第一篇:冬虫夏草产多糖菌株的筛选鉴定及多糖提取
冬虫夏草产多糖菌株的筛选鉴定及多糖提取
摘要:为了得到多糖收率较高的冬虫夏草菌株,从西藏那曲地五高山草甸中采集的新鲜冬虫夏草子实体初步分离得到50株菌株,并对其进行形态观察和18S rDNA-ITS序列分析鉴定,采用超声辅助热水浸提法进行冬虫夏草多糖的提取。结果表明,CC-3菌株Cladosporium sp.的模式菌株JN084020的18S rDNA-ITS同源相似性为100%,初步确定为冬虫夏草的无性型,经过超声辅助热水浸提后多糖收率最高为6.619%。
关键词:冬虫夏草;真菌;筛选;rDNA-ITS序列;Cladosporium sp.中图分类号: S182 文献标志码: A
文章编号:1002-1302(2015)03-0240-03
冬虫夏草(Ophiocordyceps sinensis)是中国传统的名贵中药材,系麦角菌科虫草属真菌寄生于蝙蝠蛾的幼虫所形成的的菌虫复合体[1]。2001年统计,全球冬虫夏草种类已有400种,其中中国记载有105种左右[2]。
冬虫夏草在中国传统医学里已经流传1 300多年,最早记载冬虫夏草的文献始于唐朝前期公元710年的《月王药诊》,记载冬虫夏草能治疗肺部疾病。公元780年《藏本草》记载的冬虫夏草具有润肺、补肾的作用;1765年,赵学敏在《本草纲目拾遗》中记载冬虫夏草的作用是润肺、补肾、益精气,理诸虚百损;1757年,吴仪洛所著《本草从新》中指出冬虫夏草保肺益肾,止血化痰。其后,《黔囊》《文房肆考》《四川通志》《本草图说》等100多部古书都记载了冬虫夏草名贵药材[3]。
目前,研究证实冬虫夏草有降血糖、免疫调节、抗肿瘤、抗氧化、抗纤维化、抗炎等功效,对肺脏、肾脏、中枢神经系统、免疫系统、心脏、肝脏等均有较好的临床保护作用[4]。由于冬虫夏草的生长环境及人们过于采挖,冬虫夏草已经远远不能满足医疗的需求,人们开始研究冬虫夏草成分与功能的关系,冬虫夏草多糖作为冬虫夏草的重要活性成分,具有抗疲劳、抗衰老、提高免疫力的作用[5-6]。表明冬虫夏草多糖在新药开发方面有广阔的前景。
已报道的冬虫夏草的无性型菌株涉及13个属,22个种名[7],包括细脚拟青霉(Paecilomyces tenuipes)、虫草蚧霉属(Lecanicilliuum sp.)、轮枝孢属(Verticillium sp.)、被毛孢属(Hirsutella)、头孢属(Cephalosporium sp.)等,其中部分冬虫夏草的无性型还有待进一步确定[8]。冬虫夏草的无性型研究已成为研究热点。
本研究分离筛选了50株能够产多糖的菌株,分子生物学鉴定分别为虫草蚧霉属、枝孢菌属、黑粉菌属。超声辅助热水浸提法提取冬虫夏草多糖,CC-3菌株的多糖得率最高为6.619%。研究结果为应用发酵方法生产冬虫夏草多糖替代冬虫夏草应用于医疗,以及进一步确定冬虫夏草多糖的功能奠定基础。材料与方法
1.1 材料
新鲜冬虫夏草采自西藏那曲地五高山草甸。
1.2 培养基及试剂
PDA加富培养基:土豆200 g/L、葡萄糖20 g/L、酵母膏 1 g/L、蛋白胨1 g/L、KH2PO4 1g /L、琼脂240 g/L、MgSO4 0.5 g/L、蚕蛹粉1 g/L。pH值6.7,121 ℃蒸汽灭菌30 min。
种子瓶液体培养基:KH2PO4 3 g/L、MgSO4 1.5 g/L、蛋白胨10 g/L、葡萄糖20 g/L。pH值6.7,121 ℃蒸汽灭菌30 min。
发酵培养基:葡萄糖9 g/L、麦芽糖19 g/L、蛋白胨 10 g/L、KH2PO4 0.5 g/L、MgSO4 1 g/L、MnSO4 0.5 g/L。pH值6.7,121 ℃蒸汽灭菌30 min。
CTAB提取液:NaCl 1.4 mol/L、EDTA 20 mmol/L、CTAB 20 g/L、Tris-Cl 100 mmol/L、巯基乙醇2 g/L、pH值8.0。
苯酚 ∶氯仿 ∶异戊醇溶液=25 ∶24 ∶1。
RNA酶:1 mg/mL。
真菌通用引物:ITS1和ITS4。
1.3 试验方法
1.3.1 冬虫夏草菌株的分离纯化
