超声波原理及应用科技小论文(五篇模版)

时间:2019-05-14 14:04:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《超声波原理及应用科技小论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《超声波原理及应用科技小论文》。

第一篇:超声波原理及应用科技小论文

超声波原理及应用

土建学院土木120412231103朱飘扬

一、摘要:本文对超声波原理及应用专题实验该实验进行了一些的总结与讨论,同时结合自己在做实验时学到的知识扩展到现实生活中,查阅了相关资料,对实验涉及的知识点加强了理解和认识。

二、关键词:超声波、产生及原理、传播及反射、应用。

三、背景:正常人的听觉可以听到20赫兹(Hz)-20千赫兹(kHz)的声波,当声波的振动频率小于20Hz或大于20KHz时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。由于超声波的频率高,其波长较同样介质中的声波波长短得多,衍射现象不明显,所以超声波的传播方向好。超声波在介质中传播,当振幅相同时,振动频率越高能量越大。因此,它比普通声波具有大得多的能量。超声波虽然在气体中衰减很强,但在固体和液体中衰减较弱。在不透明的固体中,超声波能够穿透几十米的厚度,所以超声波在固体和液体中应用较广。

四、论述

1、超声波的产生与传播 当利用确定反射体(界面或人工反射体)测量声速时,只需要测量该反射体的回波时间,就可以计算得到声速。而对于单个的反射体,能够直接测量的时间包含了超声波在探头内部的传播时间t0,即探头的延迟。对于任何一种探头,其延迟只与探头本身有关,而与被测的材料无关。因此,首先需要测量探头的延迟,然后才能利用该探头直接测量反射体回波时间。

直探头:延迟t=2t1-t2

CL=(2L)/(t2-t1)邪探头:延迟t=2t1-t2CL=(2R2-2R1)/(t2-t1)

2、折射角的测量

B1为试块的1次底面回波,B2 称为试块的2次底面回波,确定B1、B2的波型后,可以分别测量纵波和横波的折射角。让把探头的纵波声束对正(回波幅度最大时为正对位置)CSK-IB试块上的横孔A,用钢板尺测量正对时探头的前沿到试块右边沿的距离LA1;然后向左移动探头,再让纵波声束对正横孔B,并测量距离LB1。测量A和B的水平距离L和垂直距离H,则探头的折射角为:

1tan1(LB1LA1L)

H3、超声波探测

声束扩散角的测量:

直探头:利用直探头分别找到B1通孔对应的回波,移动探头使回波幅度最大,并记录该点的位置x0及对应回波的幅度;然后向左边移动探头使回波幅度减小到最大振幅的一半,并记录该点的位置x1;同样的方法记录下探头右移时回波幅度下降到最大振幅一半对应点的位置x2;则直探头扩散角为:

2tg1|x2x1| 2L斜探头:测量出探头的折射角β,然后利用测量直探头同样的方法,按下式计算斜探头的扩散角近似为:

2tg1[|x2x1|cos2] 2L要实现对缺陷进行定位,除了必须测量(或已知)探头的延迟、入射点外,还必须测量(或已知)探头在该材质中的折射角和声速。通常我们利用与被测材料同材质的试块中两个不同深度的横孔对斜探头的延迟、入射点、折射角和声速进行测量。

五、拓展

超声学是一门应用性和边缘性很强的学科,从它一百多年来的发展可以看出,超声学是随着它在国防、工农业生产、医学、基础研究等领域中应用的不断深入而得到发展的。它不断借鉴电子学、材料科学、光学、固体物理等其他学科的内容,而使自己更加丰富。同时,超声学的发展又为这些学科的发展提供了一些重要器件和行之有效的研究手段。如超声探伤和超声成像技术都是借鉴了雷达的原理和技术而发展起来的,而超声的发展又为电子学、光电子学、雷达技术的发展提供了超声延迟线、滤波器、卷积器、声光调制器等重要的体波和表面波器件。超声波在军事中的应用主要运用超声波方向性好的特性。由于超声波基本上是沿直线传播的,可以定向发射,如果渔船载有水下超声波发生器,它旋转着向各个方向发射超声波,当超声波遇到鱼群时会反射回来,渔船探测到反射波就知道鱼群的位置了,这种仪器叫声纳。它也可以用来探测水中的暗礁和敌人的潜艇以及测量海水的深度。参考文献:《大学物理实验》成正维、牛原 搜搜百科-超声波原理和应用

第二篇:超声波原理及应用专题小论文

超声波原理及其在生活中的应用

电子1103 李志 11214066 摘要:

本文第一部分主要介绍超声波产生与传播及其特点,包括什么是超声波、波的传播、超声波的特点等;第二部分主要介绍实验过程,包括实验方法、实验现象及实验结果;第三部分主要介绍超声波技术的应用,包括超声波传感器、超声波测距、超声波在医疗方面的应用等。

关键词:

