外文翻译--使用语音识别技术控制的焊接机器人工作单元-精品

时间:2019-05-14 02:25:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《外文翻译--使用语音识别技术控制的焊接机器人工作单元-精品》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《外文翻译--使用语音识别技术控制的焊接机器人工作单元-精品》。

第一篇:外文翻译--使用语音识别技术控制的焊接机器人工作单元-精品

Use of Voice Recognition for Control of a Robotic

Welding Workcell

ABSTRACT: This paper describes work underway to evaluate the effectiveness of voice recognition systems as an element in the control of a robotic welding workcell.Factors being considered for control include program editor access security,Preoperation checklist requirements, welding process variable control,and robot manipulator motion overrides.In the latter two categories, manual vocal control is being compared against manual tactile control and fully automatic control in terms of speed of response, accuracy, stability, reliability.And safety.Introduction

Voice recognition technology is now recognized as a potential means for easing the workload of operators of complex systems.Numerous applications have already been implemented, are in various stages of development, or are under consideration.These include data entry,control of aircraft systems, and voice identification and verification for security purposes.Voice control has also been proposed for use aboard the space station.One prime area for application would be control of some functions of robots used for intraand extravehicular inspection, assembly, repair,satellite retrieval, and satellite maintenance when a crewmember is serving in a supervisory capacity or the system is operating in a teleoperation mode.Voice control of sensors and process variables would free the crewmember’s hands for other tasks, such as direct control or override of the manipulator motion.Similarly, the workload associated with control of many onboard experiments could be eased through the use of this technology.This paper describes the application of voice recognition for control of a robotic welding workcell.This is a complex system involving inputs from multiple sensors and control of a wide variety of robot manipulator motions and process variables.While many functions are automated, a human operator serves in a supervisory capacity, ready to override functions when necessary.In the present investigation, a commercially available voice recognition system is being integrated with a robotic welding workcell at NASA Marshall Space Flight Center, which is used as a test bed for evaluation and development of advanced technologies for use in fabrication of the Space Shuttle Main Engine.In the system under development, some functions do not yet have automatic closedloop control, thus requiring continuous monitoring and real-time adjustment by the human operator.Presently, these ovemdes are input to the system through tactile commands(;.e..pushing buttons.turning knobs for potentiometers, or adjusting mechanical devices).Since the operator monitors the process primarily visually, he must either look away from the process to find the proper button or knob or rely on“muscular memory”much as a touch-typist does.In the first case, the time of response to a deviant condition may be excessive.In the second case, there is an increased probability of a secondary error being introduced by the operator.A voice recognition system could reduce the response time required from the operator.The probability of pushing the wrong button should similarly be reduced.Also, operator fatigue should be minimized.Since the operator can continuously monitor the process during override input, the effect of the change can be observed more quickly.Thus, if the desired value is exceeded and reverse correction is required, it should be accomplished more quickly, allowing less overshoot.This reduction in oscillation about the desired value makes the system more stable.Another factor that can be improved is operator safety.In a safety-critical situation,the robot’s operation can be halted immediately by use of the “emergency stop,’’ or E-stop, mode, which is initiated, conventionally, by depressing a large button.If an operator inadvertently finds himself in a hazardous situation, it may be necessary for him to initiate the E-stop sequence.Should the operator not be within reach of the button,however, he may be unable to take the necessary action, and, as a result, could suffer serious injury.Having the capability of stopping the robot by issuing a voice command could significantly improve the operator’s safety by enabling him to stop the robot even when not within reach of the E-stop button.Manual corrections are occasionally required to adjust the location at which the weld filler wire enters the weld pool.Proper entry location is absolutely critical to sound weld quality.Adjustments are made either by manually adjusting mechanisms that hold the wirefeed guide tube or by issuing tactile commands to a servomechanism.Use of a voice recognition system could eliminate the need for the operator to place his hand within the working envelope of the robot end effector or, if servomechanisms are employed,could improve speed of response and stability.Another aspect of robot operation in an industrial environment that is very important is the security of a program editing capability of the system.Under no circumstances should any unauthorized person be able to enter this programming mode and alter the robot’s program.A voice recognition system can provide the necessary security by allowing access only for individuals who are authorized and whose voices can be identified by the system.Background

Robotic welding is under development by NASA and Rocketdyne for the automation of welds on the Space Shuttle Main Engine that are presently made manually.The programmability of a robot can reduce the percentage of welding defects through a combination of consistency and repeatability unattainable by its human counterparts.To do this, the robot is programmed to a nominal weld path and level of weld process parameters(i.e., current, travel speed.voltage,wire addition rate).Some adjustment of these values is often necessary due to conditions changing during the weld.A human making a manual weld accomplishes this adjustment readily, while a robot must rely on the limited talents of sensors and the ability of the operator to override functions when necessary.System Integration

The basic elements of the workcell system are shown diagrammatically in the illustration.The ultimate goal of the system development work in progress is to generate robot manipulator programs and weld process programs off line, download them to the workcell supervisory computer, then use sensor subsystems to make closed-loop corrections to the robot path and process variables.Offline programming is being done with an Intergraph modified VAX 780/785-205 computer system with Interact color graphics workstations.Deviations between the programmed robot path and the actual required path are observed and corrected by a sophisticated vision-based sensor developed for this application by Ohio State University.This sensor system is also designed to permit measurement of the molten weld pool surface dimensions and correct welding current level to maintain the weld pool dimensions within desired limits.Presently, a number of functions are still controlled manually, and manual overrides capability is required for all functions.As stated in the Introduction, use of voice recognition may improve the accuracy and speed of response of these manual overrides.To explore this technology, a Votan VRT 6050 stand-alone voice recognition terminal has been integrated into the workcell.This system provides continuous speech recognition of up to 10 sets of words with 75-150 words per set.The integration of the voice recognition system is broken into analog and discrete signals for control.The voice recognition system connects to the control computer through a standard RS232-C communications link.Discrete Control Signals