无菌条件下将新鲜的冬虫夏草用1%HgCl2溶液消毒,用无菌水冲洗干净,并用无菌的滤纸吸干表面的水分,分离冬虫夏草的蛹体和子座部分,分别研磨成粉,用无菌湿棉签蘸取粉末涂于加入氯霉素1 g/L 的PDA加富平板上,倒置于28 ℃培养箱中培养至单菌落出现。挑选菌丝色泽洁白、生长健壮、无杂菌污染的菌株,转接加入氯霉素1 g/L 的PDA加富试管斜面中,28 ℃培养箱中培养7~10 d,直至整个斜面都长满菌丝,选取生长健壮,无杂菌的菌株即为分离得到的菌株。
1.3.2 菌种的鉴定
1.3.2.1 菌体形态观察
将分离得到的菌株梯度划线接种于PDA平板中,用无菌镊子取无菌盖玻片,斜插入培养基中,每天观察并记录菌落生长情况,7 d后,拔出插片,显微镜下观察菌丝形态及产孢形式。
1.3.2.2 菌株的ITS序列测定
(1)基因组DNA的提取。采用CTAB法[9]提取基因组DNA。
(2)ITS序列分析。
ITS序列引物为真菌通用引物,ITS1和ITS4[10]。ITS1:5′-TCCGTAGGTGAACCTGCGG-3′;
ITS4:5′-TCCTCCGCTTATTGATATGC-3′。
PCR扩增反应体系(25 μL):DNA 2 μL、TaqDNA聚合酶0.3 μL、10×TaqBuffer(含Mg2+)2.5 μL、ITS1 2 μL、ITS4 2 μL、dNTP 2 μL、ddH2O 14.2 μL。
PCR扩增程序:95 ℃预变性10 min,94 ℃变性30 s、55 ℃ 退火30 s、72 ℃ 延伸50 s,35个循环;72 ℃延伸10 min。
(3)琼脂糖凝胶电泳及测序。
PCR产物扩增后进行琼脂糖凝胶电泳,条带清晰,用蛋白核酸测定仪测定后无蛋白和核酸残留,送北京宝锐通生物技术有限公司测序。
(4)ITS测序数据分析。
在NCBI中对菌株的ITS序列进行BLAST分析,然后用MEGA5进行系统发育树的构建。
1.3.3 提取冬虫夏草多糖
1.3.3.1 冬虫夏草菌丝体的制备
在无菌条件下挖取1 cm2的分离菌株的培养菌苔接种于装有100 mL种子培养基的三角瓶(容量500 mL)中,180 r/min、28 ℃摇床培养7 d。
按10%的接种量,接种于装有100 mL发酵培养基的三角瓶(容量500 mL)中,180 r/min、28 ℃摇床培养7 d。
发酵液 8 000 r/min 离心10 min。收菌丝体、80 ℃烘干、粉碎、过80目筛,备用。
将烘干的冬虫夏草菌丝体粉碎,过40目筛,备用。
1.3.3.2 超声辅助热水浸提法提取冬虫夏草多糖
取干燥恒重的冬虫夏草菌丝粉10 g,提取溶液为去离子水(首次加量料液比为1 g ∶20 mL,浸泡30 min之后,加水量料液比按前加量的75%递减)。提取条件:温度90 ℃、提取4次、每次浸提时间90 min,超声功率150 W。
1.3.4 冬虫夏草多糖含量测定
采用苯酚-硫酸比色法[11-12]测定。
1.3.4.1 绘制葡萄糖标准曲线
取烘干至恒重的葡萄糖标准品配置成最终浓度为0.1 mg/mL的标准液,取9支试管分别取葡萄糖标准液0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8 mL,各补加蒸馏水至1.0 mL,然后加入5%苯酚1.0 mL,迅速加入浓硫酸5.0 mL,摇匀,静置10 min。于40 ℃水浴中加热 30 min,以蒸馏水替代葡萄糖标准液为空白对照,于D490 nm波长处测吸光度。
1.3.4.2 冬虫夏草多糖含量的测定
取冬虫夏草多糖提取滤液,稀释一定的倍数,取1 mL稀释液,加入5%苯酚溶液 1 mL,摇匀、迅速加入5mL浓硫酸,摇匀、静置10 min。于 40 ℃ 水浴中加热30 min,以蒸馏水作空白对照,在D490 nm处测定吸光度。按回归方程计算稀释液多糖含量。按下式计算多糖含量:多糖含量(mg/g)=待测液中多糖浓度(mg/mL)×溶液体积(mL)×稀释倍数/原料质量(g)。结果与分析
2.1 冬虫夏草菌株的分离纯化
对分离出的50株生长健壮、无杂菌、菌丝洁白的菌株进行多糖的提取,并测定多糖含量,根据葡萄糖标准曲线得到的回归方程,计算虫草多糖得率。回归方程为y=10.399x-0019 5,r=0.998 7。根据计算得到,CC-3菌株的多糖得率最高,达6.619%。不同菌株的多糖含量结果见表1。讨论与结论
冬虫夏草的生活史分为有性型的子囊孢子阶段和无性型的分生孢子阶段。而人工培养、液体发酵菌丝体的冬虫夏草均为无性型阶段,因此,冬虫夏草无性型及菌种的鉴定至关重要。
