电力系统直流潮流计算实验指导书(共5篇)

时间:2019-05-14 02:21:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《电力系统直流潮流计算实验指导书》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《电力系统直流潮流计算实验指导书》。

第一篇:电力系统直流潮流计算实验指导书

《电力系统稳态分析计算机方法》实验指导书

实验三 直流潮流计算实验

1.实验目的:

潮流计算是电力系统分析的一个重要的部分。通过对电力系统潮流分布的分析和计算,可进一步对系统运行的安全性,经济性进行分析、评估,提出改进措施。电力系统潮流的计算和分析是电力系统运行和规划工作的基础。

在电力系统分析的部分领域,要对潮流计算提出一些特殊要求,比如在一些实时控制的领域,要求计算的速度快,并且收敛性高。为了符合这些要求,有时可以降低计算精度。而直流潮流计算就是在这种实际应用中简化而来的。

在一些应用场所,如输电网络中,只要考虑的是电力系统中有功功率的分布,而不需要计算各个节点电压幅值,且要计算速度要快,这势必要对潮流计算进行简化处理,本节实验就是研究直流潮流计算,编程与调试,获得电力系统中各支路的有功分布,为进一步进行电力系统分析作准备。通过实验教学加深学生对电力系统潮流计算原理的理解和计算,初步学会运用计算机知识解决电力系统的问题,掌握潮流计算的过程及其特点。熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。2.实验器材:

计算机、软件(已安装,包括各类编程软件C语言、C++、VB、VC等、应用软件MATLAB等)、移动存储设备(学生自备,软盘、U 盘等)3.实验内容:

一、直流潮流的介绍

在电力系统稳态分析课程中,我们已经学习过有关高斯-塞德尔和牛顿-拉夫逊等潮流计算方法,它们所面对的是个非线性方程组求解问题。虽然这些方法都具有一定的精度,但计算量较大,这显然不适应形成电网规划方案时多次而反复的潮流计算要求。

直流潮流模型是把非线性电力潮流问题简化为线形电路问题,从而使分析计算非常方便,直流潮流专门用于研究电网中有功潮流的分布。

二、直流潮流算法的形成过程

对下图所示等值电路图,对于之路(i,j),如果忽略其并联支路,例如忽略线路的充电电容。则支路的有功潮流方程可写成: PijjQijUi[gijj(bijbi0)]UiUje2jij(gijjbij)..(1)

其中gij为支路电导,为支路电纳。相当于注入的有功功率。

bijPij正常运行的电力系统,其节点电压在额定的电压附近,且支路

sin=,Ui=U=1,两端的相角差很小,因此,可以如下简化假设:

jijijcosij=1,rij=0,则式(1)可以简化成

Pijbijijixijj................(2)

bij式中,1xij,x为支路电抗。对照一般直流电路的欧姆定律,ij可以把P看成直流电流,i和看成节点i和节点j的电压,x看ijjij成支路电阻,则式(1)所示的非线性有功潮流方程变成式(2)所示线性的直流潮流方程。设平衡节点s的相角为s0,对于节点i应用基尔霍夫电流定律,则节点i的电流平衡条件为

Piji,jiPijji,jiijxiji1,2,,N.........(3)

其中Pi是节点i给定的注入有功功率,式中N=n+1,可写成矩阵形式有

PiB0...................(4)

考虑到平衡节点,给定的Pi和待求量都减少一个对应N的分量,于是式(4)中Pi,都是n列矢量,平衡节点的相角为零,B0为nn阶矩阵,不包括平衡节点,其元素是

1B(i,i)x0ji,jiij........................(5)

1B(i,j)0xij

式(4)为直流潮流方程,因为忽略了接地支路,同时忽略了支路电阻,所以没有有功功率损耗。直流潮流模型中的有功功率是无损失流,所以平衡节点的有功功率有其他节点注入功率确定,其本身不独立。

用式(4)不需要迭代就可以求出节点电压相角,再用式(2)计算各支路的有功潮流,这就是直流潮流的解算过程。直流潮流的 解算没有收敛性问题,而且对于超高压电网有rx,其中计算误差通常在3%到10%之间,可以满足许多对精度要求不是很高的应用场所。

三、直流潮流算法计算步骤

1)选择平衡节点。

2)取支路电抗根据公式(5)形成矩阵B0。

3)根据注入功率的情况,形成矩阵Pi(除平衡节点)。4)根据式(4)可得B0Pi可求出各节点的相角。

15)通过式(2)的潮流计算公式求出各条支路的功率情况。

实验要求:

a.将事先编制好的形成电力网数学模型的计算程序原代码由自备移动存储设备导入计算机。

b.在相应的编程环境下对程序进行组织调试。c.应用计算例题验证程序的计算效果。d.对调试正确的计算程序进行存储、打印。e.完成本次实验的实验报告。实验数据

如图所示三母线电力系统中,支路电抗和节点注入的攻入如图所示,编写程序,求个各条支路的有功潮流分布。

第二篇:实验二 电力系统潮流计算实验

电力系统分析实验报告

学生姓名: 学 号: 专业班级:

实验类型:□ 验证 □ 综合 ■ 设计 □ 创新 实验日期: 2012-5-28 实验成绩:

一、实验目的:

本实验通过对电力系统潮流计算的计算机程序的编制与调试,获得对复杂电力系统进行潮流计算的计算机程序,使系统潮流计算能够由计算机自行完成,即根据已知的电力网的数学模型(节点导纳矩阵)及各节点参数,由计算程序运行完成该电力系统的潮流计算。通过实验教学加深学生对复杂电力系统潮流计算计算方法的理解,学会运用电力系统的数学模型,掌握潮流计算的过程及其特点,熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。

二、实验器材:

计算机、软件(已安装,包括各类编程软件C语言、C++、VB、VC等、应用软件MATLAB等)、移动存储设备(学生自备,软盘、U盘等)

三、实验内容:

1.理论分析:

P-Q分解法潮流计算基本思想是:把节点功率表示为电压向量的极坐标方程式,抓住主要矛盾,以有功功率误差作为修正电压向量角度的依据,以无功功率误差作为修正电压幅值的依据,把有功功率和无功功率迭代分开来进行。

牛顿法潮流程序的核心是求解修正方程式,当节点功率方程式采取极坐标系统时,修正方程式为:

PHNQJLV/V 或展开为:

PHNV/VQJLV/V(4)电力系统中有功功率主要与各节点电压向量的角度有关,无功功率则主要受各节点电压幅值的影响。大量运算经验也告诉我们,矩阵N及J中各元素的数值相对是很小的,因此对牛顿法的第一步简化就是把有功功率和无功功率分开来进行迭代,即将式(4)化简为:

PHQLV/V(5)这样,由于我们把2n阶的线性方程组变成了二个n阶的线性方程组,因而计算量和内存方面都有改善。但是,H,L 在迭代过程中仍然不断变化,而且又都是不对称矩阵。对牛顿法的第二个化简,也是比较关键的一个化简,即把式(5)中的系数矩阵简化为在迭代过程中不变的对称矩阵。

众所周知,一般线路两端电压的相角差是不大的(通常不超过10~20度),因此可以认为:

cosij1(6)此外,与系统各节点无功功率相应的导纳BLi必定远远小于该节点自导纳的虚部,即:

BLiQiBii Vi2GijsinijBij因此,QiVi2Bii(7)考虑到以上关系后,式(5)中系数矩阵中的元素表达式可以化简为:

HiiVi2BiiHijVVijBijLiiViBiiLijVVijBij2(8)这样,式(5)中系数矩阵可以表示为:

V12B11VVVV12B121nB1n2VVBVVBVB2n2n2121222(9)HL2VVBn1n1VnV2Bn2VnBnn进一步可以把它们表示为以下矩阵的乘积:

B11B12B1nV1V100B21B22B2nHL(10)0V0VnnBn1Bn2Bnn将它代入(5)中,并利用乘法结合率,我们可以把修正方程式变为:

V10B11B12P1V2P2B21B220VnPnBn1Bn2及

B1nV11B2nV22(11)

BnnVnnV10QB11B121V2QB21B2220VnQnBn1Bn2将以上两式的左右两侧用以下矩阵左乘

1B1nV1B2nV2(12)

BnnVnV11/V100V1/V22= 01/VnVn0就可得到

P1V1B11B12P2B21B22V2PnBn1Bn2VnB1nV11B2nV22(13)

BnnVnn及

VQ11B11B12VQ2B21B222VQnBn1Bn2nB1nV1B2nV2(14)

BnnVn以上两式就是P-Q分解法达到修正方程式,其中系数矩阵只不过是系统导纳矩阵的虚部,因而是对称矩阵,而且在迭代过程中维持不变。它们与功率误差方程式

jnj1PiPisViVjGijcosijBijsiniji(1,2,3n)(15)

QiQisViVjGijsinijBijcosijj1jn(16)

(i1,2,3n)构成了P-Q分解法迭代过程中基本计算公式,其迭代步骤大致是:

根据求得的Y矩阵形成有功迭代和无功迭代的简化雅可比矩阵B`,B``。给定各节点电压相角初值和各节点电压初值i(0),Vi(0);(2)根据(15)计算各节点有功功率误差Pi,并求出Pi/Vi;

(3)解修正方程式(13),并进而计算各节点电压向量角度的修正量i

(4)修正各节点电压向量角度i;i(k)i(k1)i(k1)(17)(5)根据式(16)计算各节点无功功率误差Qi,计算时电压相角用最新的修正值,并求出Qi/Vi;(6)解修正方程式(14),求出各节点电压幅值的修正量Vi(7)修正各节点电压幅值Vi Vi(k)Vi(k1)Vi(k1)

(18)(8)返回(2)进行迭代,直到各节点功率误差及电压误差都满足收敛条件。

四、实验数据: 例题1:

在上图所示的简单电力系统中,系统中节点1、2为PQ节点,节点3为PV节点,节点4为平衡节点,已给定 P1s+jQ1s=-0.30-j0.18 P2s+jQ2s=-0.55-j0.13 P3s=0.5 V3s=1.10 V4s=1.05∠0° 容许误差ε=10-5 节点导纳矩阵:

各节点电压:

节点 e f v ζ

1.0.984637-0.008596 0.984675-0.500172 2.0.958690-0.108387 0.964798-6.450306 3.1.092415 0.128955 1.100000 6.732347 4.1.050000 0.000000 1.050000 0.000000 各节点功率:

节点 P Q 1-0.300000-0.180000 2 –0.550000-0.130000 3 0.500000-0.551305 4 0.367883 0.264698 实验程序:

n=input('please enter the short value n:');k=zeros(n,n);z=zeros(n,n);Y=zeros(n,n);yd=zeros(n,n);y=zeros(n,n);z(1,2)=0.10+0.4*i;z(1,3)=0.3*i;z(1,4)=0.12+0.5*i;z(2,4)=0.08+0.4i;yd(1,2)=0.01528*i;yd(2,1)=0.01528*i;yd(1,4)=0.01920*i;yd(4,1)=0.01920*i;yd(2,4)=0.01413*i;yd(4,2)=0.01413*i;k(1,3)=1.1;for m=1:n for j=1:n if z(m,j)~=0 y(m,j)=1/z(m,j);y(j,m)=y(m,j);end end end for m=1:n for j=1:n if k(m,j)~=0 y(m,j)=k(m,j)/z(m,j);y(j,m)=y(m,j);yd(m,j)=(k(m,j)-1)*k(m,j)/z(m,j);yd(j,m)=(1-k(m,j))/z(m,j);end end end for m=1:n for j=1:n if m==j Y(m,j)=sum(y(m,:))+sum(yd(m,:));else Y(m,j)=-y(m,j);Y(j,m)=Y(m,j);end end end Y A=[-0.3,-0.55,0.5,0;-0.18,-0.13,0,0;1,1,1.1,1.05;0,0,0,0];G=real(Y);B=imag(Y);B1=B([1,2,3],[1,2,3]);B2=B([1,2,],[1,2,]);for k1=0:100 for m=1:(n-1)sum=0;for j=1:n

