第一篇:暖通空调设计规范[002]
暖通空调设计规范
一 般 规 定
第2.1.1条 符合下列条件之一时,应设置空气调节:
一、对于高级民用建筑,当采用采暖通风达不到舒适性温湿度标准时;
二、对于生产厂房及辅助建筑物,当采用暖通风达不到工艺对室内温湿度要求时.注:本条的
第2.1.2条 在满足工艺要求的条件下,应尽量减少空气调节房间的面积和散热、散湿设备。当采用局部空气调节器或局部区域 空气调节能满足 要求时,不应采用全室性空气调节。
层高大于是10M的高大建筑物,条件允许时,可采用分层空气 调节。第2.1.3条 室内保持正压的空气 调节房间,其正压温度值不应大于50Pa(5mmH2O)。
第2.1.4条 空气调节房间应尽量集中布置。室内温度和使用要求相近的空气调节房间,宜相邻布置。
第2.1.5条 空气调节房间围护结构的传热系数,应根据建筑物的用途和空气调节器的类别,通过技术经济比较确定,但最大传热系数,不宜大于表2.1.5所规定的数值。围护结构最大传热系数[W/(m².ºC)][Kcal/m².h.°c] 表 2.5.1 注:1:表中内寺和楼板的有关数值,仅适用相邻房间的温差大于3ºC时.2:确定围护结构 的传热系数时,尚应符合本规范第3.1.4条的规定.第2.1.6条 工艺性空气调节房间,当室温允许波动范围小于基等于±0.5ºC时,其围护热情性指标,不宜小于表2.1.6的规定.围护结构最小热情性指标 表2.1.6 第2.1.7条 工艺性空气调节房间的外墙、外墙朝向及其所在层次,应符合表2.1.7的要求。
外墙、外墙朝向及所在层次 表2.1.7 注:1:室温允许波动范围小于或等于±0.5ºc的空气调节房间,宜布置在室温允许波动范围较大的空气调节房间之中,当布置在单层建筑物内时,宜设通风屋顶.2:本条和本规范第2.1.9条规定的
第2.1.8条 空气调节房间的外窗面积应尽量减少,并应采取密封和遮阳措施。舒适性空气调节房间和室温允许波动范围大于或等于±1.0ºc的工艺性空气调节房间,部分窗扇宜能开启.注:工艺性空气调节房间,外窗宜采用双层玻璃窗;舒适性空所调节器房间,有条件时,外窗亦可采用双层玻璃窗.第2.1.9条 工艺性空气调节房间,当室温允许波动范围大于±1.0ºC时,外窗应尽量北向;±1.0ºC时,不应有东、西向外窗;±0.5ºC时,不宜有外窗,如有外窗时,应北向。第2.1.10条 工艺性空气调节房间的门和门斗,应符合表 2.1.10的要求.舒适性空气调节房间开启频繁的外门,宜设 六斗必要时,可设置空气幕。门和门斗 表2.1.10 注:外门门缝应严密,当门两侧的温度大于或等于7º时,应采用保温门.负 荷 计 算
2.2.1条 空气调节房间的夏季得热量,应根据下列各项确定 :
一、通过围护结构传入室内的热量;
二、透过外窗进入室内的太阳辐射热量;
三、人体散热量;
四、照明散热量;
五、设备、器具、管道及其他室内热源的散热量;
六、食品或物料的散热量;
七、渗透空气带入室内的热量;
八、伴随各种散湿过和产生的潜热量。
第2.2.2条 空气调节房间的夏季冷负荷,应根据各项得热量的种类和性质以及房间的蓄热特性,分别进行计算。通过围护结构进入室内的不稳定传热量、透过外窗进入室内的太阳辐射热量、人体散热量以及非全天使用的设备、照明灯具的散热量等形成的冷负荷,宜按不稳定传热方法计算确定;不宜把上述得热量的逐时值直接作为各相应时刻冷负荷的即时值。
第2.2.3条 计算围护结构传热量时,室外或邻室计算温度,宜按下列情况分别确定;
一、对于外窗,采用室外计算逐时温度按本规范第2.2.10条式(2.2.10)计算;
二、对于外墙和屋顶,采用室外计算逐时综合温度,按下式计算: tzs=tsh+(ρJ/αW)(2.2.3-1)式中tZS--夏季空气调节室外计算逐时综合温度(ºC)tsh--夏季空气调节室外计算逐时温度(ºC),按本规范第 2.2.10条式的规定采用;ρ--围护结构外表面对于太阳辐射热的吸收系数;J--围护结构所在朝向的逐时太阳能总辐射照度(W/m²),按本规范附录四采用;αW--围护结构外表面换热系数[W/m².ºC]。注:舒适性空气调节屋间和室温允许被动范围大于或等于±1.0ºC工艺性空气调节房间,其非轻型外墙,室外计算日平均综合温度,按下式计算: tzp=twp+ρJP/αW(2.2.3.-2)式中 tzp--夏季空气调节室外计算日平均综合温度(ºC);JP--围护结构所在朝向太阳总辐射照度的日平均温度(ºC),按本规范附录四采用;twp--夏季空气调节室外计算日平均温度(ºC),按本规范第 2.2.9条的规定采用;ρ、αW--同式(2.2.3-1)。
三、对于隔墙、楼板等内围护结构,当邻室为非空气调节房间时,采用邻室计算平均温度,按下式计算: tls=twp+Δtls(2.2.3-2)式中tls--邻室计算平均温度(ºC)twp--同式(2.2.3-2)Δtls--邻邦室计算平均温度与夏季空气调节室外计算日平均温度的差值(ºC),宜按表2.2.3采用。温度的差值 表2.2.3 第2.2.4条 外墙和屋顶传热形成的逐时冷负荷,宜按下式计算: CL=KF(twl-tn)(2.2.4-1)式中 CL--外墙和屋顶传热形成的逐时冷负荷(W);K--外墙壁或屋顶的传热系数[W/m².ºC];
F--外墙或屋顶的面积(m²);twl--外墙可屋顶的逐时冷负荷计算温度(ºC),根据建筑物的地理位置、朝向和构造、外表面颜色和粗糙程度以及空气调节房间的蓄热特性,可按本规范第5.2.3条确定的T 值通过计算确定;
tn--夏季空气调节室内计算温度(ºC)