In this project, most of the control circuitry is based on discrete digital signals.This is due to the on/off state nature of the circuits to be controlled in the robot controller.The circuits of the system to be controlled by the voice recognition control computer(VRCC)by discrete signals are the emergency stop circuit and the positive jog and negative jog circuits for motion control.Since the safety of the operator is paramount in any automated workcell, the voice recognition system should be incorporated as a safety feature.To accomplish this, the VRCC has been interfaced into the workcell emergency stop circuit.The emergency stop circuit in the robotic workcell will shut down the welding process and the mechanical motion of the manipulators.Through the use of a digital signal from the VRCC, a relay is energized that interrupts the necessary circuits in the weld power supply and robot controller.With the use of the voice recognition system as a safety control for this workcell, we have added a third level of redundancy into the emergency stopping ability of the operator(in addition to the present emergency stop buttons).Manipulator motions are controlled through an axis select button in conjunction with a positive or negative jog button that is depressed by the operator.Once the operator has selected an axis, he depresses one of the jog buttons for the desired travel distance.This function was selected to be controlled by the VRCC because of its utilization during automatic operation of the manipulator to correct trajectory errors.The circuitry necessary to control this operation draws the signal to ground through the activation of relays for the positive or negative jog motion.Because motion is achieved only as long as these signals are active low.they can be controlled by discrete digital signals from the VRCC.Analog Control Signals

There are many variables that affect the quality of weld during the welding process.but the welding current has the greatest effect over a small range of values.It was for this reason, that the welding current was chosen to be controlled by the voice recognition system.The welding power supply controls the current level through a voltage circuit that uses a range of 0-10 V DC.These voltage values are converted to current levels from 0 to 300 A for welding.A digital-to-analog converter is used in conjunction with a multiplying circuit.The converter allows the VRCC to control a voltage level that is used by the weld power supply to achieve the proper welding current.The multiplier circuit is necessary to allow the weld power supply to be controlled by the other subcontroller used in the workcell.Experimental Investigation

The accuracy and speed of response of corrections to robot manipulator motion and welding process variables made with the VRCC are being compared with those made with the original control system.Step input errors to robot motion and welding current are introduced randomly into the robot program.By graphically recording relevant system output signals,the time required for the operator to detect the change and initiate corrective action may be measured.Response accuracy and stability may also be gaged through similar analysis of the relevant recorded system output signals.Conclusions

Future work will investigate voice control of welding filler wirefeed speed and location of wire entry into the weld pool.Also to be investigated is voice control of welding arc voltage override.Later, restriction of access to the robot program editor by voice recognition may be implemented.The use of voice recognition technology for manual supervisory control of industrial robot systems is very promising.This technology has application for aerospace welding due to the need to have constant human supervision over a multitude of process parameters in real time.Future development of this technology will permit rapid expansion of its application to both robotic and nonrobotic processes.Acknowledgment

Special thanks to Mr.Jeff Hudson of Martin Marietta Corporation for assistance in the preparation of the illustration presented in this article.References

[1] C.A.Simpson.hl.E.McCauley.E.F.Rolland.J.C.Ruth.and B.H.Williges.“System Design for Speech Recognition and Generation.” Hutnnn Factors.vol.27.no.2.pp.115-1-11.1985.[2] National Research Council.Committee on Computerized Speech Recognition Technologies.Automatic Speech Rerop1irior1 in severe Environments National Research Council.1984.[3] E.J.Lerner.“Talking to Your Aircraft.” Aerospace America.vol.24.no.2.pp.85-88.1986.[4] J.T.Memlield.“Bosing Explores Voice Recognition for Future Transpon Flight Deck.” Ariarinn Week and Space Techno/-og!.vol.124.no.16.pp.85-91.1986.[5] A.Cohen and J.D.Erickson,..Future Uses of Machine Intelligence and Robotics for the Space Station and Implications for the U.S.Economy.'' IEEE J.Robotics and Automarion.vol.SMC-16.pp.1 11-12 I.Jan.iFeb.1986 [6] “Automation and Robotics for the National Space Program,” California Space Institute Automation and Robotics Panel.Cal Space Repon CS1185-01, Feb.25, 1985.[7] “Advancing Automation and Robotics Technology for the Space Station and for the U.S.Economy.” Advanced Technology AdvisoryCommittee.NASA TM 87566.Mar.1985.使用语音识别技术控制的焊接机器人工作单元

摘要:本文论述了使用声音识别技术的焊接机器人工作单元在工作过程中的效果、程序编辑者接近机器人的安全﹑试行运转的必要性﹑焊接过程的控制变量﹑机器人操作者的动作规范等因素给与考虑。在焊接过程控制和操作动作两个方面,按照反应速度﹑定位精确性﹑焊接稳定性﹑焊接可靠性和安全性把人工声音控制与手工触觉控制和完全自动化控制进行了比较。

