FW技术导向风帽式循环流化床锅炉磨损问题分析及技术改造方案(五篇)

时间:2019-05-14 12:41:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《FW技术导向风帽式循环流化床锅炉磨损问题分析及技术改造方案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《FW技术导向风帽式循环流化床锅炉磨损问题分析及技术改造方案》。

第一篇:FW技术导向风帽式循环流化床锅炉磨损问题分析及技术改造方案

FW技术导向风帽式循环流化床锅炉磨损问题分析及技术改造方案(本文图已丢失)

水冷壁的磨损是CFB锅炉中与材料有关的最严重的问题之一。在CFB锅炉炉膛内,典型的流体动力学结构为环-核结构。在内部核心区,颗粒团向上运动;而在外部环状区,固体颗粒沿炉膛水冷壁向下回流。环状区的厚度从床底部到顶部逐渐减薄,其平均厚度从实验装置的几毫米到大型CFB锅炉的几十厘米。固体物料沿水冷壁的向下回流是水冷壁产生磨损的主要原因。水冷壁的严重磨损与回流物料量的大小和方向突然改变有密切关系。通常方向突变的部位有:

1、水冷壁卫燃带转折处;

2、膜式水冷壁管对接和表面缺陷焊接不良,有毛刺、突起等;

3、水冷壁其它地方有凸起的部位。因此炉内水冷壁的磨损可分为四种情形:卫燃带与水冷壁管转折区管壁的磨损、炉膛四角和一般水冷壁管壁区域的磨损、不规则区域管壁的磨损和炉膛出口管壁的磨损。后两种情况给电厂带来的磨损危害较小,故不探讨。下面结合FW技术导向风帽式循环流化床锅炉重点探讨前两种情况。

2-1 炉膛下部卫燃带与水冷壁转折区域的管壁磨损

随着CFB锅炉的用量加大,投运日期变长,国内运行的CFB锅炉在炉膛下部卫燃带与水冷壁管壁交界处的磨损现象越来越严重。国外各主要CFB锅炉制造公司(ABB-CE,Foster Wheeler,Ahlstrom,Lurgi,Circofluid)等生产的锅炉也都发现了磨损现象。

这类磨损的机理有以下几个方面:一是在该区域内壁沿壁面下流的固体物料与炉内向上运动的固体物料运行方向相反,因而在局部产生涡漩流;二是由于沿壁面下流的固体物料在交界区域产生流动方向的改变,因而对水冷壁产生磨损(如图所示)。水冷壁与卫燃带交界区域内水冷壁管壁的磨损并不是在炉膛四周均匀发生,而是与炉内物料总体流动形式有关。

循环流化床锅炉耐火材料与水冷壁管转折区域的磨损机理

现有的防磨措施为:

1、采用让管设计。该设计在一定程度上能预防水冷壁的磨损,但是仍存在许多问题,如让管与非让管的结合问题、施工难度大焊口多、不能防止风室漏灰和从技术上根本改变水冷壁及风帽磨损的原因等。

2、采用厚壁水冷壁管,在420t/h及以上容量的锅炉上管壁由Φ51×6改到Φ60×8。

3、在水冷壁上加焊鳍片来破坏向下流动的固体料流,从而达到防磨目的。实践证明,效果不是很理想,极易产生新的磨损点。

4、在卫燃带以上3m-5m(东锅设计的130t/h锅炉后墙虽然耐磨耐火可塑料高达16.308m,但在离卫燃带3m甚至接近5m的高度内水冷壁管子冲刷也相当严重,特点是磨损区域不固定,个别管子的磨损呈刀削磨痕,深达2mm以上)的范围内对水冷壁管壁进行超音速电弧喷涂,喷涂防磨防腐金属合金材料,以延长使用寿命。在运行的多数CFB锅炉电厂中,实践证明该方法是目前解决燃烧室水冷壁防磨的技术含量较高、解决时间较短而且很经济的方法。金属表面喷涂能防止磨损主要有两个方面的原因:第一,涂层的硬度较基体的硬度大;第二,涂层在高温下会生成致密、坚硬和化学稳定性更好的氧化层,且氧化层与基体结合更牢固。我公司防磨喷涂技术领先,材料先进,已为多家电厂施工并受到用户青睐。

对于燃烧室内水冷壁接口焊缝处,如果凸凹不平,不仅加快连接部位的焊口和鳍片的磨损,而且还对附近的水冷壁管子造成严重磨损。这是由于炉内循环物料沿水冷壁向下流过凸台时改变方向,直接冲刷水冷壁管子的某个部位,造成该处水冷壁快速冲刷磨损。同样,鳍片处由于安装时向外凹陷,此处物料碰撞发生转向将鳍片两侧的水冷壁磨损。为了减轻水冷壁严重磨损,在水冷壁上应避免有凹凸不平的情况,向火面焊缝要磨平,保证光滑,鳍片处应避免安装时向外凹陷,即使一个尺寸很小的焊接凸凹缺陷,也会加速该处水冷壁管子的磨损。

2-2 炉膛四角和一般水冷壁区域的磨损

在许多已运行的FW型导向风帽式CFB锅炉中,发现炉膛四角区域和一般水冷壁磨损问题相当严重,因之停炉的比例高达90%左右。磨损部位不仅只在卫燃带以上两米以内,而且还出现在更高位置。其特点是磨损位置不固定,随风帽堵塞及损坏程度、设计因素、运行方式和燃料特性的不同而变化无常,一般防治措施很难凑效。并且排渣不流畅,严重影响了锅炉的经济和安全运行.如某厂自2002年运行以来,仅因水冷壁磨损事故,一年下来就达20余次/台,损失是多么巨大!究其原因主要有以下几点:

一、角落区域内沿壁面下流的固体物料浓度较高,同时流动状态易受到改变;

二、汇集在四角区域的颗粒比在一侧水冷壁边的颗粒对金属表面碰撞造成冲击磨损的机会大;

三、“Γ”型风帽的影响(这一点下个专节具体说明);

四、由于流化不良或局部射流所引起的磨损。“Γ”型风帽因磨损损坏后,在密相区就产生局部高速射流,射流卷吸的床料颗粒便对较高位置的水冷壁受热面形成直接冲刷而导致磨损,并且较高磨损的位置,总位于风帽易磨损的前、后墙与两侧墙交接处。

五、由于锅炉采用定向风帽,两侧排渣,定向送风时造成两个旋转方向相反的旋流,造成了炉内底部循环回料系统的气-固两相流动力场紊乱,在风帽上部形成涡流区,导致流化不良,飞灰含碳量高,加重了四角的磨损速率。在循环物料的转弯处,大颗粒物料产生偏析,因而使旋风分离器对侧水冷壁部分的磨损较为严重。