注:室温允许波动范围大于或等于±1.0ºC 的房间,其非轻型外墙传热形成的泠负荷,可近似接下式计算: CL=KF(tzp-tn)(2.2.4-2)式中 CL--个墙传热形成的冷负荷(W);K,F,tn--同式(2.2.4-1);tzp--同式(2.2.3-2).第2.2.5条 外窗温差传热形成的逐时冷负荷,宜按下式计算;CL=KF(twl-tn)(2.2.5)CL--外窗温差传热形成的逐时冷负荷(W);twl--外窗的逐时冷负荷计算温度(),根据建筑物的地理位置和空气调节房间的蓄热特性,可按本规范第2.2.10条确定的T 值,通过计算确定;K,F,tn--同式(2.2.4-1).第2.2.6条 空气调节房间与邻室的夏季温差大于3 时,宜按下式计算通过隔墙、楼板等内围护结构传热形成的冷负荷: CL=KF(tls-tn)(2.2.6)
式中CL---内围护结构传热形成的冷负荷(W); K,F,tn--同式(2.2.4)tls---同式(2.2.3-3).第2.2.7条 舒适性空气调节房间,夏季不可计算通过地面传达室热形成的冷负荷。工艺性空气调节房间,有外墙壁时,宜计算距墙壁2M范围内的地面传热形成的冷负荷。
第2.2.8条 计算透过玻璃窗进入室内的太阳辐射热量时,应考虑空气调节房间内、外遮阳设施以及附近高大建筑物或遮挡物的影响。
第2.2.9条 透过下班窗进入室内的太阳辐射热形成的冷负荷,宜按遮阳设施的类型和空气调节房间蓄热特性等因素,分别计算确定。
第2.2.10条 确定人体、照明和设备等散热形成产冷负荷时,应根据不同情况,分别选用适宜的群集系数、负荷系数和同时使用系数,有条件时,应有要用实测数值。
当上述散热形成的冷负荷占室内冷负荷的比率较小时,可不考虑房间蓄热特性的影响。
第2.2.11条 空气调节房间的夏季计算散湿量,应根据下列各项确定:
一、人体散湿量;
二、渗透空气带入室内的湿量;
三、化学反应过程的散湿量;
四、各种潮湿表面、液面或液流的散湿量;
五、食品或其他料的散湿量;
六、设备散湿量。
第2.2.13条 空气调节房间的夏季冷负荷,应按各项逐时冷负荷的综合最大值确定。
空气调节系统的夏季冷负荷,应根据所服务房间的同时使用情况、空气调节系统的类型及调节方式,按各房间逐时冷负荷的综合值或各房间夏季冷负荷的累计值确定,并应计入新风冷负荷以及通风机、水泵、冷水管和水箱温升引起的附加冷负荷。
第2.2.14条 空气调节系统的冬季热负荷,宜按本规范采暖
第二节计算;但室外计算中心温度,应按本规范第2.2.5条的规定采用。系 统 设 计
第2.3.1条 选择空气调节系统时,就根据建筑物的用途、规模使用特点、室外气象条件、负荷变化情况和参数要求等因素,通过技术经济比较确定。第2.3.2条 建筑物内负荷特性相差较大的内区与周区设置空气调节系统。第2.3.3条 工艺性空气调节系统的划分,应符合下列要求:
一、室浊允许波动范围大于±0.5ºC和相对湿度允许波动范围大于±0.5%的各房间相互邻近,且室内温湿度基数、单位送风量的热扰量、班次和运行时间接近时,宜划为同一系统;
二、室温允许波动范围为±0.1~0.2ºC的房间,宜设单独的系统,当 ±0.1~0.2ºC 的房间较小,且附近有温湿度基数和使用班次相同的空气调节房间时,可划为同一系统。
三、有消声要求的房间,不宜和产生噪声的房间划为同一系统。
注:室内温度左数不同或热湿扰量相差较大的房间,划为同一系统时,应根据具体情况分别设局部处理装置。
第2.3.4条 集中式空气调节系统,宜采用单风管式的,当房间负荷变化较大,采用变风量系统能满足要求时,不宜采用定风量再热式系统。
第2.3.5条 空气调节房间较多,且各房间要求单独调节器的建筑物,条件许可时,宜采用风机盘管加新风系统.第2.3.6条 空气调节房间总面积不大或建筑物中仅个别房间有整体式空气调节机组。要求全年空气调节的房间,当技术经济比较合理时,宜采用热泵式空气调节机组。注:选择整体式空气调节机组时,应进行风量、风压,冷量和热量的校核计算。第2.3.7条 全年使用的集中式空气调节系统,当室内散湿量较小或相对湿度允许波动范围较大时,宜考虑变动一、二
次回风比或采用旁通的可能性;当不允许选用较大的送风温差时,可采用固定比例的二次回风。在可用新风作冷源的经济运行期内,应最大限度地使用新风。冬、夏季在保证最小新风量的条件下,应采用最大的回风百分比。注:
1、仅作夏季降温用的系统,不应采用二次回风。
2、要求全关闭的阀门应严密。
3、采用回风时,应符合国家现行《工业企业设计卫生标准》及本规范第4.6.1条的规定。
第2.3.8条 空气调节系统的新峋 ,应符合下列规定:
一、民用建筑宜按表达2.3.8采用;民用建筑最小新风量 表2.3.8 注:旅馆客房等的卫生间,当其排风量大于按本表所确定 的数值时,则新风量应按排风量采用。
二、生产厂房应按补偿排风、保持室内下压或保证每人不小于30m³/h的新风量的最大值勤确定。
第2.3.9条 新风进风口的面积 ,应适应季节新风量变化的需要。进风口处宜装设能严密关闭的阀门,其位置应符合规范第4.4.4条的规定.第2.3.10条 空气调节系统,特别是无窗建筑物或过渡季节使用大量新风的空气调节系统,应有排风出路,且应满足新风量变化的需要.第2.3.11条 集中式空气 调节系统,符合下列情况之一量,宜设回风机;
一、不同季节的新风量变化较大,其他排风出路不能适应风量变化的要求时;
二、系统阻力较大,装设回风机技术经济合理时.第2.3.12条 空气调节系统风管内的风速,应符合本规范第 8.1.4条的规定.第2.3.13条 设计风机盘管的水系统时,应符合下列要求:
一、全年运行 的空气调节系统,仅要求按季节进行冷却和加热转换时,应采用两管制闭式系统;当冷却和加热工况交替
频繁或同时要求冷却和加热时,可采用四管制闭式系统;
二、水系统的竖向分区,应根据设备和管道及附件的承压能力确定,两管制系统尚应按建筑物朝向分区布置;
三、风机盘管凝结水盘的泄水管坡度,不宜小于0.01; 第2.1.14条 空气调节设备、管道及附件的保温,就符合下列要求:
一、可能影响室内参数、形成表面结露、增加系统冷热损失的设备和管道,应保温;
二、冷表面保温时,外表面不应结露,且应设隔汽层;
三、不应采用易腐、易蛀的保温材料。
注:保温材料的选用,尚应符合本规范第4.6.35条的有关规定。气 流 组 织
第2.4.1条 空气调节房间的气流组织,应根据室内温湿度参数、允许风速和噪声标准等要求,并结合建筑物特点、内部装修、工艺布置以及设备散热等因素综合考虑,通过计算确定。
第2.4.2条 空气调节房间的送风机及送风口的选型,应符合下列要求;一、一般可采用百叶风口或条缝型风口等侧送,有条件时,侧
送气流宜内贴附.工艺性空气调节房间,当室温允许波动范围小于或等于±0.5ºC 时,侧送气流应贴附;
二、当有吊顶可得用时,应根据房间高度及使用场所对气流的要求,分别采用圆型、方型和条缝型散流器和孔板送风,当单位面积送风量较大,且工作区内要求风速软件包小或区域温差要求严格时,就采用孔板送风。
三、空间较大的公共建筑和室温允许波动范围大于或等于±0.1ºC 的高大厂房,可采用喷口或旋流风口送风。注:
1、工艺设备对侧送气流有一定的阻碍或单位面积送风量较大,使工作区的风速成不能满足要求时,不应采用侧送。
2、电子计算机房,当其设备散热大且上都有排热装置时,可采用地板送内方式。
3、设置窗式空调器和风机组时,不宜使气流直接吹向人体。第2.4.3条 采用贴附侧送,应符合下列要求:
一、送风中上缘离顶棚距离较大时,送风口处应设置向上倾斜10~20的导流片;
二、送风口内应设置使射流不致左右偏斜的导流片
三、射流流程中不得有阻挡物.第2.4.4条 采用孔板送风时,应符合下列要求:
一、孔板上部稳压层的高度,应按计算确定,但净高不应小于0.2m;
二、向稳压层内送风的速度,宜采用3~5M/S;除送风射程较长的以外,稳压层内可不设送风分布支管,在送风口处,宜装设防止送风气流直接吹向孔板的导流片或挡板.第2.4.5条 采用喷口送风时,应符合下列要求:
一、生活区或工作区宜处于回流区;
二、喷口直径可采用0.2-0.8M;
三、喷口的安装高度,应根据房间高度和回流区的分布位置等因素确定,但不宜低于房间高度0.5倍;
四、兼作热风采暖时,应考虑具有改变射流出口角度的可能性。第2.4.6条 分层空气调节的气流组织设计,应符合下列要求:
一、空气调节区宜采用双侧送风,当房间跨度小于是18M时,可采用单元侧送风,回风口宜布置在送风口的同侧下方;
二、侧送多股平行射流应互相搭接,采用双侧送风时,两侧相向气流尚应在生活区或工作区以上搭接;
三、应尽量减少非空气调节区的热泪盈眶转移,必要时,就在非空气调节区的热转移,必要时,应在非空气调节区设置送排风装置.注:送风口的构造,应能满足改变射流出口角度的要求。
第2.4.7条 空气调节系统的夏季送风温度,应根据送风口类型、安装高度和气流射程长度以及是否巾附等因素确定。在满足舒适和工艺要求的条件下,应尽量加大送风温差。舒适性空气调节,当送风高度小于或等到于5m时,不宜大于是10ºC;工艺性空气调节,宜按表2.4.7采用.送风温差 表2.4.7 注:生活区或工作区处于下送气流的扩散区时,送风温差应通过计算确定。第2.4.8条 空气调节房间的换气次数,应符合下列规定:
一、舒适性空气调节,每小时不宜小于5次,但高大房间应按其冷负荷通过计算确定;
二、工艺性空气调节,不宜小于表2.4.8所列的数值.换气次数 表2.4.8 第2.4.9条 送风口的出口风速,就根据送风方式、送风口类型、安装高度、室内允许风速和噪声标准等因素确定。消声要求较高时,宜采用2~5M/s,喷口送风可采用4~10M/S。第2.4.10条 回风口的布置方式,应符合下列要求:
一、回风口不应设在射流区内和人员长时间停留的地点,采用侧送时,宜设在送风口的同侧;
二、条件允许时,可采用集中回风或走廊回风,但走廊的断面风速不宜过大。第2.4.11条 回风口的吸风速度,宜按表2.4.11选用。回风口的吸风速度 表2.4.11 空 气 处 理
第2.5.1条 冷却空气时应根据不同的条件和要求,分别采用以下处理方式:
一、采用循环水蒸发冷却;
二、条件允许时,利用地下水,深井回灌水或山涧水等天然冷源冷却;
三、采用人工冷源冷却。
设计时,应尽量采用蒸发冷却和天然冷源等自然冷却方式,当其达不到要求时,应采用人工冷源。
注:采用地下水、深井回灌水等冷源时,应尽量做到回水的利用。第2.5.2条 空气冷却装置的选择,应符合下列要求:
一、采用循环水蒸发冷却或采用地下水,深井回灌水、山涧水作为冷源时,宜选用喷水室;
二、采用人工冷源时,宜选用水冷式表面冷却器或喷水室,有条件时,亦氟利昂直接蒸发式表面冷却器。
注:当要求冬季或过渡季节利用循环水进行绝热加湿或利用
喷水增加空气处理的饱和度时,可采用有喷水装置的水冷式表面冷却器。第2.5.3条 利用氟利昂直接蒸发或水冷式表面冷却器时,空气与氟利昂或冷水应逆向流动;冷却器迎风面的空气质量流速,宜采用2.3 ~3.5kg/(m².s)。第2.5.4条 氟利昂直接蒸发式表面冷却器的蒸发温度,应比空气的出口于球温度至少低3.5ºC ;满负荷时,蒸发温度不宜低于0ºC ;低负荷时,应防止其表面结冰。