最早人们判定冬虫夏草有性型和无性型的关系,依据假定无性型与虫草有性型子实体有相关性,用人工诱导虫草子实体的形成。人工诱导方法在人工诱发子实体长出子囊孢子非常困难,培养出的虫草子实体寥寥无几,人工诱导方法只能为虫草有性型和无性型的鉴定提供依据。
刘作易等从云南收集的新鲜冬虫夏草(Cordyceps sinensis),利用微循环对其子囊孢子的产孢结构进行了观察,并与组织和子囊孢子分离的菌株的产孢结构进行比对,还与中国被毛孢(Hirsutella sinensis)的产孢结构进行比较。结果显示微循环的产孢结构与分离菌株和中国被毛孢的产孢结构相似,由此确定冬虫夏草的无性型为中国被毛孢[13]。该方法虽操作简单,但必须要先明确此菌株的种属关系,该方法在冬虫夏草无性型的鉴定上也还是一种辅助手段。
随着分子生物学的发展,RAPD-PCR技术为确定虫草的无性型提供了可靠的分子生物学证据,但该方法不能很好地确定菌株的种和亚种。ITS序列分析的发展,为菌株无性型与有性型关系及菌株的近缘关系方面提供了可靠证据。Kang等报道,甘肃虫草和冬虫夏草具有相同的 ITS序列,并认为甘肃虫草可能是冬虫夏草的分类异名[14]。张泽文对古尼拟青霉菌种的完整的 rDNA的ITS 区进行序列测定并进行比对,结果表明,分离到菌种为古尼虫草的无性型,即古尼拟青霉(Paecilomyces gunnii)[15]。
本研究从采摘的新鲜冬虫夏草子实体中分离得到CC-3菌株,运用插片法对该菌株的菌丝形态和孢子结构进行显微观察,初步判断菌株的菌属关系,通过RAPD-PCR技术,用通用引物ITS1 和ITS4扩增出18S rDNA片段,进行序列比对,最后确定该菌株的种属关系。
多糖提取方法很多,如水提醇沉方法提取多糖,在醇沉过程中会损失大量多糖;酶解法提取多糖,条件温和、质量好,但是经济价值高;热水浸提法提取多糖,方法简单易行,但效率较低。超声波产生的强烈振动和空化效应,使细胞破碎程度增大,加速了多糖的溶出,有利于多糖的提取。本试验采取超声波辅助热水浸提法提取虫草多糖。
多糖测定方法也很多,通常采用硫酸-蒽酮法、苯酚-硫酸法测定多糖的含量。硫酸-蒽酮法由于糖与蒽酮试剂的显色深度不同,糖混合时,常因不同糖类比例造成一定的误差。而苯酚-硫酸法测定多糖,方法简单、灵敏度高、不受蛋白质存在的影响,产生的颜色稳定。
从西藏新鲜的冬虫夏草中初步分离得到50株菌株,经过多糖含量测定,CC-3菌株多糖得率最高,为6.619%,多糖含量高达6.619 mg/g。对CC-3菌株进行形态学观察、分子生物学18S rDNA序列分析,初步鉴定CC-3菌株为Cladosporium sp.菌株。
参考文献:
[1]于洪飞.冬虫夏草无性型鉴定的几种方法[J].安徽农业科学学报,2006,34(12):2763-2787.[2]Kirk P M,Cannon P F,David J C,et al.Ainsworth & Bisbys:dictionary of the fungi[M].9th ed.Wallingford,UK:CAB International,2001.[3]郭文场,刘 颖,冯贺林,等.冬虫夏草的研究[J].特产研究,1981(4):1-5.[4]Paterson R R.Cordyceps:a traditional Chinese medicine and another fungal therapeutic biofactory[J].Phytochemistry,2008,69(7):1469-1495.[5]Qiao D L,Luo J G,Ke C L.Immunostimulatory activity of the polysaccharide from Hyriopsis cumingii[J].International Journal of Biological Macromolecules,2010,47:657-680.[6]任 健,张倩落,郑 丽.人工虫草多糖对免疫低下小鼠免疫功能的影响[J].第四军医大学学报,2007,28(21):1967-1969.[7]Schildkraut J J.The catecholamine hypthesis of affective disorders:a review of supporting evidence[J].Am J Psychiatry,1965,12:509-522.