六、运行参数的影响。在运行中要注意控制风量,降低烟气流速,控制床料和煤粒的筛分比,减少灰粒子浓度和粒径,降低磨损。

第三节 布风板Γ型风帽的磨损--是造成炉膛水冷壁磨损的最直接原因

某电厂2#CFB锅炉在运行2个月后,曾出现定向风帽磨损过半约500个的严重事故,磨损严重的风帽上部倾斜段全部磨损,利用备件部分更换和补焊。3个月后,因爆管停炉检查发现风帽又损坏260多个,最严重的风帽水平段包括浇注料以上部分全部磨损掉。分析其原因有:

1)、由于锅炉采用定向风帽,定向送风时造成两个旋转方向相反的旋流,造成了炉内底部空气动力流场紊乱,在风帽上部形成涡流区,导致流化不良,飞灰含碳量高(如山东某220t/h的CFB锅炉采用FW技术导向风帽,飞灰含碳量高达34%)。再加上此区域煤粒、灰渣浓度高,粒度大,流速快,所以磨损十分强烈。采用定向风帽在设计上使后排风帽的喷口直接对前排风帽“头部”吹扫,直接形成冲击磨损。运行时间稍长,颗粒就很容易将前排风帽的帽顶及帽身“削”掉而形成射流。这样一来,又进一步加剧了空气动力流场的紊乱,即影响了流化质量,又增加了风帽的磨损。

2)、定向风帽的另一个弊端就是风帽壁太薄(厚度仅为4.5mm),不耐磨损,设计不合理(只照搬FW公司的技术,不考虑中国综合利用电厂燃煤煤质、矸石磨损等的实际情况)。在正常运行,造成大量床料漏入风室,尤其是风帽磨损后情况更为严重。造成的后果有:①一次风重新吹起床料高速通过风帽,严重磨损风帽水平段;②严重影响流化质量,影响安全运行;③严重时压火清渣。

3)、按FW技术,带导向风帽的布风板在100%MCR下设计阻力大都在5kPa以上,设计值过大,造成选用风机的压头过高,增加电耗。同时布风板开孔率又偏小(如某电厂布风板开孔率仅为3.17%),使得小孔流速过高(有的达到60m/s,大大超过一般循环流化床锅炉的设计值35m/s。如某一改造的电厂风帽小孔流速约为68m/s),从而造成风帽大面积磨损,厂用电率偏高(在20%左右)。

4)、运行参数调整不当。如一、二次风量配比,上、下二次风的配比,风煤配比,床温,燃烧工况,物料循环倍率偏离等因素。

第四节

技术改造方案

鉴于以上分析,我公司认为造成FW技术导向风帽式循环流化床锅炉今日现状的根本原因就在于锅炉布风系统设计不合理,采用定向风帽和以后改用的钟罩式风帽,其设计阻力均偏大,流速过高,气-固动力场改变,致使磨损严重。该炉型采用的定向风帽和钟罩式风帽都是引进美国FW公司专利技术生产的,其技术是成功的。但风帽分为几个流派,每种流派的技术各有其优缺点。结合各电厂的实际情况根据煤质、运行工况、布风板设计特性等,对布风板、风帽和炉膛底部进行必要的技术改造,是这类锅炉改变现状的极为理想的方案--即有效防止磨损,减少停炉次数,提高运行经济性,又达到大幅度降低厂用电的目的(某电厂改造后,仅一次风机就降低了10A,电压为6kv)。

鉴于其风帽固有的缺点,因此应改变风帽的结构形式,改为侧孔式风帽。这种风帽已经用户实践,证明其磨损最轻,布风最均匀,应用最广。某电厂在改造十个月后停炉检查发现,原来较易磨损的区域都还基本保持原状,从没因磨损原因造成停炉检修事故。我公司技术改造设计主要优点有:

1、从结构上讲,可使布风更加均匀,有效改善流化质量,促使底部粗颗粒的扰动,避免底料沉积,减少灰渣含碳量,从而提高锅炉热效率;风帽开孔采取向下倾斜的方式,可有效防止风帽漏灰渣现象。

2、风帽材质采用耐高温、耐磨损的高强度合金铸钢。风帽顶部及其主要磨损区采用加厚方式(厚度可根据用户要求定做),大大延长了风帽使用寿命。

3、风帽小孔均匀开布,且向下倾斜,因此它不会直接“伤及”其它风帽,相应延长了风帽使用寿命。

4、排渣方式可有两种选择。一是两侧外排渣,风帽向两侧倾斜一定角度。二是改为炉底排渣(若炉底有一定空间的话)。布风板作相应改动,侧墙亦同时作相应改动。

实践证明,该技术方案无论在技术上,在解决问题的根本上,还是在安全经济性上,都是电厂最佳的选择。

第五节

CFB锅炉的调试与性能测试

5-

1冷态试验

1、CFB锅炉风量标定试验

包括一次风、二次风的机翼型流量测量一次元件的差压与流量的关系进行试验标定,得出各一次流量元件的流量系数、流量与差压的关系曲线、温度变化后的补偿修正式等内容。

2、CFB锅炉冷态流化特性试验

内容包括测量两种不同的料层厚度(500mm、650mm)时的临界流量风量、测量布风板的阻力特性并得出冷态与热态计算公式。布风装置布风均匀性检查和料层阻力特性试验。最后作出相关的关系曲线和关系图。

5-

2热态调试与测试 内容包括:

▲风煤调整,找出最佳风煤配比;

▲物料循环系统的调整试验,保证系统运行正常;

▲测试尾部烟道烟气含氧量、CO及过量空气系数等,以此来调整运行方式,提高锅炉燃烧效率; ▲锅炉各主参数的调节与选择。包括床温、料层差压、炉膛差压、返料、风量等。5-3

CFB锅炉热效率试验

完成在最大负荷和70%MCR工况下的两个锅炉热效率的测定试验。求出热效率,找出提高锅炉热效率的途径。作出评价,并给出最佳参考运行参数。

第二篇:循环流化床锅炉磨损分析及对策[最终版]

循环流化床锅炉磨损分析及对策

摘要:随着技术的不断发展,循环流化床由于其适用范围广、热效率比较高、环保性比较强,已经得到了广泛的应用。然而在锅炉运行的过程中,其受热面容易遭到磨损,从而对整个系统的稳定运行产生了严重的影响。本文对受热面磨损的机理进行了深入的研究,并且根据其产生的原因提出了相应的解决措施,从而保证了机组的正常运行。