绪论

声音识别技术已经成为可能缓解操作者工作负担的一种有潜力的复杂系统。许多应用已经落实,或正陆续开发,或正在研究之中。这些措施包括数据的输入﹑飞机的控制﹑和以安全为目的的语音识别。

许多应用语音控制技术还建议用于太空站.一个主要的应用领域将机器人控制功能用于太空舱内检查、装配、维修、卫星回收、维修卫星,是在船上服务的监督能力和系统运作模式的反馈.声音感应器和过程控制的变数将使船员影响他手上的其它工作,例如直接控制或推翻的操纵议案。同样,利用工作量控制机载实验这种技术可以缓解许多工作负担。

这份文件描述应用语音识别控制的焊接机器人工作单元。这是一个复杂的系统,涉及多个传感器及控制投入各种机械操作件和变化多样的工艺参数。虽然许多功能是自动化,且为人类监督管理能力所控制,但在必要时随时准备超越这些功能。在当前的调查中,在美国航天局的马歇尔空间飞行中心可供商业使用语音识别系统结合了焊接机器人工作单元的技术,这一技术作为试点的评价和开发先进技术并用于制造航天飞机主发动机。在系统开发中,有些功能尚不具备自动跟踪控制,因此需要不断地人力监测和实时调整操作。目前,该系统投入方案是通过触觉指令(即: 推动按钮.旋转电位计、或者调整机械装置)。由于操作过程中,主要监测者必须考虑在远离的过程中寻找适当的按钮或把手或靠像打字员一样那种打字时的肌肉记忆。第二种情况,可能由于操作者的的二次反应而增加了错误发生的可能性。

一个语音识别系统可减少操作者的反应时间。操作者按错按钮的可能性了同样的也会减少。并且,操作者劳累也会大大减小。

由于在方案运行的过程中操作者不断监测,可以更快地观察到运行状况改变所带来的影响。因此,如果超过了预期值,应该更快纠正,,但不能太过度。这对减少振荡,使系统更加稳定的实现了预期的价值。

另一个因素是可以改善操作者的安全.。在一个安全的紧急情况下,机器人的操作者可以采取紧急停止来停止其运行,这种紧急停止模式一般来说是设置一个大按钮,按惯例是一种经常用的方式。如果操作者无意中发现自己在危险的情况下,这时也许他有必要采取紧急停止这种模式。如果操作者不能够按到的按钮,可他也没有能力采取必要的行动时,这样下去,他可能会受重伤。如果操作者者能通过发出声音指令来停止机器人的运行那将会大大的改善操作者的安全,即使操作者在不能按到紧急停止按钮无法停止机器的情况下也将很安全。

手工调整有时候需要适应焊丝填充到焊接溶池中的位置。填充到正确合适的位置是焊接质量的关键。既可通过手工调节机制来控制送丝导管也可给自动控制装置发出移动指令来进行调整。使用语音识别系统可以让操作者者不必再把机器人控制效应得指令文件拿在手中,如自动控制装置被使用,可以改善操作的反应速度和运行稳定性。

另一方面,编辑系统程序权限的安全是工业机器人在作业环境中很重要的一个安全。在任何情况下,任何未经授权的人能进入程序编辑模式,并且可以改变机器人的控制程序。一个语音识别系统,可提供必要的安全,使他们那些久久是获得授权的人的声音,才能被机器人系统识别。

背景

美国航天局正在开发焊接机器人并且焊接自动化设备来代替目前正在用手工焊接的航天飞机的主发动机。使用该机器人的程序,可以通过用手工来难以做到的焊接一致性和重复操作来达到减少焊接缺陷的比例。为此,焊接机可以编成控制额定的焊接通路和所需要的焊接过程参数,(即焊接电流、焊接速度、焊接电压、送丝速度等)。当焊接条件改变的时候做一些有价值调整是很有必要的。一个人用手工来操作焊接时作出调整是很容易的,但是机器人的调节靠传感器的智能和必要的人工操作者的方案调节。

系统综述

机器人工作系统的基本情况如图表所示,最终的系统开发工作是编辑操作的程序和焊接过程生产线的控制程序,下载这些程序到控制工作单元的电脑,然后使用子系统传感器修正机器人的运行路径和过程,使其可变。利用VAX 780/785-205电脑连接到彩色图形处理工作站来进行图表处理实现脱机设计。机器人由于程序编辑和实际需要之间的偏差是通过俄亥俄州大学研究的精密的视觉传感器来发现和纠正的。这种传感系统也设计成允许测量焊接溶池表面尺寸和改变电流大小来调节焊接溶池保持理想的形状。目前,仍有许多功能人工控制,而且各个方面的功能都需要人工的操作。如前绪论中所述,引进声音识别技术可以改进人工操作的准确性和反应速度。为研究这项技术,Votan VRT 6050声音识别单机终端被引入到机器人的工作单元中。这个连续的语音识别系统可以提供多达10套,每套有75—150句话。

把语音识别系统的模拟和离散信号输入控制。语音识别系统通过RS232-C的通信连接到控制主机。

图1焊接机器人系统设计

离散控制信号

在这个项目中,大多数控制电路是基于不同的数字信号。这主要是用在一些国产性质的机器人控制器上的。通过语音识别技术控制的计算机来控制的电路系统是通过一种离散信号来控制,这种信号有紧急停止电路和积极响应和消极响应电路的功能。