h=A(3,m)*A(3,j)*(G(m,j)*cos(2*pi/360*(A(4,m)-A(4,j)))+B(m,j)*sin(2*pi/360*(A(4,m)-A(4,j))));sum=sum+h;end op(1,m)=A(1,m)-sum;end V1=A([3],[1,2,3]);a=op./V1;a=a*inv(-B1)*180/pi;os=V1.a;A([4],[1,2,3])=A([4],[1,2,3])+os;for m=1:2 sum=0;for j=1:n

w=A(3,m)*A(3,j)*(G(m,j)*sin(2*pi/360*(A(4,m)-A(4,j)))-B(m,j)*cos(2*pi/360*(A(4,m)-A(4,j))));sum=sum+w;end oq(1,m)=A(2,m)-sum;end V2=A([3],[1,2]);b=oq./V2;b=b*inv(-B2);V2=V2+b;A([3],[1,2])=A([3],[1,2])+b;if max(max(abs(op)),max(abs(oq)))<0.00001 break;end end sum=0;sum1=0;sum2=0;for j=1:n

x=A(3,4)*A(3,j)*(G(4,j)*cos(2*pi/360*(A(4,4)-A(4,j)))+B(4,j)*sin(2*pi/360*(A(4,4)-A(4,j))));sum=sum+x;

c=A(3,4)*A(3,j)*(G(4,j)*sin(2*pi/360*(A(4,4)-A(4,j)))-B(4,j)*cos(2*pi/360*(A(4,4)-A(4,j))));sum1=sum1+c;

d=A(3,3)*A(3,j)*(G(3,j)*sin(2*pi/360*(A(4,3)-A(4,j)))-B(3,j)*cos(2*pi/360*(A(4,3)-A(4,j))));sum2=sum2+d;end A(1,4)=sum;A(2,4)=sum1;A(2,3)=sum2;disp(' P Q V S');disp(A');

实验结果:

五、思考讨论题或体会或对改进实验的建议 1.潮流计算有几种方法?简述各种算法的优缺点。

答:潮流计算目前比较主要的方法有三种:高斯迭代法(高斯塞德尔法),牛顿拉夫逊法以及P-Q分解法。高斯迭代法是直接迭代,对初值要求比较低,程序简单,内存小,但收敛性差,速度慢,多用于配电网或辐射式网络中;牛顿拉夫逊法是将非线性方程线性化之后再迭代的,对初值要求比较高,收敛性好,速度快,迭代次数少,运行时间短,被广泛使用;P-Q分解法是在极坐标牛顿法的基础上进行三个简化所得,有功、无功分开迭代、将一个变系数的2n阶J阵转化成两个常系数且对称的n阶子阵,迭代次数比牛顿多一倍但运算量小,整体速度更快,运行时间更短,多用于110KV以上的高压电网中。

2.在潮流计算中,电力网络的节点分几类?各类节点的已知量和待求量是什么? 答:根据给定的控制变量和状态变量的电力网络的节点可分为以下几类:

1、PQ节点(负荷节点):Pi、Qi为已知量,Vi、i为待求量;(该类节点数量最多)如:负荷节点、变电站节点(联络节点、浮游节点)、给定P、Q的发电机节点和给定QGi的无功电源节点。

2、PV节点(调节节点、电压控制节点):给定Pi、Vi,求Qi、i;(该类节点数量少,可没有)如有无功储备的发电机节点和可调节的无功电源节点。

3、平衡节点(松弛节点、参考节点、基准节点、缓冲节点):给定Vi、i为0,求Pi、Qi,一般假设第n个节点为平衡节点。(只有一个)其功能是平衡系统的有功,作为各节点电压相角的参考节点;如:有较大调节裕量的发电机节点,或出线最多的发电机节点。3.潮流计算中的雅可比矩阵在每次迭代时是一样的吗?为什么?

答:不一样,它是一个变系数矩阵,每迭代一次,雅可比矩阵在迭代过程中就要重新形成一次,因为每次迭代的电压、有功、无功都是与前一次不同的新值,所以每次迭代过程中,雅可比矩阵都是变化的。

六、实验小结:

通过本次实验,对于用程序来计算潮流的方便性有了一定的了解与认识,知道了运用程序的便利性。在书中一大段的运算公式,在实验中就是用一个句小小的程序来表示,既容易理解又方便。运用PQ法计算潮流还让我们对于那电力系统的三大节点有了更好的了解,怎么样的去运用它,具有了一定认识。

七、实验素材:

第三篇:BPA潮流计算实验指导书

PSD-BPA电力系统分析程序

实验1——潮流计算

一、实验目的

1.了解并掌握电力系统计算机算法的相关原理。

2.了解和掌握PSD-BPA电力系统分析程序稳态分析方法(即潮流计算)。3.了解并掌握PSD-BPA电力系统分析程序单线图和地理接线图的使用。

二、实验背景

随着科学技术的飞速发展,电力系统也在不断地发展,电网通过互联变得越来越复杂,同时也使系统稳定问题越来越突出。无论是电力系统规划、设计还是运行,对其安全稳定进行分析都是极其重要的。