第2.5.5条 冰冷式表面冷却器的冷水进中温度,应比空气的出口于球温度至少 低于3.5ºC ;冷水温升宜采用
2.5~~6.5ºC ;管内冷水流速宜采用0.6~0.8M/S。
第2.5.6条 采用水冷式表面冷却器时,如无特殊情况,不得用盐水作冷媒;采用直接蒸发式表面冷却器时,严禁氨作制冷剂。
第2.5.7条 采用喷水室处理空气时,若以人工冷源作冷媒,其冷水温升值宜采用3~~5 ºC 若以天然冷源作冷媒,其温升值应通过计算确定。
第2.5.8条 当进行喷水室热工计算时,应考虑挡水板的过水量对处理后空气参数的影响。
第2.5.9条 空气调节系统的热媒,宜采用热泪盈眶水或蒸汽。当某些房间的温湿度需要单独进行控制,且安装和选用热水或蒸汽加热装置有困难或不经济时,室温调节加热器可采用电加热器。对于工艺性空气调节系统,当室温允许波动范围小于±1.0ºC时,室温调节加热器就采用电加热器。第2.5.10条 空气调节系统的新风和回风(不包括二次回风)宜过滤,过滤设备宜采用无纺布或泡沫塑料等作滤料的过滤器。空气过滤器的阻力,宜按终阻力计算。
第二篇:暖通空调设计规范
暖通空调设计规范
一、空气调节
GB50019-2003采暖通风与空气调节设计规范
二、能耗计量
GB50019-2003采暖通风与空气调节设计规范
《公共建筑节能设计标准》GB50189
三、冷热水系统
《公共建筑节能设计标准》GB50189
GB50019-2003采暖通风与空气调节设计规范
《公共建筑节能设计标准》GB50189
GB50019-2003采暖通风与空气调节设计规范
四、冷却水系统
GB50019-2003采暖通风与空气调节设计规范
《公共建筑节能设计标准》GB50189
五、风系统
《公共建筑节能设计标准》GB50189
GB50019-2003采暖通风与空气调节设计规范
《公共建筑节能设计标准》GB50189
六、检测与控制
《绿色建筑评价标准》GB50378 4.2.10采暖和(或)空调能耗不高于国家和地方建筑节能标准规定值的80%。5.2.15 楼宇自控系统功能完善,各子系统均能实现自动检测与控制。
5.5.1 采用中央空调的建筑,房间内的温度、湿度、风速等参数满足设计要求。GB50019-2003采暖通风与空气调节设计规范
《公共建筑节能设计标准》GB50189
七、公共建筑节能改造
《公共建筑节能改造技术规范》JGJ176
第三篇:暖通空调新技术
暖通空调新技术
简介:
暖通空调是分户的中央空调,中央空调它最大特点,是能够创造一种舒适的室内环境。而家居一般的分体的空调,它只能解决冷暖问题,而解决不了空气处理过程。现在,有了暖通空调就不一样了。暖通空调是分户的中央空调,中央空调它最大特点,是能够创造一种舒适的室内环境。而家居一般的分体的空调,它只能解决冷暖问题,而解决不了空气处理过程。现在,有了暖通空调就不一样了。
一 暖通空调新技术基本内容
1、空调系统类型
按照使用目的,空调可分为:
舒适空调---要求温度适宜,环境舒适,对温湿度的调节精度无严格要求、用于住房、办公室、影剧院、商场、体育馆、汽车、船舶、飞机等。
工艺空调---对温度有一定的调节精度要求,另外空气的洁净度也要有较高的要求。用于电子器件生产车间、精密仪器生产车间、计算机房、生物实验室等。
按照空气处理方式,可分为:
集中式(中央)空调---空气处理设备集中在中央空调室里,处理过的空气通过风管送至各房间的空调系统。适用于面积大、房间集中、各房间热湿负荷比较接近的场所选用,如宾馆、办公楼、船舶、工厂等。系统维修管理方便,设备的消声隔振比较容易解决。
半集中式空调---既有中央空调又有处理空气的末端装置的空调系统。这种系统比较复杂,可以达到较高的调节精度。适用于对空气精度有较高要求的车间和实验室等。
局部式空调---每个房间都有各自的设备处理空气的空调。空调器可直接装在房间里或装在邻近房间里,就地处理空气。适用于面积小、房间分散、热湿负荷相差大的场合,如办公室、机房、家庭等。其设备可以是单台独立式空调相组,如窗式,分体式空调器等。也可以是由管道集中给冷热水的风机盘管式空调器组成的系统,各房间按需要调节本室的温度。
按照制冷量可分为:
大型空调机组---如卧式组装淋水式,表冷式空调机组,应用于大车间、电影院等。
中型空调机组---如冷水机组和柜式空调机等,应用于小车间、机房、会场、餐厅等。
小型空调机组---如窗式、分体式空调器,用于办公室、家庭、招待所等。按新风量的多少来分:
直流式系统---空调器处理的空气为全新风,送到各房间进热湿交换后全部排放到室外,没有回风管。这种系统卫生条件好,能耗大,经济性差,用于有有害气体产生的车间。实验室等。
闭式系统---空调系统处理的空气全部再循环,不补充新风的系统。系统能耗小,卫生条件差,需要对空气中氧气再生和备有二氧化碳吸式装置。如用于地下
建筑及潜艇的空调等。
混合式系统---空调器处理的空气由回风和新风混合而成。它兼有直流式和闭式的优点,应用比较普遍,如宾馆、剧场等场所的空调系统。
按送风速度分: 高速系统---主风道风速20-30m/s。低速系统---主风道风速12m/s以下。
2.、空调冷热源的形式
集中式空调系统冷热源方式的选择对国民经济的总能耗、工程投资、运行效益、环境都有重要影响。
常用的冷热源方式主要有:电动式制冷机组加锅炉、溴化锂吸收式制冷机加锅炉、热泵式机组、直燃式溴化锂吸收式制冷机组、电动式制冷机组加锅炉加冰蓄冷系统。
