组单独做几天完成?

被减数是40,减数与差的比是5:3,减数是多少?差是多少?

水结冰后体积比原来增加,冰化成水后体积减少几分之几?

一辆汽车以每小时45千米的速度行了全程的后,离中点还有90千米,照这样的速度,行完全程要多少小时?

商店都以60元的价格出售两件不同的衣服,按成本计算,一个赚了,另一件赔了,出售后是亏了还是赚了?相差几元?

一项工程,甲要20天完成,乙要30天完成,在两人合做中,甲休息了5天,共要多少天才能完成全工程?

一项工程,甲乙两队合做12天完成。现在由甲队先做18天,乙队再接替甲队做8天,这样正好完成全部任务。这项工程如果甲队独做,多少天完成?

学校准备用一笔捐款买课桌椅。若用全部捐款可买60套桌椅,若单买桌子,可买80张,若单买椅子可买多少张?如果每张椅子25元,这笔捐款是多少元?

某车间计划生产3000个零件,生产8天后,已经完成,照这样计算,这批零件多少天可完成?

看一本书240页的故事书,第一天看了,第二天看的是第一天的,两天一共看了多少页?

看一本300页的长篇小说,小红第一天看了,第二天看了第一天的,第三天从第几页看起?

一本书第一天看了,第二天看了6页,这时还剩下一半,这本书有几页?

一辆汽车4小时行了全程的,行完全程还要几小时?

长方体的棱长总和为220厘米,已知长、宽、高的比为5:4:2,这个长方体的体积和表面积各是多少?

学校的故事书占全校图书总数的,又买进400本故事书后,这时故事书占总数的,问学校原来共有多少本图书?

一根绳子剪去部分是剩下的,如果多剪10厘米,则剪去的部分是剩下的。这根绳子全长多少厘米?

54.计算。

一个数的是80,这个数的是多少?

与它的倒数的和,除以 与 的积,商是多少?

一个数的60%比32的60% 多32,这个数是多少?

一个数比20的2% 多4,这个数是多少?

÷7+7÷

6-(÷2+3)

55.某车间计划生产360个零件,已经生产了60个,再生产多少个正好完成计划的?

挖一条千米的水渠,第一周已挖的是未挖的,第二周又挖了千米。两周共挖了多少千米?

把一根长米的钢材锯成相等的若干段,一共锯了5次,平均每段长多少米?

修一条堤坝,甲队修了全长的,正好是360米,乙队修了全长的,乙队修了多少米?

一个连续自然数中,最小的一个自然数,等于这五个数的和的,这五个数分别是多少?、一杯盐水200克,其中盐与水的比是1:24。现在要把这杯盐水变淡,使得盐与水的比为1:29,需加水多少克?

王叔叔卖梨、苹果、桔子三种水果,它们的重量比是3:4:6,其中桔子比苹果多80千克,梨有多少千克?

三个少先队员共种100棵蓖麻,甲种了总数的,乙与丙种的棵数比是7:5,乙比丙多种了蓖麻多少棵?

两地相距630千米,甲、乙两辆汽车同时从两地相向开出,7小时相遇。甲乙两车的速度比是4:5,甲乙两车每小时各行多少千米?

64、饲养厂鸡的只数比鸭的只数多25%,那么,鸭的只数比鸡的只数少百分之几?

65、先看清题目要求,再回答。

有一天,老师带了5000元钱到商店买电器,看见一款家电组合,TCL彩电2000元,DVD机的价钱是彩电的80%,音箱价钱比彩电贵20%。请你帮老师预算一下:买这三种家电,老师带的钱够吗

66、一辆汽车从甲地到乙地,平均每小时行驶80千米,行了小时,刚好行了全程的。甲地到乙地有多少千米?

67.东方广场有个圆形的喷泉,量得周长是37.68米,这个喷泉占地多少平方米?

68..甲有一套住房价值30万元,以九折(即90%)优惠卖给乙,过了一段时间后, 房价上涨了10%,乙又卖给甲,甲总共损失多少钱?

69.服装厂生产一批校服,前10天完成的套数与这批校服总套数的比是1:3。如果再生产150套,正好可以完成这批校服的40%。这批校服共有多少套?

70.桃树的棵数是梨树的,梨树的棵数是杨树的,已知桃树有30棵,杨树有多少棵? 71.一段木料长8米,先用去全长的,又用去米,一共用去多少米?

72、一种圆柱形的钢材,米重吨,现有这样的钢材2米,重多少吨?

第四篇:小学数学应用题分类解题(整理)

小学数学应用题分类解题大全

求平均数应用题是在“把一个数平均分成几份,求一份是多少”的简单应用题的基础上发展而成的。它的特征是已知几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等。最后所求的相等数,就叫做这几个数的平均数。

解答这类问题的关键,在于确定“总数量”和与总数量相对应的“总份数”。计算方法:总数量÷总份数=平均数平均数×总份数=总数量

总数量÷平均数=总份数

例1:东方小学六年级同学分两个组修补图书。第一组28人,平均每人修补图书15本;第二组22人,一共修补图书280本。全班平均每人修补图书多少本?

要求全班平均每人修补图书多少本,需要知道全班修补图书的总本数和全班的总人数。(15×28+280)÷(28+22)=14本

例2:有水果糖5千克,每千克2.4元;奶糖4千克,每千克3.2元;软糖11千克,每千克4.2元。将这些糖混合成什锦糖。这种糖每千克多少元?

要求什锦糖每千克多少元,要先出这几种糖的总价和总重量最后求得平均数,即每千克什锦糖的价钱。

(2.4×5+3.2×4+4.2×11)÷(5+4+11)=3.55元

3、要挖一条长1455米的水渠,已经挖了3天,平均每天挖285米,余下的每天挖300米。这条水渠平均每天挖多少米?

已知水渠的总长度,平均每天挖多少米,就要先求出一共挖了多少天。1455÷(3+(1455-285×3)÷300)=291米

4、小华的期中考试成绩在外语成绩宣布前,他四门功课的平均分是90分。外语成绩宣布后,他的平均分数下降了2分。小华外语成绩是多少分?

解法一:先求出四门功课的总分,再求出一门功课的的总分,然后求得外语成绩。(90–2)×5–90×4=80分

5、甲乙丙三人在银行存款,丙的存款是甲乙两人存款的平均数的1.5倍,甲乙两人存款的和是2400元。甲乙丙三人平均每人存款多少元?

要求甲乙丙三人平均每人存款多少元,先要求得三人存款的总数。(2400÷2×1.5+2400)÷3=1400元

6、甲种酒每千克30元,乙种酒每千克24元。现在把甲种酒13千克与乙种酒8千克混合卖出,当剩余1千克时正好获得成本,每千克混合酒售价多少元?