PSD-BPA软件包主要由潮流和暂稳程序构成,具有计算规模大、计算速度快、数值稳定性好、功能强等特点,已在我国电力系统规划、调度、生产运行及科研部门得到了广泛应用。

本实验课程基于PSD-BPA平台,结合《电力系统分析计算机算法》课程,旨在引导学生将理论知识和实际工程相结合,掌握电力系统稳态、暂态分析的原理、分析步骤以及结论分析。清晰认知电力系统分析的意义。

三、原理和说明

1.程序算法

PSD-BPA电力系统分析程序稳态分析主要是潮流计算,软件中潮流程序的计算方法有P_Q分解法,牛顿_拉夫逊法,改进的牛顿-拉夫逊算法。采用什么算法以及迭代的最大步数可以由用户指定。

注:采用P-Q分解法和牛顿-拉夫逊法相结合,以提高潮流计算的收敛性能,程序通常先采用P-Q分解法进行初始迭代,然后再转入牛顿-拉夫逊法求解潮流。

2.程序主要功能

可进行交流系统潮流计算,也可进行包括双端和多端直流系统的交直流混合潮流计算。除了潮流计算功能外,该软件还具有自动电压控制、联络线功率控制、系统事故分析(N-1开断模拟)、网络等值、灵敏度分析、节点P-V、Q-V和P-Q曲线、确定系统极限输送水平、负荷静特性模型、灵活多样的分析报告、详细的检错功能等功能。

3.输入、输出相关文件 *.dat

潮流计算数据文件

*.bse

潮流计算二进制结果文件(可用于潮流计算的输入或稳定计算)*.pfo

潮流计算结果文件

*.map 供单线图格式潮流图及地理接线图格式潮流图程序使用的二进制结果文件

*.pff,*.pfd 中间文件(正常计算结束后将自动删除。不正常时,将留在硬盘上,可随时删除)pwrflo.dis 储存一个潮流作业计算时屏幕显示的信息。pfcard.def 定义潮流程序卡片格式文件,用户可更改及调整该文件。该文件安装时放在与潮流程序相同的目录中。打开TextEdit应用程序时先读入该文件。4.程序常用控制语句

常用的控制语句主要包括:

(1)指定潮流文件开始的一级控制语句“(POWERFLOW, CASEID=方式名, PROJECT=工程名)”

(2)指定计算方法和最大迭代次数的控制语句“/SOL_ITER, DECOUPLED=PQ法次数, NEWTON=牛拉法次数”;

(3)指定计算结果输出的控制语句“/P_OUTPUT_LIST, „”;(4)指定计算结果输出顺序的控制语句“/RPT_SORT= „”;

(5)指定计算结果分析列表的控制语句“/P_ANALYSIS, LEVEL= ?”;(6)指定潮流结果二进制文件名的控制语句“/NEW_BASE, FILE = 文件名”;

(7)指定潮流图和地理接线图使用的结果文件控制语句“/PF_MAP,FILE=文件名”;(8)指定网络数据的控制语句“/NETWORK_DATA”;(9)指定潮流数据文件结束的控制语句“(END)”;

5.程序常用卡片

BPA网络数据,以卡片形式输入,数据必须严格按规定的格式录入,否则软件无法识别。潮流计算中,常用的卡片有B卡:节点参数、L/E卡:线路参数、T/R卡:变压器参数。

交流数据节点通常填写B卡,可以表示发电机端点、线路连接点、变压器端点、负荷节点等,其中可以填写值包括负荷、发电机有功无功出力、无功补偿、电压值等变量;可选的节点类型:PQ节点、PV节点、Vθ节点;根据不同的节点填写不同的节点类型和数据,必须填写类型、节点名、基准电压。

图1 B卡-节点数据卡格式

对称线路卡一般填写L卡,该卡用于模拟对称的π型支路。

图2 L卡-对称线路数据卡

变压器支路通常填写T、TP卡,本卡模拟的是两绕组变压器和移相器。三绕组变压器先按常规方法化为三台两绕组变压器后再用此卡模拟。变压器和移相器抽头可以是固定的,也可以是可调的。如为可调的,则要附加填写R卡。

图3 T-变压器数据卡

注:不同卡片规定的格式中,各字段所代表的意义具体见《PSD-BPA潮流程序说明书》 6.计算结果介绍(PFO文件)

潮流计算结果文件内容主要分下述几个方面: 1)程序控制语句列表。

2)输入、输出文件及输出的内容列表。

3)错误信息。如为致命性错误,则中断计算。4)误差控制参数列表。5)迭代过程。6)计算结果输出:

详细计算结果列表:按节点、与该节点相联接支路顺序,并根据用户的要求(通过控制语句控制)可按照字母、分区或区域排序输出潮流计算结果。分析报告列表:并根据用户的要求(通过控制语句控制),输出各种潮流分析报告。7)错误信息统计。7.算例

IEEE 9节点例题:

图1 IEEE9节点系统接线图

节点参数、线路参数及变压器参数分别见表1~表3。

表1 IEEE 9节点算例节点参数

表2 IEEE 9节点算例线路参数

表3 IEEE 9节点算例变压器参数

注:表1-表3中功率基准值为100MVA;电阻、电感值为标幺值。

对应于上述系统及数据的潮流计算数据(IEEE90.DAT)见例1。例1:

(POWERFLOW,CASEID=IEEE9,PROJECT=IEEE_9BUS_TEST_SYSTEM)/SOL_ITER,DECOUPLED=2,NEWTON=15,OPITM=0./P_INPUT_LIST,ZONES=ALL /P_OUTPUT_LIST,ZONES=ALL /RPT_SORT=ZONE /NEW_BASE,FILE=IEEE90.BSE /PF_MAP,FILE = IEEE90.MAP /NETWORK_DATA BS GEN1