关键词:循环流化床(CFB);受热面;磨损;对策

0 引 言

在近几十年来,循环流化床锅炉作为煤清洁燃烧技术得到了迅速的发展[1]。这是一种新型的燃烧技术,其与传统燃烧技术存在着明显的区别,其主要机理如下所示:颗粒在流化的状态下,其与空气中的氧气进行充分地接触,吸收空气中的热量,保证燃料颗粒的完全燃烧。燃烧释放出的热量主要由水冷管吸收,燃烧后烟气通过旋风分离器,将携带的固体颗粒分离出来,这部分颗粒经过物料输送装置再次返回到炉内进行燃烧,分离后的烟气通过引风机进入机组的尾部烟气通道,经过过热器、空气预热器进行一系列的换热,随之经过空气冷却塔排放到大气环境中。由于燃料颗粒始终处于流化的状态,使得其对锅炉的冲刷作用比较严重,从而导致锅炉磨损的发生。锅炉运行过程中易磨损区域 1 2

图1 循环流化床锅炉磨损区域

对于循环流化床而言,机组磨损区域如图1所示,主要包括以下三个区域:1-受热面水冷壁管、2-旋风分离器和3-尾部对流换热面。其中,水冷壁管是锅炉最容易磨损区域[2]。资料显示,大部分CFB的安全事故主要是由于受热管磨损所造成的[3]。因此,本文的研究主要针对水冷管的磨损机理进行简单的介绍。水冷管易磨损区域

由于水冷管主要安装在炉膛的四周,当燃料在炉膛内燃烧时,其燃烧释放的能量主要由水冷管吸收,从而使其成为磨损最为严重的区域[4]。通过对CFB水冷管磨损进行深入的研究,我们发现,其磨损情况比较严重的区域主要包括以下几个方面:

(1)水冷管与耐火材料过渡区的磨损。为了提高锅炉的热效率,就需要增加其加热面,循环流化床与传统锅炉水冷管的铺设方式不同,耐火砖主要铺设在炉膛下部区域,使得两者之间存在一段间隔区域,导致烟气的流动发生了变化,从而使得这段区域的水冷管磨损严重。

(3)不规则管壁区域的磨损。在循环流化床实际运行的过程中,会需要设置一些观察口和检测口,使得炉膛形状出现不规则的情况。在这些区域,水冷管的铺设就需要进行特殊设计,从而导致在这些区域拐弯处的磨损情况比较严重。与此同时,在水冷管对接的过程中,需要采取焊接的方式,在焊接位置也会比较容易出现磨损。水冷管磨损原因分析

在锅炉实际运行的情况下,磨损问题能否有效解决,关系到机组的正常运行。因此,我们首先需要对其磨损原因进行深入的分析。水冷管磨损过程也是非常复杂的,然而其主要原因主要包括以下几个方面:

(1)燃料颗粒在燃烧的过程中,需要保持流化的状态,颗粒运动速度比较快,其对水冷管的冲击作用比较严重,从而使水冷管受到磨损。

(2)水冷管的铺设具有一定的不规则形,因此导致其受热不是非常的均匀,在长期运行的过程中,其就会面临破管的风险[5]。

(3)炉膛内沿水冷管下流的燃料颗粒与流化上升的颗粒运动方向不一致,导致局部涡流的产生,从而对管壁产生一定的磨损。水冷管磨损影响因素分析

影响水冷管磨损的因素有多种,主要包括燃料的性质、机组运行参数、水冷管的特性等[6]。4.1 燃料性质的影响

循环流化床能够得到广泛的应用,其主要优点就是燃料的适用范围比较广,因此对于不同燃料,其特性存在着较大的差距。不同燃料对于水冷管的磨损情况是不同的。对于一些磨损性比较强的燃料而言,长期使用这一燃料,就会使得锅炉相关组件的维修周期明显缩短,与此同时,燃料颗粒的形状也会对锅炉的寿命产生较大的影响[7]。4.2机组运行参数的影响

对于机组运行参数而言,其影响因素主要包括以下几个方面:

(1)流化风速的影响。如果流化风速过大,就会使得炉膛内的燃料颗粒浓度增大,颗粒的运动速度得到明显的提升,使得颗粒间的摩擦逐渐加重,然而其对水冷管的冲击作用也得到一定程度的提高,从而导致水冷管的磨损加剧。

(2)循环倍率的影响。当机组负荷提高时,就会使得循环倍率得到相应的增加,使得炉膛内热量的传递得到很大程度的改善。燃料颗粒浓度升高,水冷管的换热系数相应的提高,其管道表面的磨损也较为严重。

(3)床温的影响。炉膛内烟气温度随着床温的升高而增加,如果烟气温度过高,就会使得炉膛内的颗粒软化,使其粘附在水冷管表面,导致其受热不均,产生一定的磨损。与此同时,温度过高也会对管道的机械性能产生一定的影响。如果温度过低,就会使得管道温度低于烟气内水蒸气的露点温度,从而使其发生凝结,容易造成管道的腐蚀。4.2水冷管特性的影响

(1)水冷管材质的影响。水冷管的材料硬度及其相应的热物理性能与其磨损具有紧密的联系。

(2)水冷管布置方式的影响。对于其排列方式而言,主要包括顺排和错排,然而顺排磨损的影响较错排而言相比较小。管道之间的空隙距离也会对气泡产生一定的影响。与此同时,在设计的过程中,尽量减少弯管出现的数量。水冷管防磨损的主要技术措施

(1)在水冷管的表面涂抹一些防磨损材料。相比于水冷管材质而言,涂抹材料的硬度相对比较大,在机组运行的过程中,水冷管表面温度比较高,涂抹材料

能够形成一层比较致密的保护层,从而避免水冷管的磨损。

(2)水冷管设计的过程中,减少管道拐弯的现象。在对其进行焊接时,需要将其焊缝位置进行打磨,从而减小燃料颗粒对其的冲击作用。

(3)在水冷管布置的过程中,尽量选用顺排的布置方式。

(4)选择合理的机组运行参数。通过前面介绍,机组运行参数的合理选取对水冷管的防磨起着关键性的作用。在实际运行的过程中,要综合考虑系统实际需求和管道保护的多种因素。

(5)燃料的合理选取。需要对燃料的特性及其颗粒的粒径进行合理控制,选取一些硬度适中、燃烧热量比较高的煤种作为燃烧燃料。并且还要选取合适的燃料颗粒粒径,在保证机组正常运行的过程中,减少颗粒对管道的磨损。结论

管道防磨是保证机组正常运行的必要条件,我们需要加强其重视。通过本文的研究,循环流化床管道的磨损过程非常复杂,我们对其主要运营进行了深入的分析。其影响因素也是多种多样的,其主要影响因素主要包括燃料的性质、机组运行参数、水冷管的特性等。针对上述的影响因素,提出了一系列的解决措施,其主要目的就是能够从根本上解决管道的磨损现象,保证机组的正常运行,提高其运行寿命,从而实现效益最大化。

[1] 邢伟.大型循环流化床锅炉技术发展现状及展望[J].四川电力技术, 2008, 31(2):51-52.[2] 由俊坤, 王朝伟, 王绍辉.循环流化床锅炉磨损问题分析[J].能源研究与信息, 2007, 23(2):91-95.[3] 卢刚.循环流化床锅炉水冷壁磨损特性研究[J].华北电力大学学报, 2005.[4] 李福友.循环流化床锅炉的磨损分析与对策[J].现代电力, 2005, 22(1):56-61.[5] 马增益, 严建华.循环流化床床内受热面磨损特性的试验研究[J].动力工程, 2000, 20(3):674-677.[6] 胡昌华.循环流化床锅炉磨损规律[J].四川电力技术, 1999, 22(6): 7-11.[7] 孙佰仲, 姜春坤, 王擎.循环流化床锅炉气动防磨技术研究[J].锅炉技术, 2014, 45(4):27-33.