超声波、产生及传播原理、特点、实验方法、发展及应用

背景:

自19世纪末到20世纪初,在物理学上发现了压电效应与反压电效应之后,人们解决了利用电子学技术产生超声波的办法,从此迅速揭开了发展与推广超声技术的历史篇章。1922年,德国出现了首例超声波治疗的发明专利。1939年发表了有关超声波治疗取得临床效果的文献报道。40年代末期超声治疗在欧美兴起,直到1949年召开的第一次国际医学超声波学术会议上,才有了超声治疗方面的论文交流,为超声治疗学的发展奠定了基础。1956年第二届国际超声医学学术会议上已有许多论文发表,超声治疗进入了实用成熟阶段。并且在21世纪(HIFU)超声聚焦外科已被誉为是21世纪治疗肿瘤的最新技术。

正文:

一、超声波的产生与产生及其原理

1、什么是超声波 所谓超声波,是指人耳听不见的声波。正常人的听觉可以听到20赫兹(Hz)-20千赫兹(kHz)的声波,低于20赫兹的声波称为次声波或亚声波,超过20千赫兹的声波称为超声波。超声波是声波大家族中的一员,和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内传播,是一种能量和动量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性。

2、波的传播

超声波是波的一种,他的传播完全符合波的传播特点。所以超声波在介质中传播的波形取决于介质可以承受何种作用力以及如何对介质激发超声波。通常有如下三种波形: 1纵波波形:当媒质中各体元振动的方向与波传播的方向平行时,此超声○波为纵波波形。任何固体介质当其体积发生交替变化时均能产生纵波。

2横波波形:当媒质中各体元振动的方向与波传播的方向垂直时,此种超○声波为横波波形。由于媒质除了能承受体积变形外,还能承受切变变形,因此,当其有剪切应力交替作用于媒质时均能产生横波。横波只能在固体介质中传播。

3表面波波形:○是沿着两种媒质的界面传播的具有纵波和横波的双重性质的波。表面波可以看成是由平行于表面的纵波和垂直于表面的横波合成, 振动质点的轨迹为一椭圆,在距表面1/4波长深处振幅最强,随着深度的增加很快衰减,实际上离表面一个波长以上的地方,质点振动的振幅已经很微弱了。

3、超声波传播的特点 总的来说与可闻波相比,超声波由于频率高、波长短,在传播过程中具有许多其特有的性质: 1)方向性好。由于超声波的频率高,其波长较同样介质中的声波波长短得多,衍射现象不明显,所以超声波的传播方向好。

2)能量大。超声波在介质中传播,当振幅相同时,振动频率越高能量越大。因此,它比普通声波具有大得多的能量。

3)穿透能力强。超声波虽然在气体中衰减很强,但在固体和液体中衰减较弱。在不透明的固体中,超声波能够穿透几十米的厚度,所以超声波在固体和液体中应用较广。

4)引起空化作用。在液体中传播时,超声波与声波一样是一种疏密的振动波,液体时而受拉时而逐级压,产生近于真空或含少量气体的空穴。在声波压缩阶段,空穴被压缩直至崩溃。在空穴崩溃时产生放电和发光现象,这种现象称为空化作用。

也正是这些特点,使得超声波在工业、农业、医学、军事等众多方面都有着及其广泛的应用。

二、实验过程 1. 直探头延迟的测量

超声波实验仪接上直探头,并把探头放在CSK-IB试块的正面,仪器的射频输出与示波器第1通道相连,触发与示波器外触发相连,示波器采用外触发方式,适当设置超声波实验仪衰减器的数值和示波器的电压范围与时间范围,使示波器上看到的波形如图1.7所示。

在图1.7中,S称为始波,t0对应于发射超声波的初始时刻;B1称为试块的1次底面回波,t1对应于超声波传播到试块底面,并被发射回来后,被超声波探头接收到的时刻,因此t1对应于超声波在试块内往复传播的时间;B2称为试块的2次底面回波,它对应于超声波在试块内往复传播到试块的上表面后,部分超声波被上表面反射,并被试块底面再次反射,即在试块内部往复传播两次后被接收到的超声波。依次类推,有3次、4次和多次底面反射回波。从示波器上读出传播t1和t2,则直探头的延迟为

t2t1t2(结果为0.4μs)(1.6)2. 脉冲波频率和波长的测量

调节示波器时间范围,使试块的1次底面回波出现在示波屏的中央,脉冲波的振幅小于1V。测量两个振动波峰之间的时间间隔,则得到一个脉冲周期的振动时间t,则脉冲波的频率为f=1/t;已知铝试块的纵波声速为6.32mm/us,则脉冲波在铝试块中的波长为l=6.32t。

3. 波型转换的观察与测量 把超声波实验仪换上可变角探头,参照图1.8把探头放在试块上,并使探头靠近试块背面,使探头的斜射声束只打在R2圆弧面上。适当设置超声波实验仪衰减器的数值和示波器的电压范围