①从性能特点方面考虑主要是设备运行的可靠性,技术先进性,节能性,结构紧凑性,安装操作维修方便性,噪声振动性等。总的说来,电动式冷热水机组在技术上比热力式冷热水机组成熟可靠,在调试、运行维护方面比热力式机组方便。而热源以城市热网供热为首选。
②从投资方面考虑在选择空调冷热源设备时,需要对设备的初投资和运行费用进行综合分析。溴化锂吸收式制冷机组耗电少、电力增容费低、但价格比同等产冷量的电制冷机组高。从初投资、一次能耗、运行成本来看,电动式优于热力式。风冷热泵机组比常规的制冷机加锅炉方案一般节省初投资25%.③从能耗方面考虑吸收式冷水机组的一次能耗比电动式制机组高,其中蒸气型或热水型双效吸收式制冷机的能耗为电动式的2~3倍。直燃式约为电动式的1.6~2.1倍。若无余热可利用热水型机组一般情况下应尽量少用,无特殊情况不宜提介用锅炉新蒸汽作吸收式制冷机组的热源。制冷机制冰时COP值降低,所以蓄冷空调比常规空调要消耗更多的电能,不能称为节能。但就电力供应系统而言,蓄冷所起到的移峰填谷作用,均衡了电网负荷,提高了电网的供电能力。④从对环境污染方面考虑热电厂烟尘对环境的污染源比分散锅炉房造成的污染要小,同时应考虑电动式机组的CFC对臭氧层的影响,以及热力式机组温室气体CO2排放和SO2的排放问题。
⑤从设备适用性件方面考虑,由于不同的空调冷热源设备具有各自不同的性能特点,各适用于一定的外部条件。在电力紧张地区,溴化锂吸收式机组可作为空调冷源的优先选择,其中直燃式机组一般采用轻柴油或城市煤气为燃料,污染物排放量小但燃料成本高。当环保要求高、地价昂贵、电力增容费较高、冬季需采暖、又经技术经济比较较为合理时,可采用直燃式机组。对实行分时电价政策的地区,蓄冷空调有较广阔的发展前景。对缺水地区可考虑风冷冷水机组。
3、空调系统设计基本步骤
(一)气象资料的收集。
(二)热湿负荷计算
计算设计建筑物在最不利条件下的空调热、湿负荷。
(三)确定最佳空调方案
(四)送风量与气流组织计算
1、根据计算的空调热、湿负荷以及送风温差,确定冬、夏季送风状态和送风量
2、根据设计建筑物的工作环境要求,计算确定最小新风量
3、根据空调方式及计算的送、回风量,确定送、回风口形式,布置送、回风口,进行气流组织设计。
(五)空调水、风系统设计
1、布置空调风管道,进行风道系统的水力计算,确定管径、阻力等
2、布置空调水管道,进行水管路系统的水力计算,确定管径、阻力等
(六)主要空调设备的设计选型
1、根据空调系统的空气处理方案,并结合i—d图,进行空调设备选型设计计算
2、确定空气处理设备的容量及送风量,确定空气处理设备的结构形式及其热工参数
2、根据风道系统的水力计算,确定风机的流量、风压力及型号。
(七)通风及防、排烟系统设计
1、确定通风方案,计算系统所需通风量,预选风机
2、布置通风系统管道和设备,计算管路阻力,确定管径,选定风机型号
3、确定防、排烟系统设置的部位,选择防、排烟方式,进行防、排烟设计。
(八)冷、热源机房设计
1、根据空气处理设备的容量,确定冷、热源的容量和型号
2、根据管路系统的水力计算,确定水泵的流量、扬程及型号
(九)空调设备及管道的保冷、消声和隔震设计
二. 蓄能空调
空调蓄能技术是一种最有效地获取分时电价差效益、节省电制冷或电制热运行电费的技术。在国外已经是一项成熟的技术,目前国内正在大面积推广应用。在用户扩容改造或新装制冷中央空调系统时,按蓄能方式设计系统,由于在空调负荷高峰时,可以使用预先储存的冷量来供冷,因此不必象常规空调系统那样按高峰负荷配备主机设备,而是按全天的平均负荷来配备空调主机设备,系统装机容量可减少达30—50%。从而使得按蓄能方式设计的系统比按常规设计的系统节约投资费用。
1.冰蓄冷
空调冰蓄冷技术,即是在电力负荷很低的夜间用电低谷期,采用电动制冷机制冷,使蓄冷介质结成冰,利用蓄冷介质的显热及潜热特性,将冷量储存起来。在电力负荷较高的白天,也就是用电高峰期,使蓄冷介质融冰,把储存的冷量释放出来,以满足建筑物空调或生产工艺的需要。冰蓄冷有以下主要特点:
电力移峰填谷 均衡电力负荷,加强电网负荷侧(Demand Side Management)的管理。由于转移了制冷机组用电时间,起到转移电力高峰期用电负荷的作用。制冷机组在夜间电力低谷时段运行,储存冷量,白天用电高峰时段,用储存的冷量来供应全部或部分空调负荷,少开或不开制冷机。对城市电网具有明显的“移峰填谷”的作用,社会效益显著。
享受峰谷电价 由于电力部门实行峰、谷分时电价政策,所以冰蓄冷中央空调合理利用谷段低价电力,与常规中央空调系统相比,运行费用大大降低,经济效益显著。且分时电价差值愈大,得益愈多。
降低电力设施投资 由于冰蓄冷空调系统具有储存冷量的能力,故制冷机组无需按照峰值负荷进行选型,制冷主机容量和装设功率大大小于常规空调系统。一般可减少30%~50%。电力高压侧和低压侧设施容量减少,降低电力建设费用。
充分使用设备 冰蓄冷空调系统制冷设备满负荷运行的比例增大,从而提高了制冷设备COP值和制冷机组的经常运行效率,制冷机组工作状态稳定,提高了设备利用率并延长机组的使用寿命。
投资比较: 冰蓄冷空调系统的一次性投资比常规空调系统略高(仅机房部分,末端设备与常规空调系统相同)。但如果计入配电设施的建设费等,有可能投资相当或增加不多,甚至可能投资降低。
效率比较: 夜间冷水机组制冰工况运行时,由于气温下降带来的得益可以补偿由蒸发温度下降所带来的效率的损失。
2.水蓄冷
水蓄冷是利用3-7°C的低温水进行蓄冷,可直接与常规系统区配,无需其它专门设备。