[8]李春如.35种虫草及其无性型鉴定、活性筛选和细脚拟青霉提取物的抗抑郁作用及相关机制[D].合肥:安徽医科大学,2006.[9]马 明,杨克强,郭启荣.改良CTAB 法提取林木树种基因组DNA的研究[J].生物技术,2007,17(3):36-37.[10]王洪凯,张天宇,张 猛.应用5.8S rDNA 及ITS区序列分析链格孢种级分类[J].菌物系统,2001,20(2):168-173..[11]宁慧青.不同食用菌多糖含量的比较研究[J].山西化工,2007(3):44-45.[12]荆留萍,杜双田,金凌云,等.8 种物质对蛹虫草液体发酵中虫草素及多糖含量的影响[J].西北农林科技大学学报:自然科学版,2010,38(11):156-160.[13]刘作易,梁宗琦,刘爱英.冬虫夏草子囊孢子萌发及其无性型观察[J].贵州农业科学,2003,31(1):3-5.[14]Kang J C,Liang Z Q,Liu A Y,et al.Molecular evidence of polymorphism in cordyceps based on 5.8S rDNA and ITS sequences[J].Mycosystema,2000,19(4):492-497.[15]张泽文,傅 岚,陈作红.古尼虫草无性型的分子鉴别[J].菌物学报,2005,24(3):344-348.
第二篇:多糖的提取纯化及分析鉴定方法研究
多糖的提取纯化及分析鉴定方法研究
王霄
(合肥工业大学 生物与食品工程学院,安徽 合肥230009)
摘要:详细介绍了动植物多糖的常见提取纯化方法的最新研究进展,并比较了各种方法的优缺点。每种方法都有各自的优缺点,在提取时应根据所选材料的性质选用不同的方法,有些方法在一定的条件下可与别的方法协同作用,并对糖的含量测定及分析鉴定方法的研究进展作了概述。
关键词:多糖;提取;纯化;分析鉴定;研究进展 中图分类号:TU 411.01文献标识码:A
Progress of Polysaccharides Extraction, Purification and Identification Methods
WANG Xiao
(School of Biological and Food Engineering, Hefei University of Technology, Hefei 230009, China)
Abstract: This paper reviews the extraction, purification and identification methods of animal and plantpolysaccharides, and compares the advantages and disadvantages of each mothed.Each mothed has its own advantages and disadvantages, appropriate mothed should be selected according to the nature of the chosen material, and some of these methods can be synergy with other methods under certain conditions.In addition, analysis and identification of polysaccharides are outlined.Key words: polysaccharides;extraction;purification;analysis and identification;research progress
菌来源的糖缀合物具有广泛的药理及生物活性
0多糖概述
多糖(polysaccharide)是由糖苷键结合的糖链,至少要超过10个以上的单糖组成的聚合糖高分子碳水化合物。由相同的单糖组成的多糖称为多糖,如淀粉、纤维素和糖原;以没的单糖组成的多糖称为杂多糖,如阿拉伯胶是由戊糖和半乳糖等组成。多糖不是一种纯粹的化学物质,而是聚合程度不同的物质的混合物。多糖类一般不溶于水,无甜味,不能形成结晶,无还原性和变旋现象。多糖也是糖苷,所以可以水解,在水解过程中,往往产生一系列的中间产物,最终完全水解得到单糖。