图1.8观察波型转换现象 与时间范围。改变探头的入射角,并在改变的过程中适当移动探头的位置,使每一个入射角对应的R2圆弧面的反射回波最大。则在探头入射角由小变大的过程中,我们可以先后观察到回波B1、B2和B3;它们分别对应于纵波反射回波、横波反射回波和表面波反射回波。

让探头靠近试块背面,通过调节入射角调,使能够同时观测到回波B1和B2(如图1.9),且它们的幅度基本相等;再让探头逐步靠近试块正面,则又会在B1前面观测到一个回波b1,4. 折射角的测量

确定B1、B2的波型后,可以分别测量纵波和横波的折射角。参照图1.10首先让把探头的纵波声束对正(回波幅度最大时为正对位置)CSK-IB试块上的横孔A,用钢板尺测量正对时探头的前沿到试块右边沿的距离LA1;然后向左移动探

图1.9横波和纵波的测量 头,再让纵波声束对正横孔B,并测量距离LB1。测量A和B的水平距离L和垂直距离H,则探头的折射角为:

1tan1(LB1LA1L)(测为46.6度)H(1.7)

同样的方法可以测量横波的折射角2。

图1.10折射角的测量

5.声速的直接测量方法

根据公式(2.1),当利用确定反射体(界面或人工反射体)测量声速时,我们只需要测量该反射体的回波时间,就可以计算得到声速。而对于单个的反射体,得到的反射波如图2.1所示。能够直接测量的时间包含了超声波在探头内部的传播时间t0,即探头的延迟。对于任何一种探头,其延迟只与探头本身有关,而与被测的材料无关。因此,首先需要测量探头的延迟,然后才能利用该探头直接测量反射体回波时间。

图2.1 纵波延迟测量

(1)直探头延迟测量(参看实验1)。(2)斜探头延迟测量

参照图2.2把斜探头放在试块上,并使探头靠近试块正面,使探头的斜射声束能够同时入射在R1和R2圆弧面上。适当设置超声波实验仪衰减器的数值和示波器的电压范围与时间范围。在示波器上同时观测到两个弧面的回波B1和B2。测量它们对应的时间t1和t2。由于R2=2R2,因此斜探头的延迟为:

t2t1t2

(2.7)(3)斜探头入射点测量

在确定斜探头的传播距离时,通常还要知道斜探头的入射点,即声束与被测试块表面的相交点,用探头前沿到该点的距离表示,又称前沿距离。

参照图2.2把斜探头放在试块上,并使探头靠近试块正面,使探头的斜射声束入射在R2圆弧面上,左右移动探头,使回波幅度最大(声束通过弧面的圆心)。这时,用钢板尺测量探头前沿到试块左端的距离L,则前沿距离为:

L0R2L

(2.8)图2.2斜探头延迟和入射点测量

6.声速的相对测量方法

如果被测试块有两个确定的反射体,那么通过测量两个反射体回波对 应的时间差,再计算出试块的声速。这种方法称为声速的相对测量方法。

对于直探头,可以利用均匀厚度底面的多次反射回波中的任意两个回波进行测量。

对于斜探头,则利用CSK-IB试块的两个圆弧面的回波进行测量。

7.声束扩散角的测量

如图3.3所示,利用直探头分别找到B1通孔对应的回波,移动探头使回波幅度最大,并记录该点的位置x0及对应回波的幅度;然后向左边移动探头使回波幅度减小到最大振幅的一半,并记录该点的位置x1;同样的方法记录下探头右移时回波幅度下降到最大振幅一半对应点的位置x2;则直探头扩散角为:

2tg

1|x2x1|

2L(3.2)

图3.3 探头扩散角的测量

对于斜探头,首先必须测量出探头的折射角,然后利用测量直探头同样的方法,按下式计算斜探头的扩散角近似为:

2tg1[8.直探头探测缺陷深度

|x2x1|cos2] 2L(3.3)

在超声波探测中,可以利用直探头来探测较厚工件内部缺陷的位置和当量大小。把探头按图3.4位置放置,观察其波形。其中底波是工件底面的反射回波。

图3.4直探头探测缺陷深度

对底面回波和缺陷波对应时间(深度)的测量,可以采用绝对测量方法,也可以采用相对测量方法。利用绝对测量方法时,必须首先测量(或已知)探头的延迟和被测材料的声速,具体方法请参看实验二直探头延迟和声速的绝对测量方法。利用相对测量方法时,必须有与被测材料同材质试块,并已知该试块的厚度,具体方法请参看实验二直探头延迟和声速的相对测量方法。

9.斜探头测量缺陷的深度和水平距离

利用斜探头进行探测时,如果测量得到超声波在材料中传播的距离为S,则其深度H和水平距离L为:

HStan()

LSctan()