第三篇:循环流化床锅炉受热面磨损问题探讨与采用的防磨措施

中国电力(http://www.xiexiebang.com)

循环流化床锅炉受热面磨损问题探讨与采用的防磨措施

循环流化床锅炉以综合利用和燃烧技术的优势发展迅速,但在实际运行中也暴露出了一些问题,其中最主要是磨损问题,直接影响了锅炉长期稳定的安全运行。我们经过几年的不断探讨和实践,并借鉴循环流化床锅炉使用的先进经验,采用了一些解决实际磨损问题的措施。

公司现有二台75T/H次高压、次高温、中温分离循环流化床锅炉,一台75T/H次高压、次高温、高温分离循环流化床锅炉。1#锅炉是96年北京锅炉厂生产中温分离锅炉,于2000年5月18日投入运行。2#锅炉是2000年唐山锅炉厂生产中温分离锅炉,于2000年7月投入运行。3#锅炉是2002年济南锅炉厂生产的高温分离锅炉,于2002年12月投入运行。

因1#、2#炉炉型属中温分离,该炉型的优点是煤种适应性广,热效率高,负荷调节范围大,运行易于控制稳定等特点,但是这种炉型的磨损问题是个薄弱环节。磨损的问题主要在炉内受热面。该炉在炉膛内由下而上交叉紧密布置了蒸发管层、高温过热器层,低温过热器层、高温省煤器层等受热面,直接受到高温烟灰气流的高速冲刷,管系磨损较快,这已是这种炉型存在及发展的弱点,且烧煤矸石量越大,磨损程度越快。从国内已运行的该炉型来看,炉内受热面的布置和固定装置均存在不同的缺陷,管排中易形成烟气走廊,受热面大多数弯头、迎风面等未考虑有效的整体防磨措施。另外蒸发管管壁厚度仅3毫米,再加上安装质量如控制不严格,就会大大减少该炉型的使用寿命。我们就有关问题考察和了解同类型的锅炉在运行的厂家,大多都存在上述问题。锅炉运转率在80%以上,一般两年左右就要更换一套蒸发管,四年左右就要更换一套高、低过热器。每次工期在15天左右。

由于我公司1#锅炉属早期产品,存在上述不利因素较多,该炉已运行3年6个月时间,2#锅炉已运行3年4个月时间,在这期间暴露的磨损问题很多。根据我们的经验出现磨损问题,要及时采取防磨措施,这样才能得到较好的效果。

根据存在不同的磨损情况,我们利用计划检修和其它停炉机会设计加装了各种类型的防磨护瓦、板件等6000多套,对于不容易实行防磨措施的部位,进行了技术改造。通过实施以上措施,对延长锅炉受热面使用寿命,提高运转率,起到了很好的作用。

主要采用的防磨措施有以下几点:

1、对于最容易受磨损蒸发管部位,所有直管迎风面增装防磨护瓦,所有弯管表面全增装防磨护瓦。

2、高温过热器下部弯管表面全增装防磨护瓦,原来的有孔防磨导流板改为耐热钢无孔防磨导流板。

3、锅炉原设计高、低过热器之间是没有空间的,没有办法检查磨损情况和采取的有效防磨措施。为了解决上述问题,在不影响锅炉出率的情况下,进行了高低过热器之间增加检修检查空间改造,低温过热器每排去掉下部两根管道,并压缩列管排列空间整体上移380mm,高温过热器压缩列管排列空间整体下移120mm,炉体单面增加三个人孔门。改造后高、低过热器增加700 mm高度的检修检查空间。

4、高温省煤器下部弯管表面全增装护瓦,原来的有孔防磨导流板改为耐热钢无孔防磨导流板。

5、炉膛出口水冷壁管也是容易受磨损的部位,下部弯管部位采用注料耐火浇注料保护,直管部分采用加装防磨护瓦保护。

6、低温省煤器弯头部位存在磨损现象,采取能加到防磨护瓦加防磨护瓦,并将整个弯头部分用钢板遮挡防磨。

1#、2#锅炉在蒸发管大面积增加防磨护瓦和高、低过热器改造增加检修空间条件下,出力出率正常,达到了改造预期的目的。所采用的防磨措施,特别是对蒸发管的防磨措施,将大大提高其使用寿命。

3#锅炉炉型属高温分离,磨损问题主要在燃烧室卫燃带上沿膜式壁管的磨损。灰沿膜式壁管由上向下流到卫燃带上沿受到阻碍,转向时灰粒撞击膜式壁,造成膜式壁的磨损,磨损范围在卫燃带上沿300mm范围内。

厂家根据该炉灰粒流动特点,对卫燃带膜式壁管采用了耐磨合金喷焊措施,使灰粒的着力点不直接在膜式壁管上,从而减少了膜式壁的磨损,但是经实际运行证明,耐磨强度和使用寿命根本达不到要求。一

中国电力(http://www.xiexiebang.com)

般在半年左右就会出现磨穿问题,主要是卫燃带的膜式壁管与膜板夹沟处磨损严重。

为解决上述问题,提高卫燃带膜式壁管使用寿命,主要考虑采用以下两项措施:

1、对卫燃带膜式壁管的喷涂选择高强度耐磨合金,以提高耐磨性能。

2、在卫燃带膜式壁管上部加装耐热防磨导流板,减少回流灰的直接冲刷,目前已加装部分试用。我们使用循环流化床锅炉虽然有三年多的时间,但是和早期使用循环流化床锅炉的厂家经验相比还有差距,以上只是根据我们的碰到实际问题而采用的措施。这些防磨措施的实施,可以减小和遏止其磨损速度,延长其使用寿命。我们认为最有效的措施是在刚开始安装或大修更换部件时,就要落实切实可行的防磨措施,要比运行中或发现磨损问题再采取措施的效果要好。