要求每千克混合酒售价多少元,要先求得两种酒的总价钱和两种酒的总千克数。因为当剩余1千克时正好获得成本,所以在总千克数中要减去1千克。

(30×13+24×8)÷(13+8–1)=29.1元

7、甲乙丙三人各拿出相等的钱去买同样的图书。分配时,甲要22本,乙要23本,丙要30本。因此,丙还给甲13.5元,丙还要还给乙多少元?

先求买来图书如果平均分,每人应得多少本,甲少得了多少本,从而求得每本图书多少元。1.平均分,每人应得多少本?(22+23+30)÷3=25本

2.甲少得了多少本?25–22=3本 3.乙少得了多少本?25–23=2本 4.每本图书多少元?13.5÷3=4.5元 5. 丙应还给乙多少元? 4.5×2=9元

13.5÷[(22+23+30)÷3–22]×[(22+23+30)÷3–23]=9元

8、小荣家住山南,小方家住山北。山南的山路长269米,山北的路长370米。小荣从家里出发去小方家,上坡时每分钟走16米,下坡时每分钟走24米。求小荣往返一次的平均速度。在同样的路程中,由于是下坡的不同,去时的上坡,返回时变成了下坡;去时的下坡,回来时成了上坡,因此,所用的时间也不同。要求往返一次的平均速度,需要先求得往返的总路程和总时间。

1、往返的总路程(260+370)×2=1260米

2、往返的总时间(260+370)÷16+(260+370)÷24=65.625分

3、往返平均速度 1260÷65.625=19.2米

(260+370)×2÷[(260+370)÷16+(260+370)÷24]=19.2米

9、草帽厂有两个草帽生产车间,上个月两个车间平均每人生产草帽185顶。已知第一车间有25人,平均每人生产203顶;第二车间平均每人生产草帽170顶,第二车间有多少人?

解法一:可以用“移多补少获得平均数”的思路来思考。

第一车间平均每人生产数比两个车间平均每人平均数多几顶?203–185=18顶;第一车间有25人,共比按两车间平均生产数计算多多少顶?18×25=450。将这450顶补给第二车间,使得第二车间平均每人生产数达到两个车间的总平均数。

6. 第一车间平均每人生产数比两个车间平均顶数多几顶? 203–185=18顶 7.第一车间共比按两车间平均数逆运算,多生产多少顶?18×25=450顶 8. 第二车间平均每人生产数比两个车间平均顶数少几顶?185–170=15顶 9. 第二车间有多少人:450÷15=30人(203–185)×25÷(185–170)=30人 例

10、一辆汽车从甲地开往乙地,去时每小时行45千米,返回时每小时行60千米。往返一次共用了3.5小时。求往返的平均速度。(得数保留一位小数)解法一:要求往返的平均速度,要先求得往返的距离和往返的时间。

去时每小时行45千米,1千米要 小时;返回时每小时行60千米,1千米要 小时。往返1千米要(+)小时,进而求得甲乙两地的距离。

1、甲乙两地的距离 3.5÷(+)=90千米

2、往返平均速度 90×2÷3.5≈52.4千米 3.5÷(+)×2÷3.5≈52.4千米

解法二:把甲乙两地的距离看作“1”。往返距离为2个“1”,即1×2=2。去时每千米需 小时,返回时需 小时,最后求得往返的平均速度。

1÷(+)≈51.4千米

在解答某一类应用题时,先求出一份是多少(归一),然后再用这个单一量和题中的有关条件求出问题,这类应用题叫做归一应用题。

归一,指的是解题思路。

归一应用题的特点是先求出一份是多少。归一应用题有正归一应用题和反归一应用题。在求出一份是多少的基础上,再求出几份是多产,这类应用题叫做正归一应用题;在求出一份是多少的基础上,再求出有这样的几份,这类应用题叫做反归一应用题。

根据“求一份是多少”的步骤的多少,归一应用题也可分为一次归一应用题,用一步就能求出“一份是多少”的归一应用题;两次归一应用题,用两步到处才能求出“一份是多少”的归一应用题。

解答这类应用题的关键是求出一份的数量,它的计算方法: 总数÷份数=一份的数

例1、24辆卡车一次能运货物192吨,现在增加同样的卡车6辆,一次能运货物多少吨? 先求1辆卡车一次能运货物多少吨,再求增加6辆后,能运货物多少吨。这是一道正归一应用题。192÷24×(24+6)=240吨

2、张师傅计划加工552个零件。前5天加工零件345个,照这样计算,这批零件还要几天加工完?

这是一道反归一应用题。

例3、3台磨粉机4小时可以加工小麦2184千克。照这样计算,5台磨粉机6小时可加工小麦多少千克?

这是一道两次正归一应用题。

4、一个机械厂和4台机床4.5小时可以生产零件720个。照这样计算,再增加4台同样的机床生产1600个零件,需要多少小时?

这是两次反归一应用题。要先求一台机床一小时可以生产零件多少个,再求需要多少小时。1600÷[720÷4÷4.5×(4+4)]=5小时

5、一个修路队计划修路126米,原计划安排7个工人6天修完。后来又增加了54米的任务,并要求在6天完工。如果每个工人每天工作量一定,需要增加多少工人才如期完工? 先求每人每天的工作量,再求现在要修路多少米,然后求要5天完工需要工人多少人,最后求要增加多少人。

(126+54)÷(126÷7÷6×5)–7=5人

6、用两台水泵抽水。先用小水泵抽6小时,后用大水泵抽8小时,共抽水624立方米。已知小水泵5小时的抽水量等于大水泵2小时的抽水量。求大小水泵每小时各抽水多少立方米?

解法一:根据“小水泵5小时的抽水量等于大水泵2小时的抽水量”,可以求出大水泵1小时的抽水量相当于小水泵几小时的抽水量。把不同的工作效率转化成某一种水泵的工作效率。

1、大水泵1小时的抽水量相当于小水泵几小时的抽水量?5÷2=2.5小时

2、大水泵8小时的抽水量相当于小水泵几小时的抽水量2.5×8=20小时

3、小水泵1小时能抽水多少立方米?642÷(6+20)=24立方米

4、大水泵1小时能抽水多少立方米?24×2.5=60立方米 解法二:

1、小水泵1小时的抽水量相当于大水泵几小时的抽水量2÷5=0.4小时

2、小水泵6小时的抽水量相当于大水泵几小时的抽水量0.4×6=2.4小时

3、大水泵1小时能抽水多少立方米?624÷(8+2.4)=60立方米

4、小水泵1小时能抽水多少立方米?60×0.4=24立方米

7、东方小学买了一批粉笔,原计划29个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够有校的班级用多少天?