其中是斜探头在被测材料中的折射角。

(3.4)(3.5)要实现对缺陷进行定位,除了必须测量(或已知)探头的延迟、入射点外,还必须测量(或已知)探头在该材质中的折射角和声速。通常我们利用与被测材料同材质的试块中两个不同深度的横孔对斜探头的延迟、入射点、折射角和声速进行测量。参看图3.5,A、B为试块中的两个横孔,让斜探头先后对正A和B,测量得到它们的回波时间tA、tB,探头前沿到横孔的水平距离分别为xA、xB,已知它们的深度为HA、HB,则有:

图3.5斜探头参数测量

SxBxA

(3.6)(3.7)(3.8)(3.9)HHBHA

折射角: tan1(cS)

H声速:

H

(tBtA)cos()HB

ccos()延迟:

t0tB(3.10)前沿距离:L0Htan()xB(测为9.15cm)

(3.11)

三、超声波技术的应用

1、超声波传感器

由于许多仪器及控制应用中均涉及到超声波传感器,尤其是在流量测量,材料无损检验及物位测量等方面,超声波传感器的应用尤为普遍。所以,在此首先简要的介绍一下超声波传感器。

广义上来讲,它是在超声频率范围内将交变的电信号转换成声信号或者将外界声场中的声信号转换为电信号的能量转换器件,又称为超声波换能器或者超声波探头。

超声波传感器分为发射换能器和接收换能器,既能发射超声波又能接受发射出去的超声波的回波。发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。超声换能器的种类很多,按照其结构可分为直探头(纵波)、斜探头(横波)、表面波探头、双探头(一个发射,一个接 收)、聚焦探头(将声波聚集成一束)、水浸探头(可浸在液体中)以及其它专用探头。按照实现超声换能器机电转换的物理效应的不同可将换能器分为电动式、电磁式、磁致式、压电式和电致伸缩式等。

超声波换能器的材料也有多种选择,某些电介质(例如晶体、陶瓷、高分子聚合物等)在其适应的方向施加作用力时,内部的电极化状态会发生变化,在电介质的某相对两表面内会出现与外力成正比的符号相反的束缚电荷,这种由于外力作用使电介质带电的现象叫做压电效应。相反地,若在电介质上加一外电场,在此电场作用下,电介质内部电极化状态会发生相应的变化,产生与外加电场强度成正比的应变现象,这一现象叫做逆压电效应。压电材料是压电换能器的研制、应用和发展的关键。大致可分为五类:压电单晶体、压电多晶体、压电半导体、压电高分子聚合物、复合压电材料。其中压电陶瓷是压电多晶体材料,这类压电陶瓷为实心,均匀和一体的压电功能材料,具有优良的压电性能。压电陶瓷自问世以来,至今已有30多年历史。无论在材料基础研究方面或是在应用方面,都获得了飞速的发展。由于压电陶瓷的出现,开辟了压电材料的广阔前景,也使压电换能器的理论发展和实际应用提高到一个新的高度。压电陶瓷是当今最有可为的压电材料,目前在压电材料中无论数量上还是质量上均处于支配地位,其原因是它有如下优点:

(l)所用原材料价廉且易得;(2)具有非水溶性,遇潮不易损坏;(3)压电性能优越;

(4)品种繁多,性能各异,可满足不同的设计要求;(5)机械强度好,易于加工成各种不同的形状和尺寸;

(6)采用不同的形状和不同的电极化轴,可以得到所需的各种振动模式;(7)制作工艺较简单,生产周期较短,价格适中。根据不同的实际应用情况,超声波传感器产生不同频率。如应用在流量测量领域,声波的频率在30kHz到5MHz之间;应用在物位测量领域时,声波的频率会低一些,一般在30kHz到200kHz之间;而当应用在检测装置(如测厚仪和探伤检验装置)上时,声波的频率范围很广,但是总体上来说要比用于其它领域时高很多。

2、超声波测距

超声波因其指向性强,能量消耗缓慢,在介质中传播距离远等特点,而经常用于进行各种测量。如利用超声波在水中的发射,可以测量水深、液位等.利用超声波测距,使用单片机系统,设计合理,计算处理也较方便,测量精度能达到各种场合使用的要求。

3、超声波在医疗方面的应用

医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测【14】。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。

医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。

目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。

B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。

M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。

结语:

超声学是一门应用性和边缘性很强的学科,从它一百多年来的发展可以看出,超声学是随着它在国防、工农业生产、医学、基础研究等领域中应用的不断深入而得到发展的。它不断借鉴电子学、材料科学、光学、固体物理等其他学科的内容,而使自己更加丰富。同时,超声 学的发展又为这些学科的发展提供了一些重要器件和行之有效的研究手段。如超声探伤和超声成像技术都是借鉴了雷达的原理和技术而发展起来的,而超声的发展又为电子学、光电子学、雷达技术的发展提供了超声延迟线、滤波器、卷积器、声光调制器等重要的体波和表面波器件。通过这次的实验,我对超声波的各方面都有了一定的了解,我相信这对我以后的学习和运用都有很大的帮助,另外,虽然我没有参加物理实验竞赛,但是自己用超声波弄了一个非接触式体温计,虽然做得不太好,但也算是超声波传感器的一种应用吧。