第四篇:大型循环流化床锅炉投入石灰石系统后出现的问题及其分析

大型循环流化床锅炉投入石灰石系统后出现的问题及其分析

文章摘要:

摘 要:大型循环流化床锅炉最大的优势在于炉内脱硫,但石灰石系统投入后对流化床锅炉运行产生一些影响。本文针对投入石灰石系统后流化床锅炉出现的一些问题进行分析,并提出了一些防范措施。

关键词:循环流化床锅炉 脱硫 石灰石系统

0 前言

中国华电集团有限公司石家庄热电厂八期技改工程配套采用了四台410t/h循环流化床锅炉,每台锅炉配备一套炉内石灰石脱硫系统。石灰石的4个给料口独立布置在炉膛前墙,同时由2台BK8011型石灰石罗茨风机(1台运行,1台备用)进行送粉,石灰石粉从粉仓经旋转给料阀(上)进入中间缓冲仓,从缓冲仓再经旋转给料阀(下)被石灰石输送粉风机通过输送管道送入炉膛密相区。(见图1)

1-日用仓

2-暖冲仓

3-压缩空气

4-石灰石粉

5-石灰石风机 6-检修压缩空气 7-二次风 8-炉膛

图1 石灰石输送系统图 石灰石系统投运后出现的问题

为了缓解石家庄市区内的环保压力,我厂四台流化床锅炉的石灰石系统都进行了试运行,总体上达到了环保要求,但在系统长期稳定运行上仍存在一些问题:

(1)石灰石粉仓上料系统,由于检修压缩空气系统供气量有限,常常因为压缩空气低致使石灰石上料系统无法正常向粉仓上粉。(2)检修用压缩空气带水,使石灰石粉受潮,结块。石灰石粉仓内板结,造成下粉不畅。

(3)石灰石系统送粉管路较细较长,中途弯头处极易发生堵塞。

(4)石灰石粉质量问题,粒度不合理,运行时石灰石量加的很大,但脱硫效果不甚明显。

(5)石灰石罐车内有杂物伴随石灰石进入粉仓或石灰石粉仓上部观察孔落下杂物造成旋转给料阀卡涩,造成不下粉,或下粉不畅。

(6)投入石灰石后,造成炉膛床温降低。

(7)炉膛床压迅速上涨,严重时需要投油助燃,降低床压。

(8)运行中的冷渣器排渣量增大,并且容易结低温焦块,造成冷渣器堵塞。原因分析

(1)修压缩空气压力正常维持在0.6Mpa左右,而石灰石罐车所需要的内部上粉压力最低为0.3Mpa,因此单一台炉上粉时完全可以满足要求,如果两台炉或是多台炉同时上粉时便会造成检修压缩空气储气罐压力降低,上粉速度减慢,加之运行中如果再有其他用气点(如落渣管引渣用吹扫压缩空气等),将造成储气罐压力进一步降低,致使无法正常上粉。

(2)氧门排出大量的潮湿蒸汽,造成石灰石粉罐长期处在潮湿的环境中。石灰石细粉具有极强的吸湿性,长期处于潮湿的环境中,极易板结成块。此外如果长期停运石灰石系统,而粉仓及送粉管路中仍存有大量石灰石粉,便很容易造成石灰石的板结,为再次投运带来不便,甚至需将管路解体逐段疏通,无形中增大了工作量。

(3)石灰石送粉系统在运行中,送粉中途的管路不易堵塞,可是当加粉量短时内突然增大时,尤其是在弯头处,单凭输送风无法将石灰石粉送入炉膛,直接造成输送管路堵塞。

(4)脱硫使用的石灰石粉要求,CaCO3≥94.06%,MgCO3≥1.8%,水分≤0.08%其他≤40.6%,石灰石粉粒度≤1.5mm(d50=0.45)。脱硫剂粒度与燃煤粒度及其粒度分布对循环流化床锅炉的脱硫效率都有较大的影响:

a.采用粒度较小的石灰石粉,可以有效的提高循环流化床锅炉的脱硫效率;但过小的脱硫剂粒度会造成脱硫剂在炉膛内未能完全反应就被高速的烟气带走,影响脱硫效率,造成不必要的浪费。

b.采用粒度较大的石灰石粉就会减少反应生成的CaO与烟气中SO2的接触面积,一样影响脱硫效率。合理的钙硫摩尔比也是影响脱硫效率的主要因素。

我厂四台循环流化床锅炉设计钙硫摩尔比为2.3;石灰石粉消耗量4.8t/h。随着石灰石粉量(钙硫摩尔比)的增大,二氧化硫的排放量明显降低,脱硫效果十分显著。但当石灰石粉量高于设计值,仍继续加大给料量时,脱硫效率提高的很少;同时造成一些负面的影响,如:由于石灰石给料量过大造成床温下降;床压上升;从而影响锅炉负荷,使得NOx排放升高。在实际运行过程中我们通过对石灰石下粉量与旋转给料阀转速的计算,发现在80%以上额定负荷时,燃烧实际煤种,投入石灰石量应较大于设计值,为5~7t/h。投石灰石前,SO2排放量约为2000 mg/m3以上;投石灰石后,SO2排放量低于设计值404 mg/m3,脱硫效率达到了90%。

(5)送入炉膛的石灰石质量不过关或没有严格的成分化验通知单,使得运行人员无法及时了解石灰石的成分。

(6)由于石灰石自锅炉燃烧室前墙送入,从DCS床温测点显示,前墙一侧的床温降低较多,但总体平均床温变化不大,基本能够保持最佳的脱硫反应床温在850℃左右。

投运前床温(℃)

达到要求后床温(℃)

870

859

(7)投入石灰石后,对床压的影响很大。通过上面的计算,当燃用实际煤种,使得SO2排放达到环保要求时,石灰石用量约为5~7t/h。通过4台炉一年的运行情况来看,燃用的实际煤种带额定负荷,已经比设计煤种多3~4t/h,灰份极大,如果再加入5~7t/h的石灰石,就大大的加大了底渣量,若要保证炉膛床压在规定范围内,必须加大底渣排放量。以22炉为例(2004年2月29日石灰石系统投运状况):