因为任何自动化工作单元中操作者的安全是必须保障的,所以应把语音识别系统的安全也考虑在内。为达到这一目标,贞技术已引入紧急停止电路的工作单元。机器人工作单元中的紧急停止电路将会停止焊接过程的终止操作者的操作。通过使用数字贞信号,需要中断焊接动力供电线路和机器人控制器的继电器被广泛使用。由于在这一工作单元中使用的语音识别技术这一安全系统,我们又增加了第三种供选择的紧急停车的方案(除了现在已经有的紧急停车按钮)。

方案是通过操作者在轴配合正按钮或负按钮之间选择来实现控制的。一旦操作者选择了轴,它可以在理想的距离之内控制负按钮。这种功能的选用是通过控贞信号来控制的,因为贞信号的使用在自动操作中可以纠正运行的错误。在这一操作中有必要通过继电器的正负极的地面信号来达到目的。只因为这些信号很微弱才能达到目的。他们可以通过贞信号远距离控制。

模拟控制信号

有很多因素影响焊接过程的质量,但是焊接电流对焊接质量的影响绝不是一个小的因素。正因为如此,所以焊接电流被选择为声音识别系统控制的对象。

使用0—10V直流电压来控制焊接电源从而控制电流大小,这种电压可以使电流在焊接过程中从0—300A之间变化。数子—模拟转化器配合的电路在广泛的使用。这种转换器允许贞信号控制电压的大小从而使电源能提供合适的焊接电流。这种电路必须允许焊接电源通过工作单元中的其它辅助设备来控制。

实验研究

在准确性和反应速度方面通过贞信号控制的各种焊接过程与原始的控制系统进行了比较。目前焊接机器人操作的的输入误差提和焊接电流已经被引入到机器人程序中。通过图表记录了系统相关的信号,可以通过操作者发觉错误和纠正这一错误所需要的时间来衡量。反应的准确性和稳定性也可以通过类似的记录仪器来分析系统信号的输入。

结论

今后的工作将会把语音控制技术应用到焊丝填充速度焊丝填入溶池位置的控制,也会将该技术用在弧焊电压控制上。以后,那些现在在机器人编程受到限制的的方案在采用语音识别技术之后有可能实现。

利用语音识别技术控制工业机器人系统非常有前景的。由于航空焊接需要大量人力监管过程实时参数控制所以这项技术已申请用于航空焊接。这一技术的未来发展将可迅速扩展为机器人的应用和非机器人的处理过程。

致谢

在此特别感谢Martin Marietta 公司的Mr.Jeff Hudson协助编作本篇论文。

参考文献

[1] C.A.Simpson.hl.E.McCauley.E.F.Rolland.J.C.Ruth.and B.H.Williges.“System Design for Speech Recognition and Generation.” Hutnnn Factors.vol.27.no.2.pp.115-1-11.1985.[2] National Research Council.Committee on Computerized Speech Recognition Technologies.Automatic Speech Rerop1irior1 in severe Environments National Research Council.1984.[3] E.J.Lerner.“Talking to Your Aircraft.” Aerospace America.vol.24.no.2.pp.85-88.1986.[4] J.T.Memlield.“Bosing Explores Voice Recognition for Future Transpon Flight Deck.” Ariarinn Week and Space Techno/-og!.vol.124.no.16.pp.85-91.1986.[5] A.Cohen and J.D.Erickson,..Future Uses of Machine Intelligence and Robotics for the Space Station and Implications for the U.S.Economy.'' IEEE J.Robotics and Automarion.vol.SMC-16.pp.1 11-12 I.Jan.iFeb.1986 [6] “Automation and Robotics for the National Space Program,” California Space Institute Automation and Robotics Panel.Cal Space Repon CS1185-01, Feb.25, 1985.[7] “Advancing Automation and Robotics Technology for the Space Station and for the U.S.Economy.” Advanced Technology AdvisoryCommittee.NASA TM 87566.Mar.1985.

第二篇:智能语音识别机器人文献翻译

改进型智能机器人的语音识别方法

2、语音识别概述

最近,由于其重大的理论意义和实用价值,语音识别已经受到越来越多的关注。到现在为止,多数的语音识别是基于传统的线性系统理论,例如隐马尔可夫模型和动态时间规整技术。随着语音识别的深度研究,研究者发现,语音信号是一个复杂的非线性过程,如果语音识别研究想要获得突破,那么就必须引进非线性系统理论方法。最近,随着非线性系统理论的发展,如人工神经网络,混沌与分形,可能应用这些理论到语音识别中。因此,本文的研究是在神经网络和混沌与分形理论的基础上介绍了语音识别的过程。

语音识别可以划分为独立发声式和非独立发声式两种。非独立发声式是指发音模式是由单个人来进行训练,其对训练人命令的识别速度很快,但它对与其他人的指令识别速度很慢,或者不能识别。独立发声式是指其发音模式是由不同年龄,不同性别,不同地域的人来进行训练,它能识别一个群体的指令。一般地,由于用户不需要操作训练,独立发声式系统得到了更广泛的应用。所以,在独立发声式系统中,从语音信号中提取语音特征是语音识别系统的一个基本问题。