16.501 999.999.1.04 B

GEN1

230.01

B

STATIONA 230.01 125.50.0 0.B

STATIONB 230.01 90.30.0 0.B

STATIONC 230.01 100.35.0 0.000 B

GEN2

230.01

BE GEN2

18.001 163.999 10 25 B

GEN3

230.01 BE GEN3

13.801 85.999.1025

.L-----------------transmission lines----------------------------L

GEN1 230.STATIONA230..0100.0850.0440 L

GEN1 230.STATIONA230.2.0100.0850.0440 L

GEN1230.STATIONB230..0170.0920.0395 L

STATIONA230.GEN2230..0320.1610.0765 L

STATIONB230.GEN3230..0390.1700.0895 L

GEN2230.STATIONC230..0085.0720.03725 L

STATIONC230.GEN3230..0119.1008.05225.T-----transformers---------

T

GEN116.5 GEN1230..0576 16.5 230.T

GEN218.0 GEN2230..0625 18.0 230.T

GEN313.8 GEN3230..0586 13.8 230.(END)

四、实验项目和方法,1、在PSD-BPA平台上,建立IEEE9节点系统潮流计算模型,并分析结果。

2、在PSD-BPA单线图程序上,建立IEEE9节点系统单线图。

四、实验报告要求

1.电力系统稳定分析(潮流计算)原理。2.实验程序以及实验结果。

3.实验过程中遇到的错误解决方法和实验收获。

五、思考题

1. 电力系统潮流计算方法有哪些?各种方法的原理? 2. 电力系统潮流计算的作用?

3. PSD-BPA仿真软件中潮流计算模型中不同控制语句的作用? 4. PSD-BPA仿真软件中潮流计算模型建模的注意事项?

第四篇:电力系统潮流计算

南 京 理 工 大 学

《电力系统稳态分析》

课程报告

姓名

XX

学 号: 5*** 自动化学院 电气工程

基于牛顿-拉夫逊法的潮流计算例题编程报学院(系): 专

业: 题

目: 任课教师 硕士导师 告

杨伟 XX

2015年6月10号

基于牛顿-拉夫逊法的潮流计算例题编程报告

摘要:电力系统潮流计算的目的在于:确定电力系统的运行方式、检查系统中各元件是否过压或者过载、为电力系统继电保护的整定提供依据、为电力系统的稳定计算提供初值、为电力系统规划和经济运行提供分析的基础。潮流计算的计算机算法包含高斯—赛德尔迭代法、牛顿-拉夫逊法和P—Q分解法等,其中牛拉法计算原理较简单、计算过程也不复杂,而且由于人们引入泰勒级数和非线性代数方程等在算法里从而进一步提高了算法的收敛性和计算速度。同时基于MATLAB的计算机算法以双精度类型进行数据的存储和运算, 数据精确度高,能进行潮流计算中的各种矩阵运算,使得传统潮流计算方法更加优化。

一 研究内容

通过一道例题来认真分析牛顿-拉夫逊法的原理和方法(采用极坐标形式的牛拉法),同时掌握潮流计算计算机算法的相关知识,能看懂并初步使用MATLAB软件进行编程,培养自己电力系统潮流计算机算法编程能力。

例题如下:用牛顿-拉夫逊法计算下图所示系统的潮流分布,其中系统中5为平衡节点,节点5电压保持U=1.05为定值,其他四个节点分别为PQ节点,给定的注入功率如图所示。计算精度要求各节点电压修正量不大于10-6。

二 牛顿-拉夫逊法潮流计算 1 基本原理

牛顿法是取近似解x(k)之后,在这个基础上,找到比x(k)更接近的方程的根,一步步地迭代,找到尽可能接近方程根的近似根。牛顿迭代法其最大优点是在方程f(x)=0的单根附近时误差将呈平方减少,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点的电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成节点电压新的初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。2 基本步骤和设计流程图

形成了雅克比矩阵并建立了修正方程式,运用牛顿-拉夫逊法计算潮流的核心问题已经解决,已有可能列出基本计算步骤并编制流程图。由课本总结基本步骤如下:

1)形成节点导纳矩阵Y;

2)设各节点电压的初值,如果是直角坐标的话设电压的实部e和虚部f;如果是极坐标的话则设电压的幅值U和相角a;

3)将各个节点电压的初值代入公式求修正方程中的不平衡量以及修正方程的系数矩阵的雅克比矩阵;

4)解修正方程式,求各节点电压的变化量,即修正量; 5)计算各个节点电压的新值,即修正后的值;

6)利用新值从第(3)步开始进入下一次迭代,直至达到精度退出循环; 7)计算平衡节点的功率和线路功率,输出最后计算结果; ① 公式推导

② 流程图

matlab编程代码

clear;

% 如图所示1,2,3,4为PQ节点,5为平衡节点

y=0;

% 输入原始数据,求节点导纳矩阵

y(1,2)=1/(0.07+0.21j);

y(4,5)=0;y(1,3)=1/(0.06+0.18j);

y(1,4)=1/(0.05+0.10j);

y(1,5)=1/(0.04+0.12j);

y(2,3)=1/(0.05+0.10j);

y(2,5)=1/(0.08+0.24j);

y(3,4)=1/(0.06+0.18j);

for i=1:5

for j=i:5

y(j,i)=y(i,j);

end

end

Y=0;

% 求节点导纳矩阵中互导纳

for i=1:5

for j=1:5

if i~=j

Y(i,j)=-y(i,j);

end

end

end

% 求节点导纳矩阵中自导纳

for i=1:5

Y(i,i)=sum(y(i,:));

end

Y

% Y为导纳矩阵

G=real(Y);

