IQ考验纯粹的脑力,逻辑思维(非脑筋急转弯)

时间:2019-05-14 13:41:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《IQ考验纯粹的脑力,逻辑思维(非脑筋急转弯)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《IQ考验纯粹的脑力,逻辑思维(非脑筋急转弯)》。

第一篇:IQ考验纯粹的脑力,逻辑思维(非脑筋急转弯)

1、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?

2、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?

3、有三个人去住旅馆,住三间房,每一间房10元,于是他们一共付给老板30元,第二天,老板觉得三间房只需要25元就够了于是叫小弟退回5元给三位客人,谁知小弟贪心,只退回每人1元,自己偷偷拿了2元,这样一来便等于那三位客人每人各花了9元,于是三个人一共花了27元,再加上小弟独吞了不2元,总共是29元。可是当初他们三个人一共付出30元,那么还有1元在哪里呢?

4、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?

5、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?

6、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?

7、你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?

8、对一批编号为1~100,全部开关朝上(开)的灯进行以下操作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。

9、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?

10、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?

11、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢? 12、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?

1、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?

答:把两根香同时点起来,第一支香两头点着,另一支香只烧一头,等第一支香烧完的同时(这是烧完总长度的3/4),把第二支香另一头点燃,另一头从燃起到熄灭的时间就是15分。

2、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?

答:三女的年龄应该是2、2、9。因为只有一个孩子黑头发,即只有她长大了,其他两个还是幼年时期即小于3岁,头发为淡色。再结合经理的年龄应该至少大于25。

3、有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。可是当初他们三个人一共付出$30那么还有$1呢?

答:一共付出的30元包括27元(25元给老板+小弟贪污2元)和每人退回1元(共3元),拿27和2元相加纯属混淆视听。

4、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?

答:每对袜子都拆开,每人各拿一支,袜子无左右,最后取回黑袜和白袜各两对。

5、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?

答:把鸟的飞行距离换算成时间计算。设洛杉矶和和纽约之间的距离为a,两辆火车相遇的时间为a/(15+20)=a/25,鸟的飞行速度为30,则鸟的飞行距离为a/25*30=1.2a。

6、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1。只称量一次,如何判断哪个罐子的药被污染了?

答:1号罐取1丸,2号罐取2丸,3号罐取3丸,4号罐取4丸,称量该10个药丸,比正常重量重几就是几号罐的药有问题。

7、你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻? 答:4个

8、对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。

答:若实际操作求解会相当繁琐。我们知道,就某个亮着的灯而言,如果拨其开关的次数是奇数次,那么,结果它一定是关着的。根据题意可知,号码为N的灯,拨开关的次数等于N的约数的个数,约数个数是奇数,则N一定是平方数。因为10的平方等于100,可知100以内共有10个平方数,即,最后关熄状态的灯共有10盏,编号为1、4、9、16、25、36、49、64、81、100。

9、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?

答:镜像对称的轴是人的中轴

10、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?

答:有三个人戴黑帽。假设有N个人戴黑,当N=1时,戴黑人看见别人都为白则能肯定自己为黑。于是第一次关灯就应该有声。可以断定N> 1。对于每个戴黑的人来说,他能看见N-1顶黑帽,并由此假定自己为 白。但等待N-1次还没有人打自己以后,每个戴黑人都能知道自己也是黑的了。所以第N次关灯就有N个人打自己。

11、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?

答:无论内外,小圆转两圈。小圆、大圆经历的距离相等。12、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?

答:39瓶,从第2瓶开始,相当于1元买2瓶。

第二篇:脑筋急转弯及答案:冷笑话脑筋急转弯 搞笑脑筋急转弯 IQ测试题

脑筋急转弯大全及答案:冷笑话脑筋急转弯+搞笑脑筋急转

弯+IQ测试题

3D脑筋急转弯 >>·什么东西肥得快瘦得更快?...(20条)·睡美人最怕的是什么?...(20条)·牙医靠什么吃饭?...(20条)·为什么青蛙可以跳得比树高?..(20条)·铁放到外面要生锈,那金子呢?(20条)·什么地方开口说话要付钱?...(20条)·什么门永远关不上?...(20条)·哪一颗牙最后长出来?...(20条)·什么东西愈生气它便愈大?...(20条)·冰变成水最快的方法是什么?..(20条)