其优点是:投资省,维修费用少,管理比较简单。但由于水的蓄能密度低,只能储存水的显热,故蓄水槽上地面积大。如若利用高层建筑内的消防水池,在确定制冷机容量与蓄冷槽的容量时,可根据消防水池的容量来计算出蓄冷量,然后根据剩余负荷量来确定制冷机组的制冷量。最后校核一下冷水机组能否满足夜间蓄冷的需要。
3.蓄热空调
所谓蓄热空调,是指在不需装备锅炉的条件下,利用深夜电力,将电能转化为热能,使水充分吸热。你后将热水存储在一个保温的容器之中,在调荷避峰的情况下,虽然把大负荷的用电设备停止运转,也能有热水自保温的容器中不断地在中央空调的变风量或风机盘管等管道中循环,继续维持空调取暖,使室内仍保持在舒适的环境中。
从多年实践证明,我们所指的蓄热空调,不是指在用电高峰时完全不准用电,而是要把用电负荷的峰值削平,维持电网的正常运行,因此,在这个设计思想的指导下,我们可以在当用电高峰时,中央空调采用蓄热装置后,可减少三分之一或一半左右的负荷,所以蓄热空调也得到电力部门和用户的认可和欢迎。
三.地源热泵
地源热泵是利用地球表面浅层水源(如地下水、河流和湖泊)和土壤源中吸收的太阳能和地热能,并采用热泵原理,既可供热又可制冷的高效节能空调系统。
地源热泵机组运行时,不消耗水也不污染水,不需要锅炉,不需要冷却塔,也不需要堆放燃料废物的场地,环保效益显著。地源热泵机组的电力消耗,与空气源热泵相比也可以减少40%以上;与电供暖相比可以减少70%以上,它的制热系统比燃气锅炉的效率平均提高近50%,比燃气锅炉的效率高出了75%。
地源热泵系统可供暖、空调制冷,还可提供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统,特别是对于同时有供热和供冷要求的建筑物。地源热泵有着明显的优点。不仅节省了大量的能量,而且用一套设备可以同时满足供热、供冷、供生活用水的要求,减少了设备的初投资,地源热泵可应用于宾馆、居住小区、公寓、厂房、商场、办公楼、学校等建筑,小型的地源热泵更适合于别墅住宅的采暖、空调。
四.变风量空调系统
变风量空调是指,在送风温度不变的条件下,通过改变风量的办法来适应负荷变化。而风量的变化是通过专用的变风量末端装置来实现的。变风量技术的基本原理很简单,就是通过改变送入房间的风量来满足室内变化的负荷。由于空调系统大部分时间在部分负荷下运行,所以,风量的减少带来了风机能耗的降低。在同一空调系统中,各空调区域内设置变风量末端送风装置,可以根据区域需求,调节所需风量,满足不同温度控制需要,节省运行费用。
五. 保温技术
保温、隔热是采暖、空调工程中重要的的组成部分,保温、隔热确保了我们的采暖、空调等各种系统的正常工作,是各种系统的技术参数达到设计要求的保证。
保温、隔热的材料有很多种,大致可以分为以下三类:
1、纤维材料:矿岩棉制品、玻璃棉制品、硅酸铝纤维制品;
2、无机材料:泡沫玻璃制品、硅酸钙制品、复合硅酸铝镁制品、膨胀珍珠岩、泡沫石棉制品;
3、有机材料:聚氨酯泡沫塑料、酚醛泡沫塑料、橡塑海绵、聚乙烯泡沫(俗称EPS)、聚苯乙烯泡沫塑料(XPS)。
此外建筑节能也是很重要的一个方面。这是对于建筑专业的要求,如屋面和墙一定要采用高保温材料,减少墙体的传导能源损失。
六.锅炉技术 锅炉是一种能量转换设备,向锅炉输入的能量有燃料中的化学能、电能、高温烟气的热能等形式,而经过锅炉转换,向外输出具有一定热能的蒸汽、高温水或者有机热载体。
燃气锅炉燃用发热量高的燃气,空气用量大,要使燃气能充分燃烧,需要大量的空气与之混合。燃气的燃烧过程没有燃油的雾化过程与气化过程。燃气与空气的混合方式,对燃烧的强度、火焰长度和火焰温度都有很大的影响。
七.学习体会
中国建筑的能耗(包括建材生产、建造能耗、生活能耗、采暖空调等)约占全社会总能耗的33.3%,建筑业的二氧化碳排放占全国总体碳排放的43.7%,如今能达到新建建筑国家标准(必须节能50%)的建筑只占同期建筑总量的约10%。随着我国住宅产业的发展,建筑节能越来越受到国家各部门的重视。目前暖通空调系统作为办公楼、住宅的耗能大户,对整个建筑物的能耗有着直接的影响。因此,暖通空调的发展受到多方关注。
暖通空调作为耗能较大的行业,在节能环保的大背景下,低碳环保的生活方式对暖通空调市场影响深远。随着暖通空调行业不断发展,产品布局正在悄然发生变化。低碳节能已经成为暖通空调产品的基本诉求。暖通空调企业不断运用先进的科技,提高空调产品的能效等级,开发能源替代和再生能源利用,研制新制冷剂等。
节能环保时代的到来为节能技术占优的企业赢得了更多商机,同时也向一些产品技术落后的品牌提出了挑战。节能环保成为暖通空调行业发展趋势。作为即将步入社会的当代大学生,我们更应该以扎实的专业素养为保证,同时开阔视野,为暖通空调行业,为节能环保事业尽自己的一份力量。
第四篇:暖通空调设计方案
暖通空调设计方案比较的一些问题
时间:2009-12-09 12:46:31 来源:冷源在线 作者:COOL 设计方案对暖通空调工程设计的成败优劣关系重大。近年来,随着科学技术的迅速发展以及对节能和环保要求的不断提高,暖通空调领域中新的设计方案大量涌现,针对同一个设计项目,往往可以有几种、十几种甚至几十种不同的设计方案可以选择,设计人员不得不进行大量的方案比较和优选的工作,设计方案技术经济性比较正在成为影响暖通空调设计质量和效率的一项重要工作。
暖通空调设计方案的评价因素很多,一些因素很难定量表述,许多因素又不具可比性,每种设计方案往往都有各自的优缺点,面对众多的设计方案,由于考虑问题的角度不同,各方的看法往往各不相同,甚至大相径庭。目前在设计方案比较中存在的一些混乱状况使设计人员无所适从。如何对暖通空调设计方案进行科学的比较和优选,是暖通空调设计人员在实际设计工作中经常遇到的一个重要技术难题。笔者根据从事设计、审图和方案评审工作的一些体会,对暖通空调设计方案比较中应注意的一些问题进行粗浅的分析。