参考文献:

1、《大学物理实验》牛原

2、百度百科-超声波原理和应用

3、搜搜百科-超声波原理和应用

第三篇:科技小论文3篇:光合作用原理

科技小论文3篇:光合作用原理

夏一芃 五(2)班

星期日的早晨,妈妈带我去公园玩,阳光照在脸上,感到火辣辣的,汗水浸湿了我的衣衫。我抵受不住炎热,就和妈妈走到树荫下乘凉。大树浓密的树叶挡住了强烈的阳光,我顿时感到舒服极了。

炎热渐渐散去,我不禁抬头,望着那浓密的树荫,心里萌生出了一个疑问:大树是怎么长得又高又大的呢?莫非和人类一样也靠空气和水?回到家后,带着这个想法,我打开电脑,查出了有关资料:原来,植物生长靠的是光合作用。那个原理比较复杂。后来我问哥哥,最后总结出光合作用主要就是植物在阳光和叶绿体中的色素的催化下,体内的二氧化碳和水发生了神奇的变化,生成了氧气和淀粉。我终于明白了,怪不得植物那么喜欢阳光,怪不得我们要多种树,原来大树在太阳的帮助下,能够吸收我们呼出的二氧化碳,生成供我们呼吸的氧气。看来大树真是我们人类的好朋友啊。

其实,科学在我们生活中无处不在,只要你有一双善于发现的眼睛,你就会发现,科学原来这位么有趣。

一个小小鸡蛋,力量却很大大

现在,鸡蛋已成为我们每天早餐的必需品。

今天我依旧懒洋洋的起床,吃着老妈给我煮的鸡蛋看,我一时无聊就拿起鸡蛋玩弄了起来,可是我发现了一个问题:竖着捏鸡蛋鸡蛋不会碎!

我的好奇心又在做怪了,带着满肚子的疑问上网查了原因。

原来,鸡蛋的壳是一个拱形。受到重压之后,鸡蛋的受力点向鸡蛋的表面均匀地分散压力,受力均匀后,鸡蛋的表面每个地方受到的力量就变小了。所以,鸡蛋才能承受住极大的压力而不破碎。但是,一旦超过最大的受力标准,鸡蛋也会破碎。

我也用实际行动来证明了。我在鸡蛋上放了一本书,在书上放了好几块石头,2块、3块、4块........终于我放下第7个的时候鸡蛋破了!

现在我明白了鸡蛋虽小但是力量却很大,我们要细心观察周围的任何每一个细微的事物,不要犹豫,跟我一起做起来吧,做一个生活的“小侦探”吧!!!

602 盛炜康

植物的生长不一定需要突然的栽培

妈妈把家里搞成了一个小花园,花盆里装满了肥沃的泥土,各种各样的植物正生气勃勃地焕发着活力。芦荟绿得极艳,仿佛是一种液体的绿色,好像能拧出水来。紫薇花也欣然怒放,紫色的小花在一片草绿中透露着紫色的信号。一品红正如它的名字一样,红得似霞,深红色的花瓣下点缀着几片绿叶。我开始疑惑了:植物的生长必须依靠土壤吗?

于是,我找来两个塑料杯,在一只中盛上半杯水,放入三颗绿豆;另一只杯子中先放入1/4杯的泥土,放入一颗绿豆,再覆上土,压实,放在阳光可照射之处。

一天已经过去了,水里的绿豆没有发生太多的变化,但埋在泥土里的绿豆已发了芽,弯弯地贴着杯壁,正面看过去似乎是数字中的“6”。

过了两天,绿豆的动静越来越大,绿豆竟褪了皮,发了芽,样子颇似小蝌蚪。而放在泥土里的绿豆的芽已经有3-4厘米长了。

又过去了两天,绿豆的差距越来越明显。泡在水中的绿豆仍只有约莫摸1厘米左右长的芽儿,但在泥土中的绿豆的芽儿已破土而出,露出了小脑袋,似乎在惊喜地打量世界。

距离种下绿豆已有一周多时间,但现在的局势大有不同。在水里的绿豆因喝足了水,而长得越发粗壮,但现在的埋在土里的绿豆状况大不如前,因为土壤太过干燥而干枯,钻出泥土约有4厘米的芽儿已“睡”在了土地上。

我上网查了资料,才发现,原来植物必须的几个条件分别是:适宜的温度、阳光、空气与水份。当植物离开这些条件是便会死亡。

事实证明:植物的生长不一定需要突然的栽培。这使我解开了心中的谜团。

第四篇:静电的原理(科技小论文)