B=imag(Y);% 输入原始节点的给定注入功率

S(1)=0.3+0.3j;

S(2)=-0.5-0.15j;

S(3)=-0.6-0.25j;

S(4)=-0.7-0.2j;

S(5)=0;

P=real(S);

Q=imag(S);

% 赋初值,U为节点电压的幅值,a为节点电压的相位角

U=ones(1,5);

U(5)=1.05;

a=zeros(1,5);

x1=ones(8,1);

x2=ones(8,1);

k=0;

while max(x2)>1e-6

for i=1:4

for j=1:4

H(i,j)=0;

N(i,j)=0;

M(i,j)=0;

L(i,j)=0;

oP(i)=0;

oQ(i)=0;

end

end

% 求有功、无功功率不平衡量

for i=1:4

for j=1:5

oP(i)=oP(i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

oQ(i)=oQ(i)-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));

end

oP(i)=oP(i)+P(i);

oQ(i)=oQ(i)+Q(i);

end

x2=[oP,oQ]';

% x2为不平衡量列向量

% 求雅克比矩阵

% 当i~=j时,求H,N,M,L

for i=1:4

for j=1:4

if i~=j

H(i,j)=-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));

N(i,j)=-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

L(i,j)=H(i,j);

M(i,j)=-N(i,j);

end

end

end

% 当i=j时,求H,N,M,L

for i=1:4

for j=1:5

if i~=j H(i,i)=H(i,i)+U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));N(i,i)=N(i,i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

M(i,i)=M(i,i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

L(i,i)=L(i,i)-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)))

end

end

N(i,i)=N(i,i)-2*(U(i))^2*G(i,i);

L(i,i)=L(i,i)+2*(U(i))^2*B(i,i);

end

J=[H,N;M,L]

% J为雅克比矩阵

x1=-((inv(J))*x2);

% x1为所求△x的列向量

% 求节点电压新值,准备下一次迭代

for i=1:4

oa(i)=x1(i);

oU(i)=x1(i+4)*U(i);

end

for i=1:4

a(i)=a(i)+oa(i);

U(i)=U(i)+oU(i);

end

k=k+1;

end

k,U,a

% 求节点注入功率

i=5;

for j=1:5

P(i)=U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)))+P(i);

Q(i)=U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)))+Q(i);

end

S(5)=P(5)+Q(5)*sqrt(-1);

S

% 求节点注入电流

I=Y*U'

运行结果

节点导纳矩阵

经过五次迭代后的雅克比矩阵

迭代次数以及节点电压的幅值和相角(弧度数)

节点注入功率和电流

五 结果分析

在这次学习和实际操作过程里:首先,对电力系统分析中潮流计算的部分特别是潮流计算的计算机算法中的牛顿-拉夫逊法进行深入的研读,弄明白了其原理、计算过程、公式推导以及设计流程。牛顿-拉夫逊法是求解非线性方程的迭代过程,其计算公式为FJX,式中J为所求函数的雅可比矩阵;X为需要求的修正值;F为不平衡的列向量。利用x(*)=x(k+1)+X(k+1)进行多次迭代,通过迭代判据得到所需要的精度值即准确值x(*)。六 结论

通过这个任务,自己在matlab编程,潮流计算,word文档的编辑功能等方面均有提高,但也暴漏出一些问题:理论知识储备不足,对matlab的性能和特点还不能有一个全面的把握,对word软件也不是很熟练,相信通过以后的学习能弥补这些不足,达到一个新的层次。

第五篇:电力系统潮流计算程序设计

电力系统潮流计算程序设计

姓名:韦应顺

学号:2011021052 电力工程学院

牛顿—拉夫逊潮流计算方法具有能够将非线性方程线性化的特点,而使用MATLAB语言是由于MATLAB语言的数学逻辑强,易编译。

【】【】1.MATLAB程序12

Function tisco %这是一个电力系统潮流计算的程序 n=input(‘n请输入节点数:n=’); m=input(‘请输入支路数:m=’);ph=input(‘n请输入平衡母线的节点号:ph=’); B1=input(‘n请输入支路信号:B1=’);%它以矩阵形式存贮支路的情况,每行存贮一条支路 %第一列存贮支路的一个端点 %第二列存贮支路的另一个端点 %第三列存贮支路阻抗

%第四列存贮支路的对地导纳

%第五列存贮变压器的变比,注意支路为1 %第六列存贮支路的序号

B2=input(‘n请输入节点信息:B2=’); %第一列为电源侧的功率 %第二列为负荷侧的功率 %第三列为该点的电压值

%第四列为该点的类型:1为PQ,2为PV节点,3为平衡节点 A=input(‘n请输入节点号及对地阻抗:A=’); ip=input(‘n请输入修正值:ip=’); %ip为修正值);Y=zeros(n);

Y(p,q)=Y(p,q)-1./(B1(i3)*B1(i5);e=zeros(1,n);

Y(p,q)=Y(p,q);f=zeros(1,n);

no=2*ph=1; Y(q,q)=Y(q,q)+1./B1(i3)+B1(i4)/2;

End for i=1:n

G=real(Y);if A(i2)=0

B=imag(Y);p=A(i1);

Y(p p)=1./A(i2);for i=1:n End e(i)=real(B2(i3));End f(i)=imag(B2(i3));For i=1:m S(i)=B2(i1)-B2(i2);p=B1(i1);V(i)=B2(i3);p=B1(i2);end Y(p,p)=Y(p,p)+1./(B1(i3)*B1(i5)^2+B1(i4)./2P=real(S);Q=imag(S);[C,D,DF]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no);J=jacci(Y,G,B,P,Q,e,f,V,C,D,B2,n,ph,no);[De,Di]=hxf(J,D,F,ph,n,no);t=0;while

max(abs(De))>ip&max(abs(Dfi)>ip

t=t+1;

e=e+De;

f=f+Df;