负荷

t/h

煤量

t/h

石灰石风机电流

A

给料阀转速r/m

二氧化硫

Mg/m3

床压

kpa

A

B

407

50.8

0

0

0

2046

5.7

5.8

408

51.2

1250

5.9

6.1

409

51.1

205

208

393

6.5

6.7

411

50.7

253

255

264

7.3

7.4

401

49.1

1624

7.8

8.0

385

47.9

1990

8.1

8.4 表中阴影的数据显示,随着给料阀转速的提高,SO2呈下降趋势,而床压则呈上升趋势。

(8)流化床锅炉带额定负荷,床温在890℃,投入石灰石粉之后床温下降7~10℃,同时冷渣器排渣量增多,炉膛内部分未燃尽煤粒随同石灰石粉从落渣管排入冷渣器,未燃尽的煤粒在冷渣器富氧环境下继续燃烧,造成选择室床温升高,严重时,选择室床温会高于炉膛床温;在高温下石灰石于高温渣粒粘结成块儿,渣块儿在选择室内形成堆积,床温测点不能准确的反应选择室床温,选择室床压逐渐增高,最终造成冷渣器堵塞。在实际的冷渣器清扫过程中,选择室内掏出大量的含石灰质的渣块儿,这是造成投入石灰石系统后冷渣器发生频繁堵塞的主要原因。防范措施

(1)保证检修空压机稳定运行和储气罐压力的稳定,注意检查各个用气点,防止漏气。合理安排各炉的上粉时间,尽量避免两台炉同时上粉,并保持压缩空气干燥,以免石灰石受潮,形成板结。

(2)将高脱排氧门移至汽机侧或延伸至锅炉顶棚以上,避免石灰石粉仓长期处在潮湿的环境中。

(3)在石灰石送粉管炉的弯头处加装压缩空气吹堵装置。

(4)投运石灰石系统时应逐渐加大石灰石粉的给料量,并注意监视石灰石送粉风机电流及出口风压与石灰石粉量的对应关系。如发现系统管路堵塞,及时打开吹堵阀吹扫;吹扫无效,敲打管路,使之通畅。另外,保证检修压缩空气储气罐压力,定时对石灰石送粉管路进行吹扫(间隔30 min~40min)。石灰石系统停运或机组停运时,应尽量将石灰石粉罐内的石灰石粉排净,避免石灰石粉板结;如果在短时间内停炉或停石灰石送粉系统,应对送粉管道进行吹扫,确认系统送粉管路确实通畅,再停运石灰石系统。目前,风机电流和管道压力能较准确的反映石灰石下粉情况(见下表):

参数

空载

达到脱硫效果

风机电流A

管道风压kpa

16~17

26~29

二氧化硫 mg/m3

2000以上

350

(5)对石灰石粉成分及粒度进行严格审核,石灰石厂接到石灰石合格通知单,方能将石灰石粉装车,进行对粉仓上粉。

(6)投入石灰石后,排渣量增大。在运行中应加大冷渣器的监视力度,严格将冷渣器的选择室床温控制在750℃以下,同时严格执行冷渣器的定期切换制度,确保冷渣器的稳定运行。结论

随着城市环保标准的日趋严格,对大型发电企业的环保要求也越来越严格,创优秀发电企业需要大家的努力,以上的防范措施对循环流化床锅炉加装石灰石后稳定运行起到了一定的作用,但是随着机组的运行工况的不断变化,新的问题仍在出现,还需要我们的不断摸索和总结。希望大家能多提宝贵意见,不足之处给预修正。

参考文献:

岑可法,倪明江,骆仲泱等著,循环流化床锅炉理论设计与运行,北京:中国电力出版社,1997。

刘德昌主编,流化床燃烧技术的工业应用,北京:中国电力出版社,1998.9。

作者简介:

吕毅,男,1977年生,助理工程师,中国华电集团公司石家庄热电厂,从事CFB锅炉专业方面的理论与技术研究。

第五篇:循环流化床锅炉炉内脱硫系统存在问题及优化脱硫方案

循环流化床锅炉炉内脱硫系统存在问题及优化脱硫方案 来源:北极星电力网 作者:张全胜 马玉川 虞晓林 2009-07-06 16:40:58 | 字号:大 中 小

[摘 要] 通过对大中小型循环流化床锅炉的脱硫石灰石输送系统设计及运行情况分析,提出循环流化床锅炉实际脱硫过程中存在的诸多问题及技术因素和经济因素,指出了循环流化床锅炉烟气可以达标排放的更可靠、更实用、更经济的优化脱硫方案。[关键词] 循环流化床锅炉 脱硫固化剂 优化 脱硫 0 前言

循环流化床锅炉具有效率高、燃料适应性广、负荷调节灵活、环保性能好等优点,近年来发展非常迅速,技术日趋成熟。随着我国对环保要求越来越高,环保电价政策的出台,国内一些拥有循环流化床锅炉的电厂正在抓紧改造或新加脱硫装置。

近几年,一些采用循环流化床锅炉的电厂还是被环保部门坚决要求进行锅炉尾部烟气脱硫,主要原因就是CFB锅炉炉内脱硫的效率令人怀疑。传统的粗糟的炉内脱硫系统设计及设备制造使脱硫效率低下,同时脱硫固化剂的消耗量却非常可观,即使采用廉价的石灰石脱硫也使发电成本显著增加。加之出现了锅炉灰渣的综合利用受到脱硫固化剂品种的影响,有的电厂只能将灰渣当做废品的废品抛弃掉。

更可靠、更实用、更经济的CFB锅炉炉内脱硫系统优化设计方案的重点是强化系统防堵设计、合理布置炉膛接口、选择合适脱硫固化剂,能够保证循环流化床锅炉烟气脱硫效率90%以上,烟气能够

达标排放,灰渣能够综合利用。下文中按习惯称呼的石灰石(粉)实际上泛制指脱硫固化剂(粉)。1 循环流化床锅炉炉内烟气脱硫特点

循环流化床(CFB)锅炉炉内稳定的870℃左右的温度场使其本身具有了炉内烟气脱硫条件,炉外的脱硫装置实际上就是石灰石的制粉、存储及输送系统,并科学经济实用地选择脱硫固化剂。一般电厂大多是外购满足要求的石灰石粉,由密封罐车运至电厂内,通过设置于密封罐车上的气力卸料系统将石灰石粉卸至石灰石粉储仓。在石灰石粉储仓底部,安装有气力输送系统,将石灰石粉通过管道输送至炉膛进行SO2吸收反应。

循环流化床脱硫的石灰石最佳颗粒度一般为0.2~1.5mm,平均粒径一般控制在0.1~0.5mm范围。石灰石粒度大时其反应表面小,使钙的利用率降低;石灰石粒径过细,则因现在常用的旋风分离器只能分离出大于0.075mm的颗粒,小于0.075mm的颗粒不能再返回炉膛而降低了利用率(还会影响到灰的综合利用)。循环流化床锅炉与其分离和返料系统组成外循环回路保证了细颗粒(0.5~0.075mm的CaC2O3、CaO、CaS2O4等)随炉灰一起的不断循环,这样SO2易扩散到脱硫剂核心,其反应面积增大,从而提高了循环流化床锅炉中石灰石的利用率。0.5~1.5mm粒径的颗粒则在循环流化床锅炉内进行内循环,被上升气流携带上升一定高度后沿炉膛四面墙贴壁流下又落入流化床。循环流化床锅炉运行时较经济的Ca/S比一般在 1.5~2.5之间。