近年来,国际上对糖及糖复合物的研究己成热点,糖类结构测定和生物活性研究取得了明显的进展。大量实验事实揭示糖类是重要信息分子,参与许多生理和病理过程
[1-2]
[3]。
在对各种中药材化学成分研究的过程中,人
们逐步提高了对植物多糖的关注。植物多糖研究比较深入的是茶多糖、菜籽多糖、南瓜多糖、苦瓜多糖、银杏叶多糖、枸杞多糖等等,植物多糖在抗生素替代物及保健品领域已经取得很好的应用。多糖作为重要的生物活性物质具有调节免疫、抗肿瘤、降低糖脂、延缓衰老等活性,在医疗保健、食品、动物养殖等领域有着广阔的应用前景
[4-7]。
1多糖的提取工艺
1.1 水提醇沉法
水提醇沉法是提取多糖最常用的一种方法。多糖是极性大分子化合物,提取时应选择水、醇等极性强的溶剂。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最
。到目前为止。己有
300余种多糖类化合物从天然产物中被分离出来,其中从中草药、食药用菌中提取的水溶性多糖最为重要。已发现有100多种中草药、食药用
终体积分数达到70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置5 h,多糖的质量分数和得率均较高。影响多糖提取率的因素有:提取温度、浸提料液比、提取时间以及提取次数等。为此,研究者对影响多糖提取工艺的这些因素进行了大量研究。林娟[8]
等研究表明水提法提取甘薯多糖的优化工艺条件为:提取温度85℃,加水比1:7,提取时间2.5h,提取率为26.71%。刘永[9]
等研究表明:最佳提取条件为95℃,料液比1:20(g:mL),提取时间2h,提取3次,茶叶多糖含量为35.92 mg/g。
水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,是一种可取的提取方法。但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高[10]。
1.2酶法提取
酶技术是近年来广泛应用到有效成份提取中的一项生物技术,使用酶可降低提取条件,在比较温和的条件下分解植物组织,加速有效成分的释放或提取。此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等非目的产物。此法可使后续的浓缩和脱蛋白工艺更简易、省时,粗多糖的纯度更高。但会提高生产成本,对提取条件要求较高。杨云
[11]
等人采用的单酶法和复合酶法提取大枣多糖,单酶法提取多糖含量最高可达44.69%,而复合酶法多糖最高含量可达68.13%。1.3超声波提取
超声法是利用超声波对细胞组织的破碎作用来提高多糖浸出率的,具有快速、安全、简便、成本低、多糖提取率高,成分又不被破坏等优点,但对提取设备要求较高。李进伟
[12]
等通过响应面
分析法考察超声波功率、提取时间、提取温度、料液比对枣多糖得率与纯度的影响,得出枣多糖最佳的提取工艺条件为:超声波功率86~96W,提取温度45~53℃,提取时间20min,料液比1:20(g:ml),枣多糖得率7.63%,纯度35.57%。与传统的水浴浸提法相比,该方法不仅缩短了提取时间,且提高了枣多糖得率与纯度。1.4微波提取
微波萃取是高频电磁波穿透萃取媒质,到达被萃取物料的内部,能迅速转化为热能使细胞内部温度快速上升,细胞内部压力超过细胞壁承受力,细胞破裂,细胞内有效成分流出,在较低的温度下溶解于萃取媒质,通过进一步过滤和分离,获得萃取物料。赵怡红
[13]
等研究表明北冬虫夏草
多糖微波提取最佳条件:微波功率550W、固液比l:30、提取时间30s、提取1次,多糖收率3.67%。刘青梅
[14]
等研究结果表明:对于紫菜多糖
提取微波提取优于热水提取,微波冻融提取效果最佳,提取率最高达7.45%,而热水提取率为2.05%.影响微波浸提的主要因素为浸提时间,其次是微波功率和液固质量比。优选方案为微波功率200W、提取时间8 min、水与紫菜液固质量比40:1。
1.5超临界流体提取
超临界流体提取法根据某些气体在超临界状态下具有特殊的液相性质,对一些组分有较好的溶解性,用来提取目的产物。一般采用CO2超临界萃取多糖组分。朱俊玲
[15]
通过超临界CO2流体