[C,D,DF]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no);

J=jacci(Y,G,B,P,Q,e,f,V,C,D,B2,n,ph,no);

[De,Df]=hxf(J,Df,ph,n,no);end v=e+f*j;for i=1:n hh(i)=conj(Y(ph,i)*v(i));end S(ph)=sum(hh)*v(ph);B2(ph,1)=S(ph);V=abs(v);

jd=angle(v)*180/p;resulte1=[A(:,1),real(v),imag(v),V,jd,real(S’),imag(S’),real(B2(:1)),imag(B2(:1)),real(B2(:2)),imag(B2(:,2))];for i=1:m

a(i)=conj((v(B1(i1))/B1(i5)-v(B1(i2))/B1(i3));

b(i)=v(B1(i1))*a(i)-j*B1(i4)*v(B1(i))^2/2;

c(i)=-v(B1(i2))*a(i)-j*B1(i4)*v(B1(i2))^2/2;end result2=[B1(:,6),B1(:,1),B1(:,2),real(b’),imag(b’),real(c’),imag(c’), real(b’+c’),imag(b’+c’)];printcut(result1,S,b,c,result2);type resultm function [C,D,Df]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no)%该子程序是用来求取Df for i=1:n

If

i=ph

C(i)=0;

D(i)=0;

For j=i:n

C(i)=C(i)+G(i,j)*e(j)-B(i,j)*f(j);D(i)=D(i)+G(i,j)*f(j)+B(i,j)*e(j);end

P1=C(i)*e(i)+D(i)*f(i);Q1=C(i)*f(i)-D(i)*e(i);V1=e(i)^2+f(i)^2;If

B2(i4)=2 p=2*i-1;

Df(p)=P(i)-P1;p=p+1;else p=2*i-1;

Df(p)=P(i)-P1;p=p+1;

Df(p)=Q(i)-Q1;end end end Df=Df’;If ph=n Df(no=[];end

function [De,Df]=hxf(J,Df,ph,n,no)%该子函数是为求取De Df DX=JDf;DX1=DX;

x1=length(DX1);if ph=n DX(no)=0;DX(no+1)=0;

For i=(no+2):(x1+2)DX(i)=DX1(i-2);End Else

DX=[DX1,0,0];End k=0;

[x,y]=size(DX);For i=1:2:x K=k+1;

Df(k)=DX(i);De(k)=DX(i+1);End End case 2 Function for j=1:n J=jacci(Y,G,B,PQ,e,f,V,C,D,B2,n,ph,no)X1=G(i,j)*f(i)-B(i,j)*e(i);

X2=G(i,j)*e(i)+B(i,j)*f(i);%该子程序是用来求取jacci矩阵

for i=1:n X3=0;switch B2(i4)X4=0;case 3 P=2*i-1;continue q=2*j-1;case 1 J(p,q)=X1;for j=1:n m=p+1;if

J=&J=ph J(m,q)=X3;X1=G(i)*f(i)-B(i,j)*e(i);q=q+1;X2=G(i,j)*e(i)+B(i,j)*f(i);J(p,q)=X2;X3=-X2;J(m,q)=X4;X4=X1;X1=D(i)+G(i,j)*f(i)-B(i,j)*e(i);p=2*i-1;X2=C(i)+G(i,j)*e(i)+B(i,j)*f(i);q=2*j-1;X3=0;J(p,q)=X1;X4=0;m=p+1;P=2*i-1;J(p,q)=X2;q=2*j-1;J(m,q)=X4;J(p,q)=X1;Else if j=&j=jph m=p+1;X1=D(i)+G(i,j)*f(i)-B(i,j)*e(i);J(m,q)=X3;X2=C(i)+G(i,j)*e(i)+B(i,j)*f(i);q=q+1;X3= C(i)+G(i,j)*e(i)-B(i,j)*f(i);J(p,q)=X2;X4= C(i)+G(i,j)*f(i)-B(i,j)*e(i);J(m,q)=X4;P=2*i-1;end q=2*j-1;end J(p,q)=X1;end m=p+1;end J(m,q)=X3;if ph=n q=q+1;J(no:)=[];J(p,q)=X2;J(no:)=[];J(m,q)=X4;J(:,no)=[];End J(:,no)=[];End

2实例验证 【例题】设有一系统网络结线见图1,各支路阻抗和各节点功率均已以标幺值标示于图1中,其中节点2连接的是发电厂,设节点1电压保持U1=1.06定值,试计算其中的潮流分布,请输入节点数:n=5 请输入支路数:m=7 请输入平衡母线的节点号:ph=l 请输入支路信息:

BI=[ l 2 0.02+0.06i O l 1;1 3 0.08+0.24i 0 1 2;2 3 0.06+0.18i 0 l 3: 2 4 0.06+0.18i O l 4: 2 5 0.04+0.12i 0 l 5: 3 4 0.01+0.03i 0 l 6: 4 5 0.08+0.24i O 1 7] 请输入节点信息:

B2=[ 0 0 1.06 3;0.2+0.20i 0 1 1;一O.45一O.15i 0 l l;一0.4-0.05i 0 l 1;一0.6—0.1i 0 1 l] 请输入节点号及对地阻抗: A=[l 0;2 0;3 0;4 0;5 O ] 请输入修正值:ip=0.000 0l

参考文献

[1]陈珩.电力系统稳定分析[M].北京:中国电力出版社,2002:139—187.

[2]郑阿奇.MATLAB实用教程[M].北京:电子工业出版社,2005:1-243.