语音识别包括训练和识别,我们可以把它看做一种模式化的识别任务。通常地,语音信号可以看作为一段通过隐马尔可夫模型来表征的时间序列。通过这些特征提取,语音信号被转化为特征向量并把它作为一种意见,在训练程序中,这些意见将反馈到HMM的模型参数估计中。这些参数包括意见和他们响应状态所对应的概率密度函数,状态间的转移概率,等等。经过参数估计以后,这个已训练模式就可以应用到识别任务当中。输入信号将会被确认为造成词,其精确度是可以评估的。整个过程如图一所示。

图1 语音识别系统的模块图

3、理论与方法

从语音信号中进行独立扬声器的特征提取是语音识别系统中的一个基本问题。解决这个问题的最流行方法是应用线性预测倒谱系数和Mel频率倒谱系数。这两种方法都是基于一种假设的线形程序,该假设认为说话者所拥有的语音特性是由于声道共振造成的。这些信号特征构成了语音信号最基本的光谱结构。然而,在语音信号中,这些非线形信息不容易被当前的特征提取逻辑方法所提取,所以我们使用分型维数来测量非线形语音扰动。

本文利用传统的LPCC和非线性多尺度分形维数特征提取研究并实现语音识别系统。

3.1线性预测倒谱系数

线性预测系数是一个我们在做语音的线形预分析时得到的参数,它是关于毗邻语音样本间特征联系的参数。线形预分析正式基于以下几个概念建立起来的,即一个语音样本可以通过一些以前的样本的线形组合来快速地估计,根据真实语音样本在确切的分析框架(短时间内的)和预测样本之间的差别的最小平方原则,最后会确认出唯一的一组预测系数。

LPC可以用来估计语音信号的倒谱。在语音信号的短时倒谱分析中,这是一种特殊的处理方法。信道模型的系统函数可以通过如下的线形预分析来得到:

其中p代表线形预测命令,(k=1,2,„ „,p)代表预测参数,脉冲响应用

。那么(1)式可以扩展为(2)式: h(n)来表示,假设h(n)的倒谱是

将(1)带入(2),两边同时,(2)变成(3)。

就获得了方程(4):

那么 可以通过

来获得。

(5)中计算的倒谱系数叫做LPCC,n代表LPCC命令。

在我们采集LPCC参数以前,我们应该对语音信号进行预加重,帧处理,加工和终端窗口检测等,所以,中文命令字“前进”的端点检测如图2所示,接下来,断点检测后的中文命令字“前进”语音波形和LPCC的参数波形如图3所示。

图2 中文命令字“前进”的端点检测

图3 断点检测后的中文命令字“前进”语音波形和LPCC的参数波形

3.2 语音分形维数计算

分形维数是一个与分形的规模与数量相关的定值,也是对自我的结构相似性的测量。分形分维测量是[6-7]。从测量的角度来看,分形维数从整数扩展到了分数,打破了一般集拓扑学方面被整数分形维数的限制,分数大多是在欧几里得几何尺寸的延伸。

有许多关于分形维数的定义,例如相似维度,豪斯多夫维度,信息维度,相关维度,容积维度,计盒维度等等,其中,豪斯多夫维度是最古老同时也是最重要的,它的定义如【3】所示:

其中,表示需要多少个单位来覆盖子集F.端点检测后,中文命令词“向前”的语音波形和分形维数波形如图4所示。

图4 端点检测后,中文命令词“向前”的语音波形和分形维数波形

3.3 改进的特征提取方法

考虑到LPCC语音信号和分形维数在表达上各自的优点,我们把它们二者混合到信号的特取中,即分形维数表表征语音时间波形图的自相似性,周期性,随机性,同时,LPCC特性在高语音质量和高识别速度上做得很好。

由于人工神经网络的非线性,自适应性,强大的自学能力这些明显的优点,它的优良分类和输入输出响应能力都使它非常适合解决语音识别问题。

由于人工神经网络的输入码的数量是固定的,因此,现在是进行正规化的特征参数输入到前神经网络[9],在我们的实验中,LPCC和每个样本的分形维数需要分别地通过时间规整化的网络,LPCC是一个4帧数据(LPCC1,LPCC2,LPCC3,LPCC4,每个参数都是14维的),分形维数被模范化为12维数据,(FD1,FD2,„FD12,每一个参数都是一维),以便于每个样本的特征向量有4*14+12*1=68-D维,该命令就是前56个维数是LPCC,剩下的12个维数是分形维数。因而,这样的一个特征向量可以表征语音信号的线形和非线性特征。

自动语音识别的结构和特征

自动语音识别是一项尖端技术,它允许一台计算机,甚至是一台手持掌上电脑(迈尔斯,2000)来识别那些需要朗读或者任何录音设备发音的词汇。自动语音识别技术的最终目的是让那些不论词汇量,背景噪音,说话者变音的人直白地说出的单词能够达到100%的准确率(CSLU,2002)。然而,大多数的自动语音识别工程师都承认这样一个现状,即对于一个大的语音词汇单位,当前的准确度水平仍然低于90%。举一个例子,Dragon's Naturally Speaking或者IBM公司,阐述了取决于口音,背景噪音,说话方式的基线识别的准确性仅仅为60%至80%(Ehsani & Knodt, 1998)。更多的能超越以上两个的昂贵的系统有Subarashii(Bernstein, et al., 1999), EduSpeak(Franco, etal., 2001), Phonepass(Hinks, 2001), ISLE Project(Menzel, et al., 2001)and RAD(CSLU, 2003)。语音识别的准确性将有望改善。