萃取处理芦荟多糖,多糖得率为85.1%,是传统方法的1.5倍。超临界萃取的最佳工艺条件是乙醇用量为250 ml/100g芦荟、萃取压力为25 MPa、萃取温度为35℃。1.6超滤法
超滤是一种膜分离技术。该技术应用于多糖的提取,具有不损害活性、分离效率高、能耗低、设备简单、可连续生产、无污染等优点[16]。
1.7酸提法
有些多糖适合用稀酸提取,并且能够得到更高的提取率。如赵宇等
[17]
对海蒿子多糖的提取方
法研究发现,从多糖提取得率来看,酸提法优于传统的水提法。不过此方法只在一些特定的植物多糖提取中占优势,目前报道的并不多。不过在操作上还是应该严格控制酸度,因为在酸性条件下可能引起多糖中糖苷键的断裂。1.8碱提法
与酸提法类似,有些多糖在碱液中有更高的提取率,尤其是含有糖醛酸的多糖及酸性多糖。不过,也应控制碱的浓度,因为有些多糖在碱性较强时也会发生水解。
2多糖纯化方法
2.1除蛋白
根据蛋白质在氯仿等有机溶剂中变性的特点,用V(氯仿)∶V(戊醇或正丁醇)为5∶1 或4∶1,混合物剧烈振摇20~30 min,蛋白质变性生成凝胶,离心分离,分去水层和溶剂层交界处的变性蛋白质。此种只能除去少量蛋白质,效
率不高,须反复多次,多糖有损失。但此方法比较温和,在避免多糖降解上效果较好,如配合加入一些蛋白质水解酶,用Sevage 法效果更佳。李婉婷
[18]
研究结果表明木瓜蛋白酶-Sevage法除
去款冬花多糖中的蛋白最为理想,该法的最佳工艺条件为:木瓜蛋白酶的酶底比为l%,pH值7.0,先在50℃水浴中酶解2h,再经Sevage法脱蛋白3次,其蛋白脱除率为88.95%,多糖保留率为92.63%。2.2透析法
透析法是利用一定孔目的膜,使无机盐或小分子糖透过,而将大分子的多糖截留下来从而达到纯化多糖的目的。此法的关键是要选择孔目合适的透析膜。纤维膜孔径为2~3nm,可使单糖分子通过,分离效果较好,透析时常需要多次换水,溶液的pH值维持在6.0~6.5范围内。2.3凝胶柱层析法
凝胶柱层析法主要是根据多糖分子的大小和形状不同而达到分离目的。但溶液流经多孔性凝胶柱时,小分子已扩散人孔中,各溶质依分子量大小顺序依次流出。此方法快速、简单、条件温和。常用的凝胶有葡聚糖凝胶(Sephadex)和琼脂糖凝胶(Sephamse),以不同浓度的盐溶液和缓冲溶液作为洗脱剂。此法还可进行多糖相对分子量的测定。王赫
[19]
采用Sephadex G-100凝胶色谱柱
分离纯化,从龙胆水溶性多糖中分离纯化得到2 种不同的均一多糖组分TP-
1、TP-2。2.4纤维素住层析法
纤维素阴离子交换剂柱层析对多糖的分离是利用pH 6时,酸性多糖能吸附于交换剂上,中性多糖不吸附,用pH相同离子强度不同的缓冲液将酸性强弱不同的酸性多糖分别洗脱出来。常用的阴离子交换纤维素有DEAE-纤维素和ECTEOLA纤维素。张兰杰
[20]
等就采用DEAE-纤维素柱分离
北五味子多糖,分别得到了白色结晶和黄色粉末两种多糖产物。
3多糖的分析
3.1含量的测定
测定方法:硫酸-苯酚法、硫酸-蒽酮法、比色定量法、分光光度法、纸色谱法、离子交换色谱法、yaphe [21]
法、薄层色谱法、酶法、原子吸
收法
[22]、HPLC法、凝胶电泳法、亲和电泳法连、续流动分析法检测法
[23]、次亚碘酸盐定量法、蒽
酮-硫酸法(总糖)、DNS法
[24]
(还原法)、磷钼
比色法、邻钾苯胺比色法等。每种方法只对某些多糖的测量效果好。比色法分光光度法离子交换色谱法酶法和电泳法等可同时用于多糖的定性定量分析。3.2纯度鉴定
多糖是高分子化合物,其纯品微观上是不均一的,通常所说的多糖纯品实质上是一定分子量范围的均一组分。多糖纯度鉴定的常用方法:超离心、高压电泳、凝胶层析、HPLC法等。现在应用较多的是HPLC法,旋光度测定[25]
也是纯度
测定的一种方法。3.3分子量的测定
多糖分子量的测定是研究多糖性质的一项重要工作常用方法:渗透压法、蒸气压渗透剂法、端基法、粘度法、光散射法、凝胶色谱法、超过率法、沉淀法、凝胶电泳法、HPLC法、超离心分析法、分子筛色谱法、GPC法
[26]。
4多糖的鉴定
4.1 多糖一级结构测定