先求这批粉笔够一个班用多少天,剩下的粉笔够一个班用多少天,然后求够在校班用多少天。

1、这批粉笔够一个班用多少天 40×20=800天

2、剩下的粉笔够一个班用多少天 800–10×20=600天

3、剩下几个班 20–10=10个

4、剩下的粉笔够10个班用多少天 600÷10=60天(40×20–10×20)÷(20–10)=60天

8、甲乙两个工人加工一批零件,甲4.5小时可加工18个,乙1.6小时可加工8个,两个人同时工作了27小时,只完成任务的一半,这批零件有多少个?

先分别求甲乙各加工一个零件所需的时间,再求出工作了27小时,甲乙两工人各加工了零件多少个,然后求出一半任务的零件个数,最后求出这批零件的个数。

[27÷(4.5÷18)+27÷(1.6÷8)]×2=486个

在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题。这类应用题叫做归总应用题。

归总,指的是解题思路。

归总应用题的特点是先总数,再根据应用题的要求,求出每份是多少,或有这样的几份。例

1、一个工程队修一条公路,原计划每天修450米。80天完成。现在要求提前20天完成,平均每天应修多少米?

450×80÷(80–20)=600米

2、家具厂生产一批小农具,原计划每天生产120件,28天完成任务;实际每天多生产了20件,可以几天完成任务?

要求可以提前几天,先要求出实际生产了多少天。要求实际生产了多少天,要先求这批小农具一共有多少件。

28–120×28÷(120+20)=4天

3、装运一批粮食,原计划用每辆装24袋的汽车9辆,15次可以运完;现在改用每辆可装30袋的汽车6辆来运,几次可以运完?

24×9×15÷30÷6=18次

4、修整一条水渠,原计划由8人修,每天工作7.5小时,6天完成任务,由于急需灌水,增加了2人,要求4天完成,每天要工作几小时?

一个工人一小时的工作量,叫做一个“工时”。要求每天要工作几小时,先要求修整条水渠的工时总量。

1、修整条水渠的总工时是多少?7.5×8×6=360工时

2、参加修整条水渠的有多少人 8+2=10人

3、要求 4天完成,每天要工作几小时 4、360÷4÷10=9小时 7.5×8×6÷4÷(8+2)=9小时

5、一项工程,预计30人15天可以完成任务。后来工作的天后,又增加3人。每人工作效率相同,这样可以提前几天完成任务?

一个工人工作一天,叫做一个“工作日”。

要求可以提前几天完成,先要求得这项工程的总工作量,即总工作日。

1、这项工程的总工作量是多少?15×30=450工作日 2、4天完成了多少个工作日?4×30=120工作日

3、剩下多少个工作日?450–120=330工作日

4、剩下的要工作多少天?330÷(30+3)=10天

5、可以提前几天完成?15–(4+10)=1天 15–[(15×30–4×30)÷(30+3)+4]=1天

6、一个农场计划28天完成收割任务,由于每天多收割7公顷,结果18天就完成 了任务。实际每天收割多少公顷?

要求实际每天收割多少公顷,要先求原计划每天收割多少公顷。要求原计划每天收割多少公顷,要先求18天多收割了多少公顷。18天多收割的就是原计划(28–18)天的收割任务。

1、18天多收割了多少公顷? 7×18=126公顷

2、原计划每天收割多少公顷? 126÷(28–18)=12.6公顷

3、实际每天收割多少公顷? 12.6+7=19.6公顷 7×18÷(28–18)+7=19.6公顷 例

7、休养准备了120人30天的粮食。5天后又新来30人。余下的粮食还够用多少天?

先要求出准备的粮食1人能吃多少天,再求5天后还余下多少粮食,最后求还够用多少天。

1、准备的粮食1人能吃多少天?300×120=3600天 2、5天后还余下的粮食够1人吃多少天?3600–5×120=3000天

3、现在有多少人?120+30=150人

4、还够用多少天? 3000÷150=20天(300×120–5×120)÷(120+30)=20天

8、一项工程原计划8个人,每天工作6小时,10天可以完成。现在为了加快工程进度,增加22人,每天工作时间增加2小时,这样,可以提前几天完成这项工程?

要求可以几天完成,要先求现在完成这项工程多少天。要求现在完成这项工程多少天,要先求这项工程的总工时数是多少。

10–6×10×8÷(8+22)÷(6+2)=8天

已知两个数以及它们之间的倍数关系,要求这两个数各是多少的应用题,叫做和倍应用题。解答方法是:和÷(倍数+1)=1份的数 1份的数×倍数=几倍的数

1、有甲乙两个仓库,共存放大米360吨,甲仓库的大米数是乙仓库的3倍。甲乙两个仓库各存放大米多少吨?

2、一个畜牧场有绵羊和山羊共148只,绵羊的只数比山羊只数的2倍多4只。两种羊各有多少只?

山羊的只数:(148-4)÷(2+1)=48只 绵羊的只数:48×2+4=100只

3、一个饲养场养鸡和鸭共3559只,如果鸡减少60只,鸭增加100只,那么,鸡的只数比鸭的只数的2倍少1只。原来鸡和鸭各有多少只?

鸡减少60只,鸭增加00只后,鸡和鸭的总数是3559-60+100=3599只,从而可求出现在鸭的只数,原来鸭的只数。

1、现在鸡和鸭的总只数:3559-60+100=3599只

2、现在鸭的只数:(3599-1)÷(2+1)=1200只

3、原来鸭的只数:1200-100=1100只

4、原来鸡的只数:3599-1100=2459只

4、甲乙丙三人共同生产零件1156个,甲生产的零件个数比乙生产的2倍还多15个;乙生产的零件个数比丙生产的2倍还多21个。甲乙丙三人各生产零件多少个?

以丙生产的零件个数为标准(1份的数),乙生产的零件个数=丙生产的2倍-21个;甲生产的零件个数=丙的(2×2)倍+(21×2+15)个。

丙生产零件多少个?(1156-21-21×2-15)÷(1+2+2×2)=154个 乙:154×2+21=329个 甲:329×2+15=673个

5、甲瓶有酒精470毫升,乙瓶有酒精100毫升。甲瓶酒精倒入乙瓶多少毫升,才能使甲瓶酒精是乙瓶的2倍?