在自动语音识别产品中的几种语音识别方式中,隐马尔可夫模型(HMM)被认为是最主要的算法,并且被证明在处理大词汇语音时是最高效的(Ehsani & Knodt, 1998)。详细说明隐马尔可夫模型如何工作超出了本文的范围,但可以在任何关于语言处理的文章中找到。其中最好的是Jurafsky & Martin(2000)and Hosom, Cole, and Fanty(2003)。简而言之,隐马尔可夫模型计算输入接收信号和包含于一个拥有数以百计的本土音素录音的数据库的匹配可能性(Hinks, 2003, p.5)。也就是说,一台基于隐马尔可夫模型的语音识别器可以计算输入一个发音的音素可以和一个基于概率论相应的模型达到的达到的接近度。高性能就意味着优良的发音,低性能就意味着劣质的发音(Larocca, et al., 1991)。

虽然语音识别已被普遍用于商业听写和获取特殊需要等目的,近年来,语言学习的市场占有率急剧增加(Aist, 1999;Eskenazi, 1999;Hinks, 2003)。早期的基于自动语音识别的软件程序采用基于模板的识别系统,其使用动态规划执行模式匹配或其他时间规范化技术(Dalby & Kewley-Port,1999).这些程序包括Talk to Me(Auralog, 1995), the Tell Me More Series(Auralog, 2000), Triple-Play Plus(Mackey & Choi, 1998), New Dynamic English(DynEd, 1997), English Discoveries(Edusoft, 1998), and See it, Hear It, SAY IT!(CPI, 1997)。这些程序的大多数都不会提供任何反馈给超出简单说明的发音准确率,这个基于最接近模式匹配说明是由用户提出书面对话选择的。学习者不会被告之他们发音的准确率。特别是内里,(2002年)评论例如Talk to Me和Tell Me More等作品中的波形图,因为他们期待浮华的买家,而不会提供有意义的反馈给用户。Talk to Me 2002年的版本已经包含了更多Hinks(2003)的特性,比如,信任对于学习者来说是非常有用的: ★ 一个视觉信号可以让学习者把他们的语调同模型扬声器发出的语调进行对比。★ 学习者发音的准确度通常以数字7来度量(越高越好)★ 那些发音失真的词语会被识别出来并被明显地标注。

Improved speech recognition method

for intelligent robot

2、Overview of speech recognition Speech recognition has received more and more attention recently due to the important theoretical meaning and practical value [5 ].Up to now, most speech recognition is based on conventional linear system theory, such as Hidden Markov Model(HMM)and Dynamic Time Warping(DTW).With the deep study of speech recognition, it is found that speech signal is a complex nonlinear process.If the study of speech recognition wants to break through, nonlinear-system theory method must be introduced to it.Recently, with the developmentof nonlinea-system theories such as artificial neural networks(ANN), chaos and fractal, it is possible to apply these theories to speech recognition.Therefore, the study of this paper is based on ANN and chaos and fractal theories are introduced to process speech recognition.Speech recognition is divided into two ways that are speaker dependent and speaker independent.Speaker dependent refers to the pronunciation model trained by a single person, the identification rate of the training person?sorders is high, while others’orders is in low identification rate or can’t be recognized.Speaker independent refers to the pronunciation model trained by persons of different age, sex and region, it can identify a group of persons’orders.Generally, speaker independent system ismorewidely used, since the user is not required to conduct the training.So extraction of speaker independent features from the speech signal is the fundamental problem of speaker recognition system.Speech recognition can be viewed as a pattern recognition task, which includes training and recognition.Generally, speech signal can be viewed as a time sequence and characterized by the powerful hidden Markov model(HMM).Through the feature extraction, the speech signal is transferred into feature vectors and act asobservations.In the training procedure, these observationswill feed to estimate the model parameters of HMM.These parameters include probability density function for the observations and their corresponding states, transition probability between the states, etc.After the parameter estimation, the trained models can be used for recognition task.The input observations will be recognized as the resulted words and the accuracy can be evaluated.Thewhole process is illustrated in Fig.1.Fig.1 Block diagram of speech recognition system Theory andmethod Extraction of speaker independent features from the speech signal is the fundamental problem of speaker recognition system.The standard methodology for solving this problem uses Linear Predictive Cepstral Coefficients(LPCC)and Mel-Frequency Cepstral Co-efficient(MFCC).Both these methods are linear procedures based on the assumption that speaker features have properties caused by the vocal tract resonances.These features form the basic spectral structure of the speech signal.However, the non-linear information in speech signals is not easily extracted by the present feature extraction methodologies.So we use fractal dimension to measure non2linear speech turbulence.This paper investigates and implements speaker identification system using both traditional LPCC and non-linear multiscaled fractal dimension feature extraction.3.1 L inear Predictive Cepstral Coefficients

Linear prediction coefficient(LPC)is a parameter setwhich is obtained when we do linear prediction analysis of speech.It is about some correlation characteristics between adjacent speech samples.Linear prediction analysis is based on the following basic concepts.That is, a speech sample can be estimated approximately by the linear combination of some past speech samples.According to the minimal square sum principle of difference between real speech sample in certain analysis frame short-time and predictive sample, the only group ofprediction coefficients can be determined.LPC coefficient can be used to estimate speech signal cepstrum.This is a special processing method in analysis of speech signal short-time cepstrum.System function of channelmodel is obtained by linear prediction analysis as follow.Where p represents linear prediction order, ak,(k=1,2,…,p)represent sprediction coefficient, Impulse response is represented by h(n).Suppose cepstrum of h(n)is represented by ,then(1)can be expanded as(2).The cepstrum coefficient calculated in the way of(5)is called LPCC, n represents LPCC order.When we extract LPCC parameter before, we should carry on speech signal pre-emphasis, framing processing, windowingprocessing and endpoints detection etc., so the endpoint detection of Chinese command word“Forward”is shown in Fig.2, next, the speech waveform ofChinese command word“Forward”and LPCC parameter waveform after Endpoint detection is shown in Fig.3.3.2 Speech Fractal Dimension Computation