多糖的一级结构分析,主要是分析组成多糖的单糖类型、数目连接方式及苷建构型。常用化学法和仪器分析法。多糖组分与分子比例测定法:部分酸解法、完全酶解法、色谱法;吡喃、呋喃环形式结构的分析:红外光谱;连接次序:选择性光谱法、糖苷键顺序水解、核磁共振; α-β-异头异构体:糖苷酶水解核磁共振;羟基被取代情况:甲基化反应、气相色谱、过碘酸氧化、Smith降解法和测硫酸基法(terho法)、核磁共振、质谱法;糖链、肽链连接方式:单糖与氨基酸组成、稀碱水解法、肼解反应;多糖结构的分析方法很多,迄今没有一种方法可以单独完成多糖结构的分析。仪器分析与化学方法相结合是常用的多糖结构测定方法。4.2多糖高级结构测定
目前研究多糖的二级结构常用的手段是NMR技术,如2D-NMR,13C谱,通用的方法是将现代NMR技术与理论计算相结合通过一定的理论计算筛选构象,主要的理论计算方法有从头计算、丰度经验计算及经验力场计算
[27]
。圆二色
谱法(CD)也可用于糖的构象分析,张丽萍等
[28]
应用谱测定了金顶侧耳多锗的水溶液构象近年来,以精确三维结构知识为基础揭示重要生命活
动的规律已达到前所未有的深度和广度[29],多糖
作为一类重要的生物活性大分子其结构的研究势
必推动对多糖的认识向深层次发展。多糖的应用展望
我国对多糖的研究起步较晚,但近年来的工作取得了较大的进展,愈来愈多的多糖被发现并证实它们具有复杂广泛的生物活性和功能。随着对多糖生物活性的深入研究,多糖的生物活性机理,功效因子会更加明确,它的应用领域也将会更加拓宽。然而,由于多糖本身结构比较复杂,种类繁多,其结构测定和分离纯化有很大的难度;有些多糖在天然植物中的含量低且不易分离及多糖的药理作用与诸多因素有关,给多糖的研究和应用带来许多的挑战,这需要相关行业的人士共同应对。
[参考文献]
[1] Benzie, I., and Strain, J.The Ferric Reducing Ability ofPlasma(FRAP)as a Measure of Antioxidant Power.AnalyticalBiochemistry.1996.239:70–76.[2] Wang, C., Sun, Z.Earthworm polysaccharide and its antibacterialfunction on plant-pathogen microbes in vitro.European Journal of
Soil Biology.2007.43:S135-S142.[3] Zhang, Z., et al.(2011).Isolation and antioxidant activities ofpolysaccharides extracted from the shoots of Phyllostachys edulis
(Carr.).Int.J.Biol.Macromol.49(4): 454-457.[4] Li, R., et al.(2009).Extraction, characterization of Astragaluspolysaccharides and its immune modulating activities in rats withgastric cancer.Carbohydrate Polymers 78(4): 738-742.[5] Li, S.-g., et al.(2008).Characterization and anti-tumoractivity of a polysaccharide from Hedysarum polybotrys Hand.-Mazz.Carbohydrate Polymers 73(2): 344-350.[6] Mazumder, et al.(2002).Isolation, chemical investigation and antiviralactivity of polysaccharides from Gracilaria corticata(Gracilariaceae,Rhodophyta).Int.J.Biol.Macromol.31(2002)87-95