要使甲瓶酒精是乙瓶的2倍,乙瓶 是1份,甲瓶是2份,要先求出一份是多少,再求还要倒入多少毫升。

1、一份是多少?(470+100)÷(2+1)=190毫升

2、还要倒入多少毫升?190-100=90毫升

6、甲乙两个数的和是7106,甲数的百位和十位上的数字都是8,乙数百位和十位上的数字都是2。用0代替这两个数里的这些8和2,那么,所得的甲数是乙数的5倍。原来甲乙两个数各是多少?

把甲数中的两个数位上的8都用0代替,那么这个数就减少了880;把乙数中的两个数位上的2都用0代替,那么这个数就减少了220。这样,原来两个数的和就一共减少了(880+220)[7106-(880+220)]÷(5+1)+220=1221„„乙数 7106-1221=5885„„甲数 已知两个数的差以及它们之间的倍数关系,要求这两个数各是多少的应用题,叫做差倍应用题。

解答方法是:差÷(倍数-1)=1份的数 1份的数×倍数=几倍的数

1、甲仓库的粮食比乙仓多144吨,甲仓库的粮食吨数是乙仓库的4倍,甲乙两仓各存有粮食多少吨?

以乙仓的粮食存放量为标准(即1份数),那么,144吨就是乙仓的(4-1)份,从而求得一份是多少。

114÷(4-1)=48吨„„乙仓

2、参加科技小组的人数,今年比去年多41人,今年的人数比去年的3倍少35人。两年各有多少人参加?

由“今年的人数比去年的3倍少35人”,可以把去年的参加人数作为标准,即一份的数。今年参加人数如果再多35人,今年的人数就是去年的3倍。(41+35)就是去年的(3-1)份

去年:(41+35)÷(3-1)=38人

3、师傅生产的零件的个数是徒弟的6倍,如果两人各再生产20个,那么师傅生产的零件个数是徒弟的4倍。两人原来各生产零件多少个?

如果徒弟再生产20个,师傅再生产20×6=120个,那么,现在师傅生产的个数仍是徒弟的6倍。可见20×6-20=100个就是徒弟现有个数的6-2=4倍。

(20×6-20)÷(6-4)-20=30个„„徒弟原来生产的个数 30×6=180个师傅原来生产个数

4、第一车队比第二车队的客车多128辆,再起从第一车队调出11辆客车到第二车队服务,这时,第一车队的客车比第二车队的3倍还多22辆。原来两车队各有客车多少辆? 要求“原来两车队各有客车多少辆”,需要求“现在两车队各有客车多少辆”;要求“现在两车队各有客车多少辆”,要先求现在第一车队比第二车队的客车多多少辆。

1、现在第一车队比第二车队的客车多多少辆? 128-11×2=106辆

2、现在第二车队有客车多少辆?(106-22)÷(3-1)=42辆

3、第二车队原有客车多少辆?42-11=31辆

4、第一车队原有客车多少辆?31+128=159辆

5、小华今年12岁,他父亲46岁,几年以后,父亲的年龄是儿子年龄的3倍? 父亲的年龄与小华年龄的差不变。

要先求当父亲的年龄是儿子年龄的3倍时小华多少岁,再求还要多少年。(46-12)÷(3-1)-12=5年

6、甲仓存水泥64吨,乙仓存水泥114吨。甲仓每天存入8吨,乙仓每天存入18吨。几天后乙仓存放水泥吨数是甲仓的2倍?

现在甲仓的2倍比乙仓多(64×2-114)吨,要使乙仓水泥吨数是甲仓的2倍,每天乙仓实际只多存入了(18-2×8)吨。

(64×2-114)÷(18-2×8)=7天

7、甲乙两根电线,甲电线长63米,乙电线长29米。两根电线剪去同样的长度,结果甲电线所剩下长度是乙电线的3倍。各剪去多少米?

要求“各剪去多少米”,要先求得甲乙两根电线所剩长度各是多少米。两根电线的差不变,甲电线的长度是乙电线的3倍。从而可求得甲乙两根电线所剩下的长度。

1、乙电线所剩的长度?(63-29)÷(3-1)=17米

2、剪去长度?29-17=12米

8、有甲乙两箱橘子。从甲箱取10只放入乙箱,两箱的只数相等;如果从乙箱取15只放入甲箱,甲箱橘子的只数是乙箱的3倍。甲乙两箱原来各有橘子多少只?

要求“甲乙两箱原来各有橘子多少只”,先求甲乙两箱现在各有橘子多少只。

已知现在“甲箱橘子的只数是乙箱的3倍”,要先求现在甲箱橘子比乙箱多多少只。原来甲箱比乙箱多10×2=20只,“从乙箱取15只放入甲箱”,又多了15×2=30只。现在两箱橘子相差(10×2+15×2)只。

(10×2+15×2)÷(3-1)+15=40只„„乙箱 40+10×2=60只„„甲箱 已知两个数的和与它们的差,要求这,叫做和差应用题。解答方法是:(和+差)÷2=大数(和-差)÷2=小数

1、果园里有苹果树和梨树共308棵,苹果树比梨树多48棵。苹果树和梨树各有多少棵?

2、甲乙两仓共存货物1630吨。如果从甲仓调出6吨放入乙仓,甲仓的货物比乙仓的货物还多10吨。甲乙两仓原来各有货物多少吨?

从甲仓调出6吨放入乙仓,甲仓的货物比乙仓的货物还多10吨,可知原来两仓货物相差6×2+10=22吨,由此,可根据两仓货物的和与差,求得两仓原有货物的吨数。

3、某公司甲班和乙班共有工作人员94人,因工作需要临时从乙班调46人到甲班工作,这时,乙班比甲班少12人,原来甲班和乙班各有工作人员多少人?

总人数不变。即原来和现在两班工作人员的和都是94人。现在两班人数相差12人。要求原来甲班和乙班各有工作人员多少人,先要求现在甲班和乙班各有工作人员多少人?

1、现在甲班有工作人员多少人?(94+12)÷2=53人

2、现在乙班有工作人员多少人?(94-12)÷2=41人

3、原来甲班有工作人员多少人?53-46=7人

4、原来乙班有工作人员多少人?41+46=87人

4、甲乙丙三人共装订同一种书刊508本。甲比乙多装订42本,乙比丙多装订26本。他们三人各装订多少本?

先确定一个人的装订本数为标准。如果我们选定乙的装订本数为标准,从总数508中减去甲比乙多装订4的2本,加上丙比乙少装订的26本,得到的就是乙装订本数的3倍。由此,可求得乙装订的本数。

乙:(508-42+26)÷3=164本 甲丙略

5、三辆汽车共运砖9800块,第一辆汽车比其余两车运的总数少1400块,第二辆比第三辆汽车多运200块。三辆汽车各运砖多少块?