静电的原理(科技小论文)

学校: 班级: 姓名:

人可以在灯光的照耀下,在舞台上翩翩起舞,那小纸屑能不能在乐曲的伴奏下,在塑料板上跳起舞来呢?让我们来做一个小实验。首先,我们准备一些小纸屑和一根塑料棒,把小纸屑放在桌子上,再把塑料棒在身上来回摩擦多次,然后马上用摩擦过的塑料棒去吸小纸屑,这时候,奇迹出现了,小纸屑穿着美丽的衣裳,开始偏偏起舞了。这是为什么呢?我从电脑里得到了答案。

静电是一种相对稳定状态的电荷,物质都是有分子构成的,分子是由原子构成。原子中带有负电荷的电子和带正电荷的质子构成,在正常情况下,一个原子的质子数与电子数数量相同,正负平衡,所以对外表现出不带电的想象。但是电子环绕在原子核的周围,一经外力即脱离轨道,离开原来的原子A而侵入其他的原子B,A原子因缺少电子数电子数而带有正电现象,称为阳离子,B原子因增加电子数而呈带负电现象,称为阴离子。造成不平衡电子分布的原因即是电子受外力而脱离轨道,这个外力包含各种能量(如动能、位能、热能、化学能等)。在日常生活中,任何两个不同材质的物体接触后再分离,即可产生静电。当两个不同的物体相互接触时就会使得一个物体失去一些电荷如电子转移到另一个物体使其带正电,而另一个体得到一些剩余电子带负电。若在分离的过程中电荷难以中和,电荷就会积累使物体带上静电。所以物体与其他物体间会“接触分离”起电,在日常生活中脱衣服产生的静电也是“接触分离”起电。

固体、液体甚至气体都会因“接触分离”而带上静电。这是因为气体也是由分子、原子组成,流动空气中的分子、原子也会发生“接触分离”而起电。

一开始,我不知道静电在生活中有什么用处。但是吧,妈妈告诉了我:“静电的利用:静电除尘、静电喷涂、静电植绒、静电复印、净化空气等。” 静电除尘可以消除烟气中的煤尘,静电复印可以迅速、方 便的图书、资料、文字复印下来。没想到,静电还有那么多的道理。

第五篇:超声波探伤在铁轨中的应用小论文

一、超声波传感器在铁路钢轨探伤中的应用

二、设计的目的:

1)掌握超声波传感器的原理及应用。2)掌握铁路钢轨探伤高速检测的方法。

3)通过毕业设计培养学生综合运用所学专业的基础理论、知识、技能分析解决实际问题的能力。

三、设计技术要求:

1)在线探测速度:大于80km/h。

2)钢轨头部横向疲劳裂纹(核伤)报警:小于ф5mm平底孔当量; 钢轨头部纵向疲劳裂纹报警:小于10mm当量;钢轨腰部斜裂纹长度报警:小于10mm当量。3)探轮自动对中精度:小于20%。4)使用温度:-40-+70°C。

四、毕业设计完成的具体内容 1)实习、搜集资料;

2)选择设计方案,设计实体电路; 3)绘出电信号处理电路; 4)绘制电气原理图;

5)对所用元器件进行计算选择,列写元器件材料表; 6)主要参考资料。

五、主要参考文献 《自动检测技术及应用》

无损检测(No ndest ruct ive test,NDT)是指不破坏和损伤受检物体,对其性能、质量、有无内部缺陷进行检测的一种技术。无损检测技术是提高产品质量,促进技术进步不可缺少的手段,特别随着新材料、新技术的广泛应用,各种结构零件向高参量、大容量方向发展,不仅要提高缺陷检测的准确率和可靠性,而且要把传统的无损检测技术和现代信息技术相结合,实现无损检测的数字化、图像化、实时化、智能化。

工业上常用的无损检测方法有五种:超声检测(UT)、射线探伤(RT)、渗透探查(PT)、磁粉检测(MT)和涡流检测(ET)。其中超声检测是利用超声波的透射和反射进行检测的。超声波可以穿透无线电波、光波无法穿过的物体,同时又能在两种特性阻抗不同的物质交界面上反射,当物体内部存在不均匀性时,会使超声波衰减改变,从而可区分物体内部的缺陷。因此,在超声检测中,发射器发射超声波的目的是超声波在物体遇到缺陷时,一部分声波会产生反射,发射和接收器可对反射波进行分析,精确地测出缺陷来,并显示出内部缺陷的位置和大小,测定材料厚度等。

超声检测作为一种重要的无损检测技术不仅具有穿透能力强、设备简单、使用条件和安全性好、检测范围广等根本性的优点外,而且其输出信号是以波形的方式体现。使得当前飞速发展的计算机信号处理、模式识别和人工智能等高新技术能被方便地应用于检测过程,从而提高检测的精确度和可靠性。