[7] Chen, X., et al.(2011).Extraction, purification, characterization andhypoglycemic activity of a polysaccharide isolated from the root ofOphiopogon japonicus.Carbohydrate Polymers 83(2): 749-754.[8] 林娟, 邱宏瑞, 林霄,等.甘薯多糖的提取纯化及成分分析[J].中国粮油学报, 2003, 18(2): 64-66.[9] 刘永, 成战胜.茶叶多糖的提取纯化及其单糖组分的鉴定[J].食品与发酵工业, 2005, 31(6): 134-136.[10] 徐翠莲, 杜林洳, 樊素芳,等.多糖的提取分离纯化及分析鉴定方法
研究[J].河南科学, 2009., 27(12): 1524-1529.[11] 杨云.酶法提取大枣多糖的研究[J].食品科学, 2003,10(24): 93-95.[12] 李伟进, 丁霄麟.超声波提取金丝小枣多糖的工艺研究[J].林产化
学与工业, 2006, 26(3): 73-76.[13] 赵怡红, 邱玉华.微波法与传统工艺提取北冬虫夏草多糖的比较研究[J].内蒙古农业科技, 2009(3): 68-69.[14] 刘青梅, 杨性民, 邓红霞.采用微波技术提取紫菜多糖的工艺研究[J].农业工程学报, 2005, 21(2): 153-156.[15] 朱俊玲.超临界流体萃取芦荟多糖的研究[J].农产品加工,2011(7):67-68.[16] Hanju Sun,Ding Qi,Jiaoyun Xu.Fractionation of polysaccharides
from rapeseed by ultrafiltration: Effect of molecular pore size and operation conditions on the membrane performance.Separation and Purification Technology, 2011,80:670-676.[17] 赵宇, 李志富, 任少红, 等.海蒿子多糖的提取方法研究[J].泰山医学院学报, 2004, 25(5): 429-430.[18] 李婉婷.款冬花多糖提取及分离纯化研究[D].西安: 西北大学硕士学位论文, 2010.[19] 王赫.龙胆多糖的提取纯化及其组成糖分析[J].中国医药指南,2011, 9(21): 250-251.[20] 张兰杰, 张维华, 赵珊红.北五味子果实中多糖的提取纯与化研究
[J].鞍山师范学院学报, 2002, 4(1): 94-96.[21] 李 锋, 唐凤翔, 林海英, 等.耳突麒麟菜多糖的提取分离及表征
[J].福州大学学报, 2003, 31(1): 106-110.[22] 武 云, 张 驰.富硒黑木耳中硒多糖提取分离工艺的优化[J].湖北
农业科学, 2007, 46(5): 821-823.[23] 沈光林, 孔浩辉, 张心颖, 等.流动注射分析仪在烟草分析中的应
用[J].理化检验-化学分册, 2000, 36(11): 490-492.[24]
刘 强, 石丽花, 尹利端, 等.松花粉多糖提取检测方法研究进展
[J].农产品资源, 2007, 35(24): 45-48.[25] 聂凌鸿, 宁正祥.广东淮山水溶性多糖的分离纯化及体外抗氧化活
性的研究
[J].食品科学, 2003, 24(11): 129-133.[26] 刘 荣, 孙 芳, 陈秀丽, 等.松仁多糖化学结构的初步分析[J].林
产化学与工业, 2008, 28(4): 115-117.[27] 来鲁华, 杨显婷.寡糖的构象分析[J].生物化学与生物物理进展,1992, 22(4): 290-294.[28] Reinhold V N, Reinhold B B, Costello C E.Carbohydrate
molecular weigh profiling:sequence, linkage, and brunching
data:Es-CID [J].Anal Chem, 2005,67(1), 1772-1784.[29] Mock K K, Davey M, Cottrell J S.The analysisifunderivatized oligosacchridesby matrix ssisted laser deaorption mass
spectrometry[J].Biochem Biophys Res Comm, 2011, 177(2):
644-651.