根据“三辆汽车共运砖9800块”和“第一辆汽车比其余两车运的总数少1400块”,可求得第一辆汽车和其余两车各运砖多少块。

根据“其余两车共运砖块数”和“第二辆比第三辆汽车多运200块”可求得第二辆和第三辆各运砖多少块。

1、第一辆:(9800-1400)÷2=4200块

2、第二辆和第三辆共运砖块数:9800-4200=5600块

3、第二辆:(5600+200)÷2=2900块

4、第三辆:5600-2900=2700块

6、甲乙丙三人合做零件230个。已知甲乙两人做的总数比丙多38个;甲丙两人做的总数比乙多74个。三人各做零件多少个?

先把跽两人做的零件总数看成一个数,从而求出丙做零件的个数,再把甲丙两人做的零件总数看作一个数,从而求出乙做零件的个数。丙:(230-38)÷2=96个 乙:(230-38)÷2=78个 甲略

7、一列客车长280米,一列货车长200米,在平行的轨道上相向而行,两车从两车头相遇到两车尾相离共经过15秒;两列车在平行轨道上同向而行,货车在前,客车在后,从两车相遇(货车车尾和客车车头)到两车相离(货车车头和客车车尾)经过2分钟。两列车的速度各是多少?

由相向而行从相遇到相离经过15秒,可求得两列车的速度和(280+200)÷15;由同向而行从相遇到相离经过2分钟,可求得两列车的速度差(280-200)÷(60×2)。从而求得两列车的速度。

8、五年级三个班共有学生148人。如果把1班的3名学生调到2班,两班人数相等;如果把2班的1名学生调到3班,3班还比2班少3人。三个班原来各有学生多少人? 由“如果把1班的3名学生调到2班,两班人数相等”,可知,1班学生人数比2班多3×2=6人;由“如果把2班的1名学生调到3班,3班还比2班少3人”可知,2班学生人数比3班多1×2+3=5人。如果确定以2班学生人数为标准,由“三个班共有学生148人”和“1班学生人数比2班多3×2=6人,2班学生人数比3班多1×2+3=5人”可先求得2班的学生人数。

(148-3×2+1×2+3)÷3=49人„„2班 甲丙班略

已知两人的年龄,求他们之间的某种数量关系;或已知两人年龄之间的数量关系,求他们的年龄等,这类问题叫做年龄应用题问题。

年龄问题的主要特点是:大小年龄差是个不变量。差是定值的两个量,随时间的变化,倍数关系也会发生变化。

这类应用题往往是和差应用题、和倍应用题、差倍应用题的综合应用。

1、小方今年11岁,他爸爸今年43岁,几年以后,爸爸的年龄是小方年龄的3倍? 因为小方与爸爸的年龄差43-11=32不变。以几年后小方的年龄为1份数,爸爸的年龄就是3份的数。根据差倍应用题的解法,可求出小方几年后的年龄。

(43-11)÷(3-1)=16岁 16-11=5年

2、妈妈今年比儿子大24岁,4年后妈妈年龄是儿子的5倍。今年儿子几岁? “妈妈今年比儿子大24岁“,4年后也同样大24岁,根据差倍应用题的解法,可求得4年后儿子的年龄,进而求得今年儿子的年龄。

24÷(5-1)-4=2岁

3、今年甲乙两人年龄和为50岁,再过5年,甲的年龄是乙的4倍。今年甲乙两人各几岁?

今年甲乙两人年龄和为50岁,再过5年,两人的年龄和是50+5×2=60岁。根据和倍应用题的解法。可求得5年后乙的年龄,从而求得今年乙的年龄和甲的年龄。

4、小高5年前的年龄等于小王7年后的年龄。小高4年后与小王3年前的年龄和是35岁。今年两人各是多少岁?

由“小高5年前的年龄等于小王7年后的年龄“可知,小高比小王大5+7岁;他们俩今年年龄的和为:35+3-4=30岁,根据和差应用题的解法,可求得今年两人各是多少岁。由第一个条件可知,小高比小王在5+7=12岁。由第二个条件可知,他们的年龄和为35+3-4=34岁。

“根据两个差求未知数”是指分析问题的思考方法。“两个差”是指题目中有这样的数量关系。例如:总量之差与单位量之差;时间之差与速度之差或距离之差等等。解题时可以找出题目中的两个差,再根据两个这间的相应关系使总量得到解决。

1、百货商场上午卖出洗衣机8台,下午卖出同样的洗衣机12台,下午比上午多收售货款6600元,每台洗衣机售价多少元?6600÷(12-8)=1650元

2、一辆汽车上午行驶120千米,下午行驶210千米。下午比上午多行驶1.5小时。平均每小时行驶多少千米?(210-120)÷1.5=60千米

3、新建一个图书室和一个办公室。室内地面共有234平方米。已知办公室比图书室小54平方米。用同样的砖铺地,图书室比办公室多用864块。图书室和办公室地面各用砖多少块?

由“办公室比图书室小54平方米”和“图书室比办公室多用864块”可求得“平均每平方米需用砖多少块”;由“室内地面共有234平方米”和“办公室比图书室小54平方米”,可求得“”。从而求得各用砖多少块。

4、甲乙两人同时从东村出发去西村,甲每分钟行76米,乙每分钟行68米。到达西村时,乙比甲多用了4分钟。东西两村间的路程是多少米?

甲乙两人同时从东村出发,当甲到达西村时,乙距西村还有4分钟的路程。乙每分钟行68米,4分钟能行68×4=272米。也就是说,在相同的时间内,甲比乙多行272米。这是路程这差。每分钟甲比惭多行76-68=8米,这是速度这差。根据这两个差,可以求出甲走完全程所用的时间,从而求得两村之间的路程。

76×[68×4÷(76-68)]=2584米

5、冰箱厂原计划每天生产电冰箱40台,改进工艺后,实际每天比原计划多生产5台这样,提前2天完成了这批生产任务外,还比原计划多生产了35台。实际生产电冰箱多少台?

要求“实际生产电冰箱多少台”,需要知道“实际每天生产多少台”和“实际生产了多少天”。

如果实际上再生产 2 天后话,还能生产(40+5)×2=90台,双知比原计划还多生产35台,实际上比原计划多生产了90+35=125台,这是一个总量之差。又知实际每天比原计划多生产5台,这是生产效率之差。根据这两个差可以求出原计划生产的天数。从而求得实际生产电冰箱的台数:40×{[(40+5)×2+35]÷5}+35=1035台

6、食品厂运来一批煤,原计划每天生产480千克,烧了预定的时间后,还剩下1680千克;改进烧煤方法后,实际每天烧400千克,烧了同样的时间后,还剩下4080千克。这批煤共有多少千克?