超声波无损探伤(NDI)是超声无损检测的一种发展与应用,其设备有:超声探伤仪、探头、藕合剂及标准试块等。其用途是检测铸件缩孔、气泡、焊接裂纹、夹渣、未熔合、未焊透等缺陷及厚度测定。

超声无损检测在最近几十年中得到了较大的进展,它已成为材料或结构的无损检测中常用的手段。由于超声检测可以在线进行、超声波对人体无害又不改变系统的运行状态,因此,在材料或结构的无损检测中得到了广泛的应用。

超声探伤原理

超声探伤是无损检测的主要方法之一。它能非破坏性地探测材料性质及内部和表面缺陷(如裂纹、气泡、夹渣等)的大小、形成和分布情况,具有灵敏度高、穿透力强、检测速度快和设备简单、成本低等一系列特点。

1.1 基本原理

超声波探伤具有反射和透射两种方法。其中反射方法精确度较高。图1 是脉冲回波探伤仪原理图。脉冲发射器通过探头将超声波短脉冲送入试件,当回波从试件的缺陷或边界返回时,通过信号处理系统,在示波器上加以显示,并将其幅度和传播时间显示出来。如果已知试件中的声速,则根据示波器上的读数所获得的脉冲间的传输时间即可获得缺陷的深度。

图1 脉冲回波探伤仪原理图。

1.2 探伤分类

超声探伤方法很多,可以按不同的方式进行分类。

现将几种常用的分类方法介绍如下。

(1)按原理分类

按探伤原理分类可分为脉冲反射法、穿透法和共振法。脉冲反射法是一种利用超声波探头发射脉冲到被检测试块内,根据反射波的情况来检测试件缺陷的方法。脉冲反射法又包括缺陷回波法、底波高度法和多次底波法等。

(2)按耦合方式分类

按耦合方式分类如图2 所示。

图2 按耦合方式探伤分类图。

(3)按探伤显示方法分类

按探伤显示方法分类可分为A 型显示,B 型显示与C 型显示。其中A 型显示只显示缺陷的深度: B 型显示探伤仪,可显示工件内部缺陷的横断面形状,此时示波器横坐标代表探头在工件面上的位置,纵坐标代表缺陷的深度。探头沿工件移动与示波管扫描线的水平移动是同步的,为使图象保留在荧光屏上,应选用长余辉示波管,且探头移动速度不能太快: C 型显示探伤仪,可以显示工件内部缺陷的平面图形。

(4)按智能方式分类

上述探伤方法如由人工操作,则为人工探伤。如使试样或探头移动,在它的移动中利用超声波自动地检测缺陷并予以显示或指示(喷色)的方式,称为超声自动探伤。自动探伤要有探伤仪(带闸门装置),显示装置,探头及其夹持机构。根据探头设置方式的不同还可大致分为如下几种探伤方式:直接接触方式,此方式只用在探伤速度不高且表面光滑的场合,如轨道、无缝钢管和轴等: 局部水浸方式是超声探伤中最适用的方式,还可细分为其他方式,但原理是同样的: 全水浸方式用于工件的某部分(如粘结层)或管类的精密探伤,当水槽机构设计成可以进行自动探伤的情况下,除去工件的装卸以外,探伤可以全部自动化,如果工件加工精度高,而且水槽内架设的探头夹持机构、移动架的精度也高,则探伤的精度也高。

超声探伤技术在无损检测中的应用

2.1 机车检测方面的应用

2.1.1 在高速钢轨检测中的应用

我国铁路运营线路近七万公里,而且铁路正在向高速、重载的方向发展。超期服役的钢轨数量很大,线路上的钢轨在承担繁重的运输任务过程中,不免要产生各种肉眼能看见及看不见的损伤如侧磨、轨头压溃、剥离掉块、锈蚀、核伤、水平裂纹、垂直裂纹、周边裂纹等。

如图3 所示,当被检钢轨内部有一个裂纹缺陷(或其他缺陷),将超声波探头放在被检钢轨的某一表面部位(该面称作探伤面、检测面),探头向被检钢轨发射超声波信号,超声波穿过界面进入被检钢轨内部,在遇到缺陷和两介质的界面时都会有反射,反射信号被探头接收后,通过探伤仪内部的电路转换,就可以把缺陷信号和底波信号形象地显示出来,如图4 所示。根据超声波的声程推算,就可以轻易地将缺陷信号和底波信号区分开,然后通过超声波试块进行定标,就可以实现对钢轨缺陷的定位和定量。