脱硫固化剂的选择问题。一般情况下电厂大多选择石灰石作为脱硫固化剂是基于其来源广泛、价格低廉且脱硫效率较高。也可以因地置宜地选择石灰、氧化锌、电石渣等作为脱硫固化剂,不同的脱硫固化剂产生的硫酸盐性能有所不同,影响到灰渣的综合利用性能。

石灰石粉特性:研磨后石灰石粉颗粒棱角, 硬度高;石灰石粉对压缩空气分子的亲和力差,逸气性强;粒度分布差别较大(20um-1.5mm);堆积密度较大(1.3t/m3左右);吸水性高,粘度大;;对输送管道的磨损较大;气力输送的悬浮速度梯度较大,流态化性能差,气力输送的状态极不稳定(属于难输送物料);石灰石粉颗粒容易沉积;吸潮板结,造成堵管。

石灰石系统投运后出现的主要问题:采用压缩空气输粉时,压缩空气中带水,使石灰石受潮、结块;送粉管道细长,中途弯头部位易堵;投入石灰石后,床温会下降、床压迅速上涨;冷渣器排渣量增大。2 电厂各种石灰石粉存储及输送系统的特点及存在问题 2.1 两级料仓石灰石输送系统

2.1.1 两级料仓石灰石输送系统为早期循环流化床锅炉采用的经实践证明大多不太成熟的常规方案,国内电厂安装的较多。

系统分为石灰石粉库(锅炉房外)至中间粉仓的前置段输送和中间粉仓至锅炉炉膛的后置段输送两个部分。前置段输送采用空压机做为输送用气动力源进行定容间断输送;后置段输送采用石灰石(罗茨)风机做为输送用气动力源进行可定量调整的连续输送。

(1)两级料仓石灰石输送干式喷钙炉内烟气脱硫系统主要是由储料仓、正压栓流式气力输送系统、炉前仓、喷吹系统、电气控制系统等组成。物料采用罐车压送到储料仓,再由正压栓流式气力输送系统输送至炉前仓,最后经喷吹系统吹送入炉膛。整个系统采用PLC程序控制。

(2)储料仓一般布置在零米层,可储存一台炉三天的用量,下部设有流化装置以防止石灰石粉结块,顶部设有除尘器及压力真空释放阀。

(3)炉前仓布置在锅炉附近,实际为一缓冲仓,它接受储料仓的来粉,依靠重力自流卸粉。炉前仓顶部设有除尘器及库顶管箱,还设有高低料位,其下部还设有电加热板以防止石灰石粉结块。

(4)输送系统是以空压机作为动力源,采用高密度的低压栓流式输送,将物料从发送器以灰栓形式由管道输送至炉前仓。输送系统由发送器、进出料阀、补气阀、管路等组成。

(5)喷吹系统是以罗茨风机作为动力源将石灰石粉吹入炉膛,由罗茨风机、管路、弯头、喷射器、混合器、螺旋给料机、叶轮式旋转给料阀及插板门等组成。石灰石粉给料量由叶轮式旋转给料阀通过变频调速器根据锅炉燃烧需用量进行调整,也可由螺旋给料机进行调

整。

(6)主要技术参数: 气灰比:~1:3.5,钙硫比:~2.2:1,脱硫效率:85~90%。

2.1.2防止炉前石灰石粉输送系统堵塞采用技术措施

(1)用电加热器(根据气候特点选用):将石灰石风机送出的风加热到一定温度,使输送管路中的物料顺畅流动。

(2)用气化装置:安装在粉仓底部,加热过的空气通过陶瓷多孔板使干燥的粉粒状的物料流化,增加物料的流动性,防止物料板结、起拱。

(3)在喷射供料器上增设备用风,风源为压缩空气。防止在输送风压不足时石灰石输送系统堵塞。

2.1.3上述石灰石输送系统属于间断输送。在电厂实际运行中,发现存在以下问题:

(1)向炉膛输粉的给料量无法保证均匀、连续:石灰石粉的粒度、湿度等特性极易随环境因素变化,石灰石从中间仓进入螺旋给料机时是不均匀、不连续的。螺旋给粉设备一般较易磨损,带来的后果是:关闭不严,泄漏严重;当通往炉膛的石灰石管路不畅时,石灰石风机风有可能倒灌到炉前石灰石仓,导致给料困难。

(2)石灰石粉较细且极易吸潮,因而石灰石料仓容易结块堵塞,造成石灰石粉下料不畅;

(3)旋转给料阀易磨损;

(4)间断输送,易在管道中产生细粉的沉积;

(5)使用炉前中间仓当做两相流中继输送间的连接和缓冲,系统处理量过大,而且系统较为复杂,所需设备管道较多,故障点也多;

(6)整个系统消耗功率大;

(7)需设炉前中间仓(在电厂煤仓间15-30m标高之间),土建投资大;

(8)初期投资大、运行成本高。

现新建电厂设计或投产电厂的改造不宜再选用此两级料仓石灰石输送系统。

2.2单级料仓连续石灰石输送系统

外购满足要求的石灰石粉(粒径小于1.5mm),由密封罐车运至电厂内,通过设置于密封罐车上的气力卸料系统将石灰石粉卸至石灰石粉储仓。在石灰石粉储仓底部,安装有气力输送系统,石灰石粉由高压空气通过管道直接输送至炉膛进行SO2吸收反应。采用连续运行方式,每套输送系统正常出力不小于一台锅炉燃用设计煤种BMCR时炉内脱硫所需石灰石粉量的150%。

单级料仓循环流化床锅炉石灰石输送系统按喷射给料机的标高不同分为0米层发送单级料仓石灰石输送系统和约15米层发送单级料仓石灰石输送系统,按输送动力气源分为压缩空气、60-80KPa高压风(又分为单独罗茨风机或利用锅炉高压流化风机)、热一次风等系统。

可以根据用户循环流化床锅炉的具体情况和系统设计特点,如个各个风(一次、二次、高压流化、播煤等风)的压力流量、各风与炉

膛接口的标高、数量等进行优化设计,定出最佳方案,给用户提供更可靠、更实用、更经济的石灰石(脱硫固化剂)粉存储及输送系统优化方案。

系统特点:系统由螺旋计量给料装置、自控旋转给料阀、压力式喷射给料装置、鼓风送风装置以及管道分配器等组成。可以根据用户现场的实际需要选择不同的系统配置。采用针对循环流化床锅炉脱硫专门研制的注料泵(或喷射泵),该设备安装在位于锅炉房(附近)外侧的石灰石粉库下,可根据锅炉的运行工况,通过变频电机实现无级调速控制,将石灰石粉定量、连续、均匀地一次送入锅炉炉膛。