1、可行性和可靠性问题
能够满足使用要求,这是方案可行性应考虑的主要问题。设计方案应符合国家和当地政府有关法规和规范的要求,包括有关环境保护的要求;设计方案应能满足有关方面的要求(如供电、供气、供水、供热等),并应特别顾及这些条件的长期、变化情况。例如采用水源热泵设计方案时应考虑当地地质情况、地下水资源的现状和变化趋势、冬季热负荷和夏季冷负荷不平衡所产生的热(冷)蓄积效应等问题。对于温湿度等参数要求较高或比较特殊的工艺性暖通空调设计项目,应对设计方案进行全年工况分析,以确保其在全年各种室外气象条件下的适应性。
对于一些无法采用标准设备的特殊情况,对非标准设备应提出详细的参数要求,并且所提出的参数要求应合理可行。能否有足够的机房面积也是评判设计方案可行性必须考虑的问题,尤其是对于一些改造工程和建筑面积比较紧张的情况。对于一些要求全年保证室内空气参数的重要工程以及空调系统故障停机将产生严重损失的场所,如航天发射场,应考虑系统中设备的工作可靠性和备份问题,进行系统工作可靠性分析。在这种情况下,室外气象参数和安全系数的确定也应特殊考虑。
2、经济性比较问题
经济性比较是目前暖通空调方案比较中考虑最多的一个问题。在经济性比较时首先应注意比较基准必须一致。应采用相同的设计要求、使用情况、设备档次、能源价格、舒适状况、美观情况等基准条件进行比较,这样才能保证方案比较结果的科学性和合理性。如果对采用名牌设备和采用低档设备的方案进行经济性比较,显然是不合理的;如果不考虑舒适性的区别,对有新风供应和没有新风供应的方案进行经济性比较,显然不可能做出正确的选择;如果不考虑美观性和舒适性进行经济性比较,对集中式空调方案显然是不公平的。
一次投资是投资方最为关注的一个参数,在计算投资时应全面准确、不能漏项。暖通空调设计方案的一次投资不仅包括各种设备、管道、材料的投资,而且应包括各种相关收费(如热力入网费、用电设备增容费、天然气的气源费等),相应的安装、调试费用,相关的工程管理等各种收费,相关水处理和配电与控制投资,机房土建投资与相应室外管线的费用,而这些在实际设计工作中容易被遗漏。由于同一种设备的生产厂家较多,价格各异,因此在不同方案经济性计算比较时各种设备的价格应采用平均价格。以上都是直接费用,在一些情况下间接效益也应综合考虑。如宾馆、饭店、写字楼的空调机房节省的面积,作为商业用房可产生的效益。如果采用贷款进行建设,全面的经济性比较还应考虑贷款利率和还贷期限等动态因素。
3、调节性和可操作性问题
暖通空调系统的容量通常是按接近全年最不利的气象条件确定的,因此系统应有较好的调节性能,以适应全年负荷的变化。调节性能好的系统方案,如采用VAV空调系统和VRV变频空调系统的方案,其一次投资通常较高,但运行能耗较小,在经济性计算和比较时应综合考虑这些因素。对于部分时间使用的办公建筑、写字楼和教学楼,设计方案应能适应其夜间不工作时的调节要求。
设计方案的管理操作方便性是用户十分关心的问题。空调系统自动化水平的提高,可以减少管理人员的数量和劳动强度,从而使人工费减少,但使一次投资增加,对操作人员素质的要求提高。空调系统是否采用自动控制,应根据实际情况和要求,经技术经济性比较来确定。对于大型空调系统和需要经常调节控制的设备较多的工程,宜采用自动控制,以减少操作管理的工作量。但自动控制系统应尽可能简化,以提高系统的经济性和可靠性。对于只有季节转换时才操作的阀门不宜采用自动控制。对于一些各部分不同时使用的建筑物或各部分出租给不同使用单位的商业建筑,系统设置应考虑分别管理控制和运行费用分别统计交纳的要求。
4、安全性问题
设计方案的安全性是以往考虑较少的问题,随着美国“9·11”等恐怖袭击事件的发生以及SARS的出现和迅速蔓延,暖通空调系统的安全性问题已经成为公众关注的焦点,在SARS严重流行时期,人们甚至对空调系统产生恐惧而不敢使用,这将对暖通空调行业的发展产生深远的影响。经过对这些事件的认真分析、研究和反思,将会在工程设计、设备研制、运行管理、规范和技术措施等诸多方面进行改进,使暖通空调系统的安全性得以提高。在大中型建筑方案设计阶段,对其暖通空调系统进行安全性评估将是十分必要的。
暖通空调系统的安全性主要包括易燃易爆环境安全、防火安全、人员环境安全、重要设备物品环境安全、系统设备运行安全5个方面的问题。在设计弹药厂房和库房、煤矿等易燃易爆工程的通风空调系统时,安全性成为必须考虑的重要因素,应采取相应的防爆技术方案和措施。在设计燃油燃气锅炉房时应考虑可燃性气体、液体泄漏带来的安全性问题,应设置可燃性气体泄漏报警系统和事故通风系统,并相互联锁。防火安全问题应按照有关防火设计规范来考虑,在此不作详述。
设备安全运行的问题主要包括制冷系统的安全保护、北方暖通空调系统冬季防冻、空调系统电加热与风机联锁保护等问题。在方案设计时应注意考虑暖通空调系统故障可能对室内重要设备和物品产生的不利影响,例如,重要机房、重要资料库和文物库房不应采用在吊顶设置风机盘管的空调方案,因为一旦空调水系统漏水将造成严重损失。
人员环境安全主要包括暖通空调系统对人体的危害、防止恐怖袭击和防止传染性疾病扩散这3个方面的问题。采用氨制冷方案时,应考虑氨泄漏对人体的危害。锅炉房的布局应考虑人员安全性问题。在防止恐怖袭击方面和防止传染性疾病扩散方面,应注意空调新风口是最薄弱环节,因此必须采取可靠的防范措施,新风口应设置在人员难以接近、不易受到污染的地方。由于全空气空调系统回风口很多,因此它是最容易遭受恐怖分子生化袭击的空调系统形式,如果不采取特殊的措施,它也是最容易造成流行性疾病扩散的空调系统形式。从这方面来说,分体空调、一拖多空调系统、风机盘管空调系统的安全性较好。