Fractal dimension is a quantitative value from the scale relation on the meaning of fractal, and also a measuring on self-similarity of its structure.The fractal measuring is fractal dimension[6-7].From the viewpoint of measuring, fractal dimension is extended from integer to fraction, breaking the limitof the general to pology set dimension being integer Fractal dimension,fraction mostly, is dimension extension in Euclidean geometry.There are many definitions on fractal dimension, eg.,similar dimension, Hausdoff dimension, inforation dimension, correlation dimension, capability imension, box-counting dimension etc., where,Hausdoff dimension is oldest and also most important, for any sets, it is defined as[3].Where, M£(F)denotes how many unit £ needed to cover subset F.In thispaper, the Box-Counting dimension(DB)of ,F, is obtained by partitioning the plane with squares grids of side £, and the numberof squares that intersect the plane(N(£))and is defined as[8].The speech waveform of Chinese command word“Forward”and fractal dimension waveform after Endpoint detection is shown in Fig.4.3.3 Improved feature extractions method Considering the respective advantages on expressing speech signal of LPCC and fractal dimension,we mix both to be the feature signal, that is, fractal dimension denotes the self2similarity, periodicity and randomness of speech time wave shape, meanwhile LPCC feature is good for speech quality and high on identification rate.Due to ANN′s nonlinearity, self-adaptability, robust and self-learning such obvious advantages, its good classification and input2output reflection ability are suitable to resolve speech recognition problem.Due to the number of ANN input nodes being fixed, therefore time regularization is carried out to the feature parameter before inputted to the neural network[9].In our experiments, LPCC and fractal dimension of each sample are need to get through the network of time regularization separately, LPCC is 4-frame data(LPCC1,LPCC2,LPCC3,LPCC4, each frame parameter is 14-D), fractal dimension is regularized to be12-frame data(FD1,FD2,…,FD12, each frame parameter is 1-D), so that the feature vector of each sample has 4*14+1*12=68-D, the order is, the first 56 dimensions are LPCC, the rest 12 dimensions are fractal dimensions.Thus, such mixed feature parameter can show speech linear and nonlinear characteristics as well.Architectures and Features of ASR ASR is a cutting edge technology that allows a computer or even a hand-held PDA(Myers, 2000)to identify words that are read aloud or spoken into any sound-recording device.The ultimate purpose of ASR technology is to allow 100% accuracy with all words that are intelligibly spoken by any person regardless of vocabulary size, background noise, or speaker variables(CSLU, 2002).However, most ASR engineers admit that the current accuracy level for a large vocabulary unit of speech(e.g., the sentence)remains less than 90%.Dragon's Naturally Speaking or IBM's ViaVoice, for example, show a baseline recognition accuracy of only 60% to 80%, depending upon accent, background noise, type of utterance, etc.(Ehsani & Knodt, 1998).More expensive systems that are reported to outperform these two are Subarashii(Bernstein, et al., 1999), EduSpeak(Franco, et al., 2001), Phonepass(Hinks, 2001), ISLE Project(Menzel, et al., 2001)and RAD(CSLU, 2003).ASR accuracy is expected to improve.Among several types of speech recognizers used in ASR products, both implemented and proposed, the Hidden Markov Model(HMM)is one of the most dominant algorithms and has proven to be an effective method of dealing with large units of speech(Ehsani & Knodt, 1998).Detailed descriptions of how the HHM model works go beyond the scope of this paper and can be found in any text concerned with language processing;among the best are Jurafsky & Martin(2000)and Hosom, Cole, and Fanty(2003).Put simply, HMM computes the probable match between the input it receives and phonemes contained in a database of hundreds of native speaker recordings(Hinks, 2003, p.5).That is, a speech recognizer based on HMM computes how close the phonemes of a spoken input are to a corresponding model, based on probability theory.High likelihood represents good pronunciation;low likelihood represents poor pronunciation(Larocca, et al., 1991).While ASR has been commonly used for such purposes as business dictation and special needs accessibility, its market presence for language learning has increased dramatically in recent years(Aist, 1999;Eskenazi, 1999;Hinks, 2003).Early ASR-based software programs adopted template-based recognition systems which perform pattern matching using dynamic programming or other time normalization techniques(Dalby & Kewley-Port, 1999).These programs include Talk to Me(Auralog, 1995), the Tell Me More Series(Auralog, 2000), Triple-Play Plus(Mackey & Choi, 1998), New Dynamic English(DynEd, 1997), English Discoveries(Edusoft, 1998), and See it, Hear It, SAY IT!(CPI, 1997).Most of these programs do not provide any feedback on pronunciation accuracy beyond simply indicating which written dialogue choice the user has made, based on the closest pattern match.Learners are not told the accuracy of their pronunciation.In particular, Neri, et al.(2002)criticizes the graphical wave forms presented in products such as Talk to Me and Tell Me More because they look flashy to buyers, but do not give meaningful feedback to users.The 2000 version of Talk to Me has incorporated more of the features that Hinks(2003), for example, believes are useful to learners: ★ A visual signal allows learners to compare their intonation to that of the model speaker.★ The learners' pronunciation accuracy is scored on a scale of seven(the higher the better).Words whose pronunciation fails to be recognized are highlighted

第三篇:机器人及机器人传感技术(毕业论文外文翻译).