要求这批煤共有多少千克,先要求出预定烧的天数。计划烧后还剩1680千克,实际烧后还剩4080千克可求得实际比坟墓多剩多少千克,这是剩下总量之差,实际每天烧400千克,计划每天烧480千克,可求得每天烧煤量之差。根据这两个差,可求得烧了多少天。进而可求得烧了多少千克,这批煤共有多少千克。

400×[(4080-1680)÷(480-400)]+4080=16080千克

有关栽树以及与栽树相似的一类应用题,叫做植树问题。植树问题通常有两种形式。一种是在不封闭的线路上植树,另一种是在封闭的线路上植树。

1、不封闭线路上植树

如果在一条不封闭的线路上可不可能,而且两端都植树,那么,植树的棵数比段数多。其数量关系如下:

棵数=总长÷株距+1 总长=株距×(棵数-1)株距=总长÷(棵数-1)

2、在封闭的线路上植树,那么植树的棵数与段数相等。其数量关系如下: 棵数=总长÷株距 总长=株距×棵数 株距=总长÷棵数

1、有一条公路全长500米,从头至尾每隔5米种一棵松树。可种松树多少棵? 500÷5 +1=101棵

2、从校门口到街口,一共插有30面红旗,相邻两面红旗相隔6米。从校门口到街口长多少米? 6×(30-1)=174米

3、在一条长150米的大路两旁各栽一行树,起点和终点都栽,一共栽了102棵。每相邻两棵树之间的距离相等。相邻两棵树之间的距离有多少米? 150÷(102÷2-1)=3米 例

4、在一个周长为600米的池塘周围植树,每隔10米栽一棵杨树,在相邻两棵杨树之间每隔2米栽1棵柳树。杨树和柳树各栽了多少棵?

根据“棵数=总长÷株距”,可以求出杨树的棵数

在每两棵杨树之间可分为10÷2=5段,栽柳树4-1=4棵。由此,可以求得柳树的棵数。杨树:600÷10=60棵 柳树:(10÷2-1)×60=240棵

5、一条马路一侧,原有木电线杆97根,每相邻的两根相距40米。现在计划全部换用大型水泥电线杆,每相邻两根相距60米。需要大型水泥电线杆多少根?

1、这条路全长多少米?40×(97-1)=3840米

2、需要大型水泥电线杆多少根?3840÷60+1=65根

6、一座大桥长200米,计划在大桥两侧的栏杆上共安装32块图案,每块图案长2米,靠近桥两端的图案离桥端10.5米。相邻两图案之间的距离是多少米?

在桥两侧共装32块图案,即每侧装16块,图案之间的间隔有16-1=15个。用总长减去16块图案的距离就可以知道15个间隔的长度。

相向运动问题

同向运动问题(追及问题)背向运动问题(相离问题)

在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。也叫行程问题。

行程应用题的解题关键是掌握速度、时间、距离之间的数量关系: 距离=速度×时间 速度=距离÷时间 时间=距离÷速度 按运动方向,行程问题可以分成三类:

1、相向运动问题(相遇问题)

2、同向运动问题(追及问题)

3、背向运动问题(相离问题)

十、行程应用题

相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。两个运动物体由于相向运动而相遇。

解答相遇问题的关键,是求出两个运动物体的速度之和。

基本公式有:两地距离=速度和×相遇时间 相遇时间=两地距离÷速度和 速度和=两地距离÷相遇时间

1、两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。已知客车每小时行80千米,货车每小时行多少千米?

2、两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。求从出发到相遇经过几小时?

因为乙在行进中耽误1小时。而甲没有停止,继续行进。也可以说,甲比乙多行1小时。如果从总路程中把甲单独行进的路程减去,余下的路程就是跽两人共同行进的。

(138-13)÷(13+12)+1=6小时

3、计划开凿一条长158米的隧道。甲乙两个工程队从山的两边同时动工,甲队每天挖2.5米,乙队每天挖进1.5米。35天后,甲队调往其他工地,剩下的由乙队单独开凿,还要多少天才能打通隧道?

要求剩下的乙队开凿的天数,需要知道剩下的工作量和乙队每天的挖进速度。要求剩下的工作量,要先求两队的挖进速度的和,35天挖进的总米数,然后求得剩下的工作量。[158-(2.5+1.5)×35]÷1.5=12天

4、一列客车每小时行95千米,一列货车每小时的速度比客车慢14千米。两车分别从甲乙两城开出,1.5小时后两车相距46.5千米。甲乙两城之间的铁路长多少千米? 已知1.5小时后两车还相距46.5千米,要求甲乙两城之间的铁路长,需要知道1.5小时两车行了多少千米?要求1.5小时两车共行了多少千米。需要知道两车的速度。

(95-14+95)×1.5+46.5=310.5千米

5、客车从甲地到乙地需8小时,货车从乙地到甲地需10小时,两车分别从甲乙两地同时相向开出。客车中途因故停开2小时后继续行驶,货车从出发到相遇共用多少小时? 假设客车一出发即发生故障,且停开2小时后才出发,这时货车已行了全程的 ×2=,剩下全程的1-=,由两车共同行驶。(1-×2)÷()-10分钟

5、甲乙两人骑自行车同时从学校出发,同方向前进,甲每小时行15千米,乙每小时行10千米。出发半小时后,甲因事又返回学校,到学校后又耽搁1小时,然后动身追乙。几小时后可追上乙?

先要求得甲先后共耽搁了多少小时,甲开始追时,两人相距多少千米 10×(0.5×2+1)÷(15-10)=4小时

6、甲乙丙三人都从甲地到乙地。早上六点甲乙两人一起从甲地出发,甲每小时行5千米,乙每小时行4千米。丙上午八点才从甲地出发,傍晚六点,甲、丙同时到达乙地。问丙什么时候追上乙?

要求“两追上乙的时间”,需要知道“丙与乙的距离差”和“速度差”。要先求丙每小时行多少千米,再求丙追上乙要多少时间

1、丙行了多少小时18-8=10小时

2、丙每小时比甲多行多少千米5×2÷10=1千米

3、丙每小时行多少千米5+1=6千米

4、丙追上乙要用多少小时4×2÷(6-4)=4小时

7、快中慢三辆车同时从同一地点出发,沿着同一条公路追赶前面的一个骑车人。这三辆车分别用6分钟、10分钟、12分钟追上骑车人。现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?