在确定系统新风量时,除了要考虑以往的一些因素外,还要考虑在流行性疾病暴发期间,稀释室内有害病毒浓度的要求。在这方面,应注意不要走向另一个极端,对空调系统安全性的过度恐慌是没有必要的。例如,为了防止传染性疾病扩散而采用全新风直流系统,显然是不合理的,这将使投资、能耗和运行费用大大增加,关键是要合理确定系统方案和新风量,加强有组织排风,并采用隔绝式的热回收装置、加强对空气的过滤与消毒处理。系统新风量应能调节,平时按正常风量运行,流行性疾病暴发期间或室内受到生化污染的情况下按较大风量运行。吊顶暗装风机盘管的回风应采用风管连接,不应采用将吊顶作为静压箱的吊顶回风方式。另外在表冷器、蒸发器和冷却塔等结露积水、病菌容易繁殖的地方应采取可靠的排水和消毒措施。
5、环境影响问题
随着工业生产的迅速发展和人们生活水平的日益提高,环境保护问题越来越受到人们的重视,而燃煤锅炉的排烟又是北方城市大气的主要污染源,因此北京等大城市对燃煤锅炉进行了严格的限制,而且限制的区域不断扩大。在这些区域内,环境影响成为了关系到设计方案可行性的一个重要因素。在设计方案选择时应特别注意环境保护要求不断提高的趋势,避免建筑物建成不久就进行改造。在空调设备选型时,要特别注意各种氟利昂制冷剂替代的进程要求,不能选用以已经或即将禁用的制冷剂为冷媒的空调产品。在这方面暖通空调设计人员既要有环境保护的责任感,同时也要考虑建设方和用户的经济承受能力,不要盲目冒进,以免给建设方和用户增加不必要的经济负担。
在对设计方案进行经济性比较分析时,还应综合考虑暖通空调设备的废气、废水、废渣和噪声等污染治理的费用。如何对设计方案污染物排放的危害、对臭氧层的破坏和产生的温室效应的危害、系统和设备全过程(包括设备制造、使用和淘汰处理的全过程)的能源和资源消耗等进行全面、科学、定量的经济性评估比较,是一个需要深入研究的问题。
6、设计方案比较中的一些误区
由于设计方案比较是一项影响因素多、专业技术性很强的复杂技术工作,即使是暖通空调专业的设计人员,要在众多设计方案中选出最佳方案也非易事,对于局外人更是雾里看花。目前在该项工作中仍然存在一些认识上的误区。例如,认为采用最新技术的设计方案就是最佳的设计方案,出现不管使用条件而盲目追求新技术的倾向,甚至以此作为卖点进行炒作。实际上每种方案都有其适用条件和范围,在其适用范围之外,先进的技术方案就可能变成不合理甚至是不可行的方案。一种设计方案对某个工程项目可能是最佳方案,但对于另一个工程项目就可能是不可行的方案,因此在方案选择时不能赶时髦、搞攀比。
另外往往认为投资最低的方案就是最佳方案,但是一次投资低的方案有可能因为其运行费用很高或设备寿命很短,需要经常更换,从长期运行来说并不合算。在评价设计方案时,往往认为复杂的方案就是高水平的方案。但实际上因为系统越复杂,通常其设备越多、投资就越高,系统的可靠性、可操作性、可控性和可维护性就越差,因此复杂的方案并不一定就是高水平的设计方案,在满足使用要求的前提下,系统越简单越好。此外,在选择设计方案时切忌不加分析地采用建设方的意见,因为建设方通常不是暖通空调专业设计人员,不可能对设计方案进行全面技术经济性分析比较。因此应对建设方的意见进行认真的分析,通过全面技术经济性分析比较来确定最佳的设计方案。
暖通空调设计方案的选择是一个直接关系到暖通空调工程项目的成败和经济效益优劣的重要问题。暖通空调设计方案的比较和优选是一个涉及面广、影响因素多的复杂技术工作。一个优秀的暖通空调工程设计方案,应对设计方案涉及的各种因素进行全面的考虑,使其综合效益最高。综合考虑的因素越多,通常其方案设计的水平越高,同时其设计工作量和难度就越大。但由于目前工程设计周期普遍较短、暖通空调专业的设计收费太低、设计收费与设计产生的经济效益不挂钩以及一些技术性问题没有完全解决等原因,在实际设计工作中往往不能对设计方案进行多方案多参数的综合对比分析和优化选择,对设计方案的选择容易出现片面性和主观性的问题,由此造成的经济损失是相当严重的。这一问题应引起有关方面的高度重视,在设计管理和技术研究两个方面均要作大量的工作。
在设计方案比较选择时必须对工程设计项目的各项实际需求、环境条件的特点、需求和环境条件的变化趋势等情况进行深入调查研究,对各种技术方案的特点、适用条件和范围进行客观深入的分析,对暖通空调各种技术发展的方向和趋势有深入的了解,尤其必须对各种设计方案的可行性、可靠性、安全性、投资、能耗、运行费用、调节性、操作管理的方便性、环境影响、舒适性和美观性等技术经济评价因素进行客观准确的计算和综合对比分析。只有这样才能对各种设计方案进行科学的比较和优选,避免因片面性和主观性带来的失误和经济损失。
第五篇:暖通空调常用专业英语
旭和净化科技http://www.xiexiebang.com
旭和净化科技http://www.xiexiebang.com
旭和净化科技http://www.xiexiebang.com
旭和净化科技http://www.xiexiebang.com
旭和净化科技http://www.xiexiebang.com
旭和净化科技http://www.xiexiebang.com
旭和净化科技http://www.xiexiebang.com
旭和净化科技http://www.xiexiebang.com
旭和净化科技http://www.xiexiebang.com