[3] 束洪春,孙士云,等.云电送粤交商流混联系统全过 程动态电压研究[J】.中国电力,2008,4l(10):l-4. SHU Hong—ch吼,SUN Shi-yun,et a1.Research on fun prc'cess dyn锄ic Voltage stabil时of hybrid AC/DC poWer tmnsmission System舶m Yu衄an proVince to G啪gdong province【J】.Electric Power,2008,4l(10): l-4.

[4] 朱新立,汤涌,等.大电网安全分析的全过程动态仿 真技术[J】.电网技术,2008,32(22):23—28. SONG Xin—Ii,TANG Yof唱,et a1. Full dyn锄ic simulation for the stabilhy a眦lysis of large power system【J】.Power System融IlrIolo影,2008,32(22): 23.28.

[5]Roytelm锄I,Shallidehpour S M.A comprehcnsivc long teml dynaIIlic simulation for powcr system recoVery【J】. IEEE Transactions 0n Power Systems,1994,9(3). [6] 石雩梅,汪志宏,等.发电机励磁系统数学模型及参 数对电网动态稳定性分析结果影响的研究[J】.继电 器,2007,35(21):22-27.

SHI Xue.mei,WANG Zlli-hon舀et a1.Iksearch on the innuence of g锄e翰to璐baScd ∞de诅iled excitation system models柚d parameterS t0 power铲id dyn锄ic stabil时【J】.Relay,2007,35(2 1):22-27.

[7] 方思立,朱方.快速励磁系统对系统稳定的影响[J】.中 国电机工程学报,1986,6(1):20.28.

FANG Si.1i,ZHU Fang.The effbct of f弧t.respon∞

excitation system on the stability of power netwofk【J】. Proceedings ofthe CSEE,1986,6(1):20-28.

[8] 刘取.电力系统稳定性及发电机励磁控制[M】.北京: 中国电力出版社,2007.

LIU Qu.Power system S诅bility锄d generator excitation control【M】.BeUing:ChiIla Electric Powef Press,2007. [9] Dallachy J L,Anderson T.EXperience with rcplacing ro诅ting exciters wim static exciters【J】.1k InStitution of Electrical Engineers,1 996.

[10] 陈利芳,陈天禄.浅谈自并励励磁系统在大容量机组 中的应用【J】.继电器,2007,35(1):8l培4. CHEN Li-f抽岛CHEN Tian—lIL Application of 辩l仁exci组tion mode in large capacity髫memtor unit【J】. ReIay'2007,35(1):81-84.

[11] 方思立,刘增煌,孟庆和.大型汽轮发电机自并励励 磁系统的应用条件【J].中国电力,1994,27(12):61.63. FANG Si.Ii,LIU Zeng-hu锄g,MENG Qin争hc.m application conditions of large turbine generator self-excitation system【J】.Electric Powef,1994,27(12): 61.63.

[12]梁小冰,黄方能.利用EMTDC进行长持续时间过程 的仿真研究【J】.电网技术,2002,26(9):55.57. LIANG Xiao-bing,HUANG Fan争眦ng.How to cany out simulalion of long dul‘ation processes by use of EMTDC【J】.Power System 11echnology,2002,26(9): 55-57.

[13]王卉,陈楷,彭哲,等.数字仿真技术在电力系统中 的应用及常用的几种数字仿真工具【J】.继电器,2004,32(21):7l一75.

wANG Hui,CHEN Kai,PENG zhe,et a1.Application of digital simulation眦hniques棚d severaJ simulation tools in power system[J】.Relay,2004,32(21):71·75.

[14]IEEE Power Engmeering Socie哆.IEEE std 421.5.2005 IEEE玎ccOmmended practice for excitation system models for power system stabiI时studies【s】.

下载电力系统直流潮流计算实验指导书(共5篇)word格式文档
下载电力系统直流潮流计算实验指导书(共5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    电力系统潮流计算程序[本站推荐]

    电力系统潮流计算c语言程序,两行,大家可以看看,仔细研究,然后在这个基础上修改。谢谢#include "stdafx.h" #include #include #include #include"Complex.h" #include"wanji......

    电力系统潮流计算发展史

    电力系统潮流计算发展史 对潮流计算的要求可以归纳为下面几点: (1)算法的可靠性或收敛性 (2)计算速度和内存占用量 (3)计算的方便性和灵活性 电力系统潮流计算属于稳态分析范畴,不......

    电力系统潮流计算[大全五篇]

    自测题(二)---- 电力系统潮流计算与调控 一、 单项选择题(下面每个小题的四个选项中,只有一个是正确的,请你在答题区填入正确答案的序号,每小题2分,共50分)1、架空输电线路全换位的......

    用matlab电力系统潮流计算

    题目:潮流计算与matlab 教学单位 电气信息学院 姓 名 学 号年 级 专 业 电气工程及其自动化指导教师 职 称 副教授 摘 要 电力系统稳态分析包括潮流计算和静态安全分......

    电力系统仿真MATPOWER潮流计算

    IEEE30节点潮流计算 宁夏大学新华学院 马智 潮流计算,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。潮流计算......

    2第二章 电力系统潮流计算-2

    第二章 电力系统潮流计算 2.1 概 述 2.2 潮流计算问题的数学问题 2.3 潮流计算的牛顿法 2.4 潮流计算的P-Q分解法 2.5 静态安全分析及补偿法 2.5.1 静态安全分析概述 静态......

    电力系统潮流计算程序[推荐5篇]

    #include #include #include "Node.h" #include "Transmission_line.h" #include "Transformer.h" void main { coutPd>>Qd; coutUd; double data[300][8]; //分别......

    电力系统的潮流计算[5篇范文]

    %电力系统的潮流计算,以下程序参考文献 《电力系统毕业设计》中国水利电力出版社 %(该文献用极坐标下的牛顿——拉夫逊方法实现,在此为了与课本一致做了修改) %为了计算方便......