第三篇:简析数学教学中的非逻辑思维方法

简析数学教学中的非逻辑思维方法

摘 要:非逻辑思维在数学教学中有着逻辑思维不可替代的作用,探讨数学问题更离不开非逻辑思维,没有非逻辑思维,就不可能有数学猜想,就不可能在数学上有许多发现和创新.本文就非逻辑思维中的形象思维和直觉思维进行探讨.同时结合数学教学中的具体实例作深入地剖析,以此培养学生的非逻辑思维能力.关键词:数学教学;非逻辑思维;形象思维;直觉思维

数学强调理性思维,但理性思维不等于逻辑思维,逻辑思维具有明确的逻辑结构和固定模式,是数学创造的重要因素,但过分强调逻辑思维会导致“思想僵化”、“墨守成规”.相对于数学的逻辑思维,数学的非逻辑思维方法亦是重要的数学思维方法.由于这种思维方法没有固定的逻辑模式的限制,具有一定的灵活性、突发性和创造性,常常成为提出数学新思想、创立新理论的重要工具,它是数学创造的另一个重要因素,在培养创新能力和应变能力方面具有重要作用,本文笔者就非逻辑思维中的形象思维和直觉思维进行探讨.数学教学中的形象思维

形象思维是一种以客观形象为思维对象,以意象为主要思维工具,以指导创造物化形象的实践为主要目的的思维活动,它借助于具体的形象与理想的形象来展开思维,联想与想象是数学形象思维的两个主要方法.1.联想思维方法

广义上讲,联想是由一事物想到另一事物的思维活动,就是说将头脑中的意象联系在一起,由一种已知的意象唤起另一种意象,从而揭示出意象和内容的关系.如,在对三角形有了全面的认识形成意象后,通过联想又会很然的想到四面体,并有一定的认识,于是促进并加速另一意象的产生.例1 在平面几何里,由勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何勾股定理,可以得到的正确结论是“设三棱锥A-BCD的三个侧面ABC,ACD,ABD两两互相垂直,则________”.该题目考查的是平面到空间的类比联想.解答这类题目不能只满足形式上的类似,还必须是真命题,结论的推导还是要从平面结论下手,利用类似平面结论推导的方法得出空间中的相关结论,如等面积法类比等体积,直线类比平面.本题用到的则是平面中线段长度类比空间中侧面面积的类比联想思维方法.结论为:S+S+S=S.例2 已知椭圆+=1具有性质:若M,N是椭圆C上关于原点对称的两个点,点P为椭圆上任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与点P位置无关的定值,试对双曲线-=1写出具有类似特性的性质,并加以证明.联想思维方法是数学形象思维的基本方法,是各种形象思维方法的基础,没有联想思维就不可能有形象思维活动.由于联想思维方法对事物关系的反映具有猜测性和随意性,因此需要把联想建立在雄厚的知识背景和宽阔的知识领域基础上,同时,要用其他思维方法对联想的结果进行修正、补充和检验,以保证联想的可靠性,使联想思维真正在数学教学中起到作用.2.想象思维方法

想象是在联想的基础上加工原有意象而创新意象的思维活动,是数学形象思维的重要方法之一.数学思维中的想象,包括再生性想象和创造性想象.再生性想象是根据数学语言、符号、数学表达式等形象的提示和加工改造而形成数学新形象的思维方法.学生在数学学习中的想象大多属于再生性想象,这种想象对学生来说有创造的成分,但归根结底还是建立在已有知识、经验和数学形象上的.本题中,数学直觉的产生不是凭空而来的,它需要充分的酝酿,是长时间苦心思索后的产物,只要意识到已有的理论成果有更大的适用范围,那么对所研究的问题进行适当的调整,已有的理论成果完全可以系统地转到新的问题中去,这就是灵感的产生,是一个“顿悟”的过程.可见,非逻辑思维在数学教学中有着逻辑思维不可替代的作用,探讨数学问题更离不开非逻辑思维,没有非逻辑思维,就不可能有数学猜想,就不可能在数学上有许多发现和创新.当我们研究某个复杂的数学问题时,开始会遇到几种可能的思路,究竟选择哪种思路呢?此时,直观的想象就会起到重要作用,这就是数学的直觉能力.当我们长期思考某个数学问题而不能获得解决时,非逻辑思维有时会帮我们打破僵局,另辟全新的思路,找到通向成功的道路,在这一点上,灵感的表现尤为突出.作为教师,更要不断提高自己的非逻辑思维水平,发挥榜样的作用,才能更好地带着学生去探索新知.

下载IQ考验纯粹的脑力,逻辑思维(非脑筋急转弯)word格式文档
下载IQ考验纯粹的脑力,逻辑思维(非脑筋急转弯).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