图3 超声探伤示意图。

图7 轮辋人工模拟缺陷探伤。

2.3 焊接方面的应用

采用超声相控阵技术及B 扫描实时成像技术,通过足够数量的探头排列和触发时间控制,并选用不同频率范围,可以实现嵌入式电阻丝电熔连接接头的检测。

通过对比超声图像与接头实剖图,发现该方法能可靠地检出物体中的缺陷,并能较精确地确定缺陷位置和大小。在聚乙烯管道安装工程中的检测进一步验证了该技术的可靠性。

检测示意图如图10 所示。超声相控阵检测结合B扫描技术可以判断检测截面上电阻丝的位置,从而可以判断由于管材和套筒配合过紧造成的电阻丝垂直方向的错位情况,从实剖图上得到验证如图11 所示,比较超声成像图和实剖图可以看出,相控阵超声方法对金属丝有较好的分辨效果,连很微小的位移也能分辨出来,定位精度达0.5 mm。

图10 焊接检测示意图。

图11 电阻丝错位图。

超声相控阵技术及B 扫描实时成像方法对聚乙烯管电熔接头各类缺陷有较好的检出能力。对大量含缺陷电熔接头进行检测和试验研究,对比超声成像图和实剖图,发现该方法对于聚乙烯电熔接头的各类缺陷均有较高的检测灵敏度和检出精度。通过城镇聚乙烯燃气管道安装工程检测实践,验证该技术能实现嵌入式电阻丝电熔连接接头的检测。

结 语

现代意义的无损检测技术是随着各种科学技术的发展而发展起来的。超声检测作为无损检测的一种重要方法和热点研究,主要集中在研制适应性强、灵敏度高的探头: 为判断缺陷性质而对各种缺陷数学模型的建立: 缺陷的检出和信号分析技术: 无损*价的量化研究以及拓展超声检测在其他领域的应用。它的优点是对平面型缺陷十分敏感,一经探伤便知结果,易于携带,多数超声探伤仪不必外接电源,穿透力强。局限性是藕合传感器要求被检表面光滑,难于探出细小裂缝,要有参考标准,为解释信号要求检验人员素质高。

超声检测技术未来将会向着以下几个方面发展:

(1)向高精度、高分辨率方向发展。

(2)高温条件下的测量明显增多,在线检测、动态检测增多。

(3)在若干领域向超声无损*价发展,使得超声检测内容有了新的内涵。如超声检测技术与断裂力学相结合,对重要构件进行剩余寿命*价: 超声检测技术与材料科学相结合,对材料进行物理*价。

(4)在无损检测方面向定量化、图像化方向发展,超声检测系统将进一步数字化、图像化、自动化、智能化。

(5)现代信息处理技术如数值分析法、神经网络技术、模糊技术、遗传算法、虚拟仪器技术将广泛应用于超声检测技术领域。

随着各种科学技术在超声检测及探伤中的不断深入应用,相信超声检测作为许多领域产品质量保证的重要手段之一必将得到更多的关注与提高。

下载超声波原理及应用科技小论文(五篇模版)word格式文档
下载超声波原理及应用科技小论文(五篇模版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    科技小论文

    一、 主题 节约纸张,保护环境 二、调查背景 我们知道,生活,学习,办公样样都离不开纸,它传播着信息,弘扬着文化, 用途十分广泛。但在我们的生活中,纸张的浪费随处可见。经过观察,我发......

    科技小论文

    电子技术的发展及在生活中的应用 轻化卓越1201 许馨月 121040212 随着科学技术与社会经济的迅速发展,世界快速地由原来的工业化社会想信息化社会转型,信息化社会的发展,使得......

    科技小论文

    科技小论文 《飞机为什么会飞起来》 鼎太小学四(1)班王文 指导教师:邓艳红 问题产生: 人类诞生以来,一直有一个梦,梦想着能像鸟儿一样飞翔,经过一代又一代的努力,人类终于梦想成真......

    科技小论文参考

    水 的 压 力---科学小论文 记得有一次我在海中潜水。穿上皮质的潜 水衣,戴上密不透风的潜水镜,背上一个氧气瓶,再配一个潜水员做指导,你就可以潜水了。在潜水中,我兴致勃勃,看着海......

    科技小论文

    科技小论文 据有幸飞上太空的宇航员介绍,他们在天际遨游地球映入眼帘的是一个晶莹的球体,上面蓝色和白色纹痕相互交错,周围裹着一层水蓝色的“纱衣”。可谁知道,这颗“宝石”正......

    科技小论文

    科技小论文——烧纸盒的实验 在烧纸盒的实验中,盒子会怎样?盒子里的水又会怎样? 记得有一个星期的星期一下午第二节课,我们在上科学社团课,在科学社团课上,我们做了一个小实验,实验......

    科技小论文

    科技小论文 节能是很重要的,随着能源的减少,人们逐渐变得重视节能了。在我还上小学时老师就教育我们节约能源,是为了让我们人类能在地球上永远的生活下去。在现实生活中,还有大......

    科技小论文(参考)

    家用多功能豆腐机的设计研究 作者:徐曼莉 俞书伟 中国计量学院 现代科技学院,杭州310018 摘要:目前来看小家电产品的未来市场还与很到的空间,如电压力锅、豆浆机等产品。而在食......