快中慢三辆车出发时与骑车人的距离相同,根据快车和中车追上骑车人的路程差和时间差可求得骑车人的速度,进而求慢车每小时行多少千米。

单位换算略。6分钟= 小时 10分钟= 小时 12分钟= 小时

1、快车 小时行多少千米24× =2.4千米

2、中车 小时行多少千米20× = 千米

3、骑车人每小时行多少千米(-2.4)÷()=20天 解法二:

假定甲与乙一样工作3天,完成的工作量为 ×3=,这时工作量必定超过20%,超过部分 +20%,就是甲队一天的工作量。

甲队单独完成这项工作所需时间1÷(×3-20%)=20天 乙队单独完成这项工作所需时间1÷()=60天

5、乙队单独运完这批货物所需天数 1÷[-()=

3、一项工程,原定100人,工作90天完成;工程进行15天后,由于采用先进工具和技术,平均每人工效提高了50%。完成这项工程可提前几天?

要求完成这项工程,可以提前几天,先要求出实际所用的天数;要求实际所用的天数,先要求出完成余下的工程所用的天数。全工程原定100人90天完成,那么,平均每人每天要完成全工程的 ;100人工作15天完成了全工程量的 ×100×15。余下全工程的(1-×100×15)。采用先进技术后,每人工作效率是:[ ×(1+50%)],进而求得余下的工程所用的天数。1、100人工作15天后,还余下全工程的几分之几?1-×100×15=

2、改进技术后,100人1天可以完成这项工程的几分之几?×(1+50%)×100=

3、余下的工程要用多少天?÷ =50天

4、可提前多少天?90-15-50=25天

综合算式:90-15-(1-×100×15)÷[ ×(1+50%)×100]=25天

4、有一水池,装有甲乙两个注水管,下面装有丙管排水。空池时,单开甲管5分钟可注满;单开乙管10分钟可注满。水池注满水后,单开丙管15分钟可将水放完。如果在空池时,将甲乙丙三管齐开,2分钟后关闭乙管,还要几分钟可以注满水池?

分析与解:先求出甲乙丙三管齐开2分钟后,注满了水池的几分之几,还余下几分之几。再求余下的要几分钟。

1、三管齐开2分钟,注满了水池的几分之几?(+)=4分钟

5、一队割麦工人要把两块麦地的麦割去。大的一块麦地比小的一块大一倍。全队成员先用半天时间割大的一块麦地,到下午,他们对半分开,一半仍留在大麦地上,到傍晚时正 33 好把大麦地的麦割完;另一半到小麦地去割,到傍晚时还剩下一小块,这一小块第二天由1人去割,正好1天割完。这个割麦队共有多少人?

分析与解:把大的一块麦地算作单位“1”,小的一块麦地为。根据题意,一半成员半天割了,一天割了,全队成员一天可割 ×2=。

1、全队成员一天可割几分之几? ×2=

2、所剩的一小块面积是几分之几?-(-1)=

3、全队有多少人?(1+×3=

4、一个女工独做需要多少天 1÷ =18天

8、一项工程,甲独做10天完成,乙独做12天可以完成,丙独做15天完成。现在三人合作甲中途因病休息了几天,结果6天完成任务。甲休息了几天?

如果甲没有休息,那么甲乙丙都工作了6天,完成了工程量的几分之几,超过了几分之几,然后求得甲休息了几天。

1、三人合做6天,完成了工程量的几分之几?(+ +)×6=

2、超额完成了工程的几分之几?-1=

3、甲休息了几天? ÷ =5天

牛顿问题也叫牛吃草问题。由于这个问题是由伟大的科学家牛顿提出来的,所以以后就把这类问题叫做牛顿问题。牛顿问题的特点是随着时间的增长所研究的量也等量地增加,解答时,要抓住这个关键问题,也就是要求出原来的量和增加的量各是多少。

牧场上长满牧草,每天匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天。供25头牛吃几天?

牧草的总量不定,它是随时间的增加而增加。但是不管它怎样增长,草的总量总是由牧场原有草量和每天长出的草量相加得来的。

10头牛20天吃的总草量比15头牛10天吃的草量多,多出部分相当于10天新长出的草量。

设法求出一天新长出的草量和原有草量。1、10头牛20天吃的草可供多少牛吃一天?10×20=200头、2、15头牛10天吃的草可供多少 头牛吃一天15×10=150头

3、(20–10)天新长出的 草可供多少头牛吃一天?50÷10=5头

4、每天新长出的草可供多少头牛吃一天?50÷10=5头 5、20天(或10天)新长出的草可供多少头牛吃一天?5×20=100头

或5×10=50头

6、原有的草可供多少头牛吃一天?200–100=100头

或150–50=100头

7、每天25头牛中,如果有5头牛去吃新长出的草,其余的牛吃原有的草,可吃几天?

100÷(25–5)=5天

2、有一水井,连续不断涌出泉水,每分钟涌出的水量相等。如果用3 台抽水机抽水,36分钟可以抽完;如果用5台抽水机抽水,20分钟可以抽完。现在12分钟要抽完井水,需要抽水机多少台?

随着时间的增长涌出的泉水也不断增多,但原来水量和每分钟涌出的水量不变。

1、3台抽水机的抽水量。3×36=108台分 2、5台抽水机的抽水量。5×20=100台分

3、使用3 台抽水机比用5台抽水机多用多少分钟?36–20=16分

4、使用3台抽水机比用5台抽水机少抽的水量。108–100=8台分

5、泉水每分钟涌出的水量,算出需要抽水机多少台?8÷16= 台

6、水井分钟涌出的水量。×36=18台分

7、水井原有的水量。108–18=90台分

8、水井原有水量加上12分钟涌出的水量。×12=6台分

9、水井原有水量加上12分钟涌出的水量。90+6、12台分

10、需要抽水机多少台?96÷12=8台

3、一片青草,每天生长速度相等。这片青草可共10头牛吃20天,或共60只羊吃10天。如果1头牛吃的草量等于4 只羊吃的草量,那么10头牛与60只羊一起吃,可以吃多少天?

先把题目进行转化。因为1头牛吃的草量等于4 只羊吃的草量。由此,题目可以转换成:这片青草可供(4×10)只羊吃20天,或供60只羊吃10天,问(4×10+60)只羊吃多少天?