与常规间断输送相比,直接连续输送系统具有以下优点:

(1)投资成本低:一级输送,设备少,耗气小,投资降低,便于优化布置;

(2)可靠性高: 由于设备减少,系统出故障的几率减小,维护量小;

(3)给料均匀、连续、提高了输送可靠性;

(4)系统出力调节方便、调节范围大: 通过称重模块可清楚知道

系统出力,通过变频电机无级调速,调整系统出力; 3 对单级料仓连续石灰石输送系统的优化设计与改进

单级料仓连续输送石灰石系统虽较两级料仓石灰石输送系统有所简化,投资较省,但气源和发送方式的选择性较大,还需在提高系统可靠性进一步优化设计。可以根据用户循环流化床锅炉的具体情况和系统设计特点,如个各个风(一次、二次、高压流化、播煤等风)的压力流量、各风与炉膛接口的标高、数量等进行优化设计,定出最佳方案,给用户提供更可靠、更实用、更经济的石灰石(脱硫固化剂)粉存储及输送系统和脱硫优化方案。3.1设计改进特点

(1)料仓:在料仓内壁上增加设计高压热风气化板。

(2)螺旋计量给料装置(自控旋转给料阀):增加防漏风措施。

(3)喷射式供料器:在管道正压运行时能维持吸料口微负压。

(4)高压风装置:根据现场的实际情况选高压罗茨风机(或空压机)。设计风加热装置以确保整个系统能用热风吹扫。

(5)防冻设计:对粉仓、设备、管道都设计保温层。石灰石粉仓系统的电加热器能保证在气候极端潮湿的情况下,脱硫剂粉不发生结块,以防止堵料。

由于石灰石粉比较细、且易受潮结块,所以要求粉仓严密;又由于粉仓严密,当粉仓静压低、给粉机静压高时,石灰石粉会倒灌,所以粉仓的设计按用热风维持正压运行。3.2输送动力气源的优化选择方案

输送动力气源可以选择:压缩空气、单独罗茨风机60-80KPa高压风、利用CFB锅炉高压流化风、利用CFB锅炉热一次风。在输送动力气源的选择上首先要尽量利用电厂现有的资源,看看电厂CFB锅炉的哪些风富裕量比较大,然后合理选择。利用CFB锅炉高压流化风和热一次风是最经济的方案。使用热一次风作为输送动力气源的前提是在约15米层设置发送料装置同时采用无中间仓的发送系统。3.3发送料装置标高的优化选择方案

单级料仓脱硫固化剂输送系统按喷射给料机的标高不同分为0米层发送单级料仓脱硫固化剂输送系统和15米层发送单级料仓脱硫固化剂输送系统。在15米层设置发送脱硫固化剂装置使粉仓的高度提升,需同时采用无中间仓的发送系统才能降低这个高度,然后便于利用CFB锅炉高压流化风或热一次风作为输送动力气源,总体上避免系统复杂化,降低工程造价。

在0米层设置单级发送装置,若采用无中间仓的发送系统则发送装置的实际设置标高约提升到5米料,同时尽力将粉仓布置在CFB锅炉房附近,就可避免使用压缩空气输送而采用单独罗茨风机60-80KPa高压风或利用CFB锅炉高压流化风作为输送动力气源。总体上避免系统复杂化,提高了可靠性,还可降低工程造价。3.4发送料装置的优化选择方案

发送料装置目前有多种形式:仓泵、喷射器、三通式混合器、强力喷射泵、料封泵、仓螺体等。

不外呼通过气体的高速射流造成低气压腔体抽吸自由下落的脱

硫固化剂粉末,形成气固两相流。气灰比:~1:3.5。3.5 中间收料给料小仓的优化选择方案

按有无中间仓来划分发送料系统则有三中:具有一个中间仓的发送料系统、具有两个中间仓(收料给料仓)的发送系统、没有中间仓的发送系统。究竟哪一种更可靠、更实用,这与发送料装置的选型、仓料干燥方式及输送动力气源的优化选择有关,需综合考虑,才能确定出一种更可靠、更经济实用的方案。没有中间仓的发送系统当然是最简单的系统,但要在最可靠性上充分考虑采取有效措施,主要是合理解决仓料干燥方式和料仓的背压问题。

3.6 石灰石粉与锅炉接口的优化选择方案

脱硫固化剂与锅炉的接口即脱硫固化剂气固两相流喷入CFB锅炉的位置,这对脱硫效果也有一定影响。国内CFB锅炉脱硫固化剂与锅炉的接口方式主要有:在炉墙下部上专门开孔、在回料斜腿上部开孔喷入循环灰内部、在上下二次风管弯头处接口喷向二次风口、在落煤管处充当播煤风随煤喷入炉膛。不同制造厂的不同容量的CFB锅炉上述各个接口的标高都不仅相同,到底哪个接口方式才能最有效

地提高脱硫效果,不能一概而论。总之要使脱硫固化剂同时从不同标高进入CFB锅炉炉堂,使脱硫固化剂粉弥漫在整个炉堂空间最充分地煅烧和与SO2接触反应。

要考虑CFB锅炉背压对脱硫固化剂输送系统的影响,在接口处设计成三通式负压吸入口。

3.7 石灰石粉仓内防潮的优化选择方案

脱硫固化剂粉仓内的防潮问题现在是简单的采用密闭的办法,出现了粉仓内背压波动甚至为负的情况,影响到脱硫固化剂粉的可靠输送。采用粉仓密闭的办法导致了中间仓(收料给料仓)的出现,使系统和控制更加复杂,操作和维护量加大。优化选择的解决办法是粉仓的设计按用热风维持正压运行。3.8 脱硫固化剂的优化选择方案

脱硫固化剂的优化选择主要是兼顾脱硫效率高和灰渣综合利用好两个方面。

一般情况下电厂大多选择石灰石作为脱硫固化剂是基于其来源广泛、价格低廉且脱硫效率较高。也可以因地置宜地选择石灰、氧化锌、电石渣等作为脱硫固化剂。需要指出的是粒径在0.2mm以下的细粉状的物质如消石灰不能作为CFB锅炉的脱硫固化剂。不同的脱硫固化剂产生的硫酸盐性能有所不同,影响到灰渣的综合利用。一种少量的脱硫添加剂可以改变灰渣的的品质,可以保证灰渣的有效综合利用。这种服务已经社会化。

下载FW技术导向风帽式循环流化床锅炉磨损问题分析及技术改造方案(五篇)word格式文档
下载FW技术导向风帽式循环流化床锅炉磨损问题分析及技术改造方案(五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