1、(4×10)只羊20天吃的草可供多少只羊一天?4×10×20=800只天 2、60只羊10天吃的草可供多少只羊吃一天?60×10=600只天

3、(20–10)天新长出的草可供多少只羊吃一天?800–600=200只

4、每天的新长出的草可供多少只羊吃一天?200÷10=20只 5、20天新长出的草可供多少只羊吃一天?20×20=400只

6、原有草可供多少只羊吃一天?800–400=400只

7、可吃多少天?400÷(4×10+60–20)=5天

汉朝大将韩信善于用兵。据说韩信每当部队集合,他只要求部下士兵作1~3、1~5、1~7报数后,报告一下特各次的余数,便可知道出操公倍数和缺额。

这个问题及其解法,大世界数学史上颇负盛名,中外数学家都称之为“孙子定理”或“中国剩余定理”。

这类问题的解题依据是:

1、如果被除数增加(或减少)除数的若干倍,除数不变,那么余数不变。例如: 20÷3=6„„2(20-3×5)÷3=21„„2(20+3×15)÷3=1„„2

2、如果被除数扩大(缩小)若干倍,除数不变,那么余数也扩大(缩小)同样的倍数。例如: 20÷9=2„„2(20×3)÷9=6„„6(20÷2)÷9=1„„1

1、一个数除以3余2,除以5余3,除以7余2。求适合这些条件的最小的数。

1、求出能被5和7整除,而被3除余1的数,并把这个数乘以2。70×2=140

2、求出能被3和7整除,而被5除余1的数,并把这个数乘以3。21×3=63

3、求出能被5和3整除,而被7除余1的数,并把这个数乘以2。15×2=30

4、求得上面三个数的和 140+63+30=233

5、求3、57的最小公倍数 [3、5、7]=105

6、如果和大于最小公倍数,要从和里减去最小公倍数的若干倍:233–105×2=23 例

2、一个数除以3余2,除以5余2,除以7余4,求适合这些条件的最小的数。解法一: 70×2+21×2+15×4=242 [3、5、7]=105 242–105×2=32 解法

二、35+21×2+15×4=137 [3、5、7]=105 137–105=32 例

3、一个数除以5余3,除以6余4,除以7余1,求适合这些条件的最小的数。

1、因为[

6、7]=42,而42÷5余2,根据第二个依据,42×4÷5应余8(2×4),实际余3,所以取42×4=168

2、因为[

7、5]=35,而35÷6余5,则取35×2=70

3、[

5、6]=30,30÷7余2,则取30×4=120

4、[5、6、7、]=210 5、168+70+120–210=148 例

4、我国古代算书上有一道韩信点兵的算题:卫兵一队列成五行纵队,末行一人;列成六行纵队末行五人;列成七行纵队,末行四人;列成十一行纵队,末行十人。求兵数。

1、[6、7、11]=462 462÷5余2 462×3÷5余1 取462×3=1386

2、[7、11、5]=385 385÷6余5 385×5÷6余5 取385×5=1925

3、[11、5、6]=330 330÷7余1 220×4÷7余4 取330×4=1320

4、[5、6、7]=210 210÷11余1 210×10÷11余10 取210×10=2100

5、求四个数的和 1386+1925+1320+2100=6731

6、[5、6、7、11]=2310 7、6731–2310×2=2111

第五篇:小学六年级数学分类复习行程问题应用题

小学六年级数学分类复习行程问题应用题

1、甲乙两辆汽车分别从AB两地出发,相向而行,当甲车行至距B地处时,乙车超过中点30千米,这时甲车比乙车多行了4572

千米,AB两地相距多少千米?

2、一辆汽车从甲地开往乙地,当行到全程的处时,离乙地还有400

千米。已知这辆汽车行完全程需要8小时,求这辆汽车的平均速度?

3、甲乙两车分别从相距306千米的两地同时开出,相向而行,4.5

小时后相遇,甲乙两车的速度比为8:9,甲乙两车每小时各行多少千米?

4、甲乙两人同时从AB两地相向而行,已知甲单独行完全程要6

小时,乙2小时可行全程的,这样两个人经过几小时相遇? 415、甲乙两车同时从A地去B地,甲车每小时行64千米,5小时后,甲车在乙车前面78千米,乙车每小时行多少千米?

6、AB两地相距280千米,甲乙两辆汽车同时从两地相向而行,经

过4小时相遇,甲车平均每小时行36千米,乙车每小时行多少千米?

7、两辆汽车同时从相距360千米的两地相对开出,甲车每小时行

33千米,乙车每小时比甲车多行6千米。两车在途中相遇时,甲车比乙车多行多少千米?

下载小学六年级数学应用题分类(答案及详解)word格式文档
下载小学六年级数学应用题分类(答案及详解).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级数学应用题大全(答案附后)

    六年级数学应用题大全 一、分数的应用题 1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶? 2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米? 3、修筑一条公路......

    六年级数学应用题大全(答案附后)

    六年级数学应用题大全 六年级数学应用题1 一、分数的应用题 1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶? 2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少......

    2018年六年级上册数学应用题分类复习

    六年级上册数学应用题分类复习1.张大爷的果园里共种果树500棵,其中25﹪是苹果树,苹果树有多少棵? 2.从甲地到乙地180千米,某人骑车从甲地到乙地去办事,行了全程的,这时离乙地还有多......

    小学六年级数学应用题(含答案)

    小学六年级数学应用题+答案1、儿童商店新来一批书包,上午售出了30%,下午售出了40个,这是正好还剩下一半,这批书包共有多少个? 40÷(50%-30%) =40÷20% =200个 2、某工厂有甲、乙两个车......

    小学六年级数学行程应用题

    小学六年级数学应用题:行程问题 1. 两列火车从相距640千米的两地同时相对开出,5小时相遇,客车每小时行70千米,货车每小时行多少千米? 甲乙两地相距560千米,一辆客车和一列货车同......

    小学数学六年级应用题9

    小学数学六年级应用题9 80、甲乙两车AB两地同时出发,相向而行,7小时相遇,甲车每小时比乙车慢20千米,两车的速度比是7:9,求AB两地相距多少千米?81、一本书,看了几天后还剩160页没看,剩......

    小学三年级数学应用题分类及解法[本站推荐]

    小学三年级数学应用题分类解法 一、一步简单应用题 (一)、求一个数的几倍,用乘法计算(解题方法:小数乘以倍数=大数) 1、小明今年9岁,爸爸的年龄是小明的5倍,爸爸今年多少岁? 分析:根据......

    小学三年级数学应用题分类及解法

    小学三年级数学应用题分类解法 一、一步简单应用题 (一)、求一个数的几倍,用乘法计算 (解题方法:小数乘以倍数=大数) 1、小明今年9岁,爸爸的年龄是小明的5倍,爸爸今年多少岁? 分析:根......