机器人和机器人传感器 介绍

工业机器人以及它的运行是本文的主题。工业机器人是应用于制造环境下 以提高生产率的一种工具。它可用于承担常规的、冗长乏味的装配线工作, 或执 行那些对工人也许有危害的工作。例如, 在第一代工业机器人中, 曾有一台被用 于更换核电厂的核燃料棒。从事这项工作的工人可能会暴露在有害量的放射线 下。工业机器人也能够在装配线上操作——安装小型元件, 例如将电子元件安装 在线路板上。为此, 工人可以从这种冗长乏味任务的常规操作中解放出来。通过 编程的机器人还能去掉炸弹的雷管、为残疾者服务以及在我们社会的众多应用中 发挥作用。

机器人可被看作将臂端执行工具、传感器以及 /或夹爪移动到某个预定位 置的一台机器。当机器人到达该位置,它将执行某个任务。该任务可能是焊接、密封、机械装载、机械卸载,或许多装配工作。除了编程以及打开和关闭系统之 外,一般情况下,均不需要人们的参与就能完成这类工作。

机器人专业术语

机器人是一台可再编程的多功能机械手,它可通过可编程运动移动零件、物料、工具或特殊装置以执行某种不同任务。由这项定义可导致下面段落中被阐 述的其他定义,它们为机器人系统提供了完整的写照。

预编程位置是机器人为了完成工作必须遵循和通过的途径。在这些位置 的某点,机器人会停下来并执行某种操作,例如装配零件,喷漆或焊接。这些预 编程位置被存储在机器人的记忆装置中供以后继续操作时使用。此外, 当工作的 要求发生变化时, 不仅其他编程数据而且这些预编程位置均可作修改。因此, 正 由于这种编程的特点, 一台工业机器人与一台可存储数据、以及可回忆及编辑的 计算机十分相似。

机械手是机器人的手臂, 它允许机器人俯仰、伸缩和转动。这种动作是由 机械手的轴所提供的, 机械手的轴又称为机器人的自由度。一台机器人可以具有 3至 16根轴。在本人的后面部分,自由度这个术语总与一台机器人轴的数目相

关联。

工具及夹爪并非属于机器人系统的本身, 它们是装在机器人手臂端部的附 件。有了与机器人手臂端部相连接的这些附件,机器人就可以提起零件、点焊、喷漆、弧焊、钻孔、去毛刺,还可以根据所提要求指向各种类型的任务。

机器人系统还可以控制操作机器人的工作单元。机器人工作单元是一种总 体环境, 在该环境下机器人必须执行赋予它的任务。该单元可包容控制器、机器 人的机械手、工作台、安全装置,或输送机。机器人开展工作所需要的所有设备 均被包括在这个工作单元中。此外, 来自外界装置的信号能够与机器人进行交流, 这样就可以告诉机器人什么时候它该装配零件、捡起零件或将零件卸到输送机。基本部件

机器人系统具有 3个基本部件:机械手、控制器及动力源。在某些机器人 系统中可以看到第 4个部件,端部执行件,有关这些部件将在下面小节描述。机械手

机械手承担机器人系统的体力工作,它由两部分组成:机械部分及被连接 的附属物。机械手还有一个与附属物相连的底座。

机械手的底座通常被固定在工作领域的地面。有时, 底座也可以移动。在 该情况下, 底座被安装到导轨上, 这样该机械手就可以从一处移动到另一处。例 如,一台机器人可以为几台机床工作,为每台机床装载和卸载。

正如前面所述,附属物从机器人的底座伸出。该附属物是机器人的手臂。它既可以是一个直线型的可动臂,也可以是一个铰接臂。铰接臂也称关节臂。机器人机械手的附属物可为机械手提供各种运动轴。这些轴与固定底座相 连接, 而该底座又被紧固到机架上。这个机架能确保该机械手被维持在某个位置 上。

在手臂的端部连接着一个手腕。该手腕由附加轴及手腕法兰组成, 有了该 手腕法兰,机器人用户就可以根据不同的工作在手腕上安装不同的工具。

机械手的轴允许机械手在一定区域内执行工作。如前所述, 该区域被称为 机器人的工作单元, 它的尺度与机械手的尺寸相对应。当机器人的物理尺寸增大

时,工作单元的尺寸必然也随之增加。

机械手的运动由驱动器, 或驱动系统所控制。驱动器或驱动系统允许各根 轴在工作单元内运动, 驱动系统可利用电力的、液压的或气压动力。驱动系统发 出的能量由各种机械驱动装置转换成机械动力。这些驱动装置通过机械联动机构 接合在一起。这些联动机构依次驱动机器人的不同轴。机械联动机构由链轮机构, 齿轮机构及滚珠丝杠所组成。

控制器

机器人系统的控制器是运行的心脏。控制器存储着为以后回忆所用的预编 程信息,控制着外围设备,它还与厂内计算机进行交流以使生产不断更新。控制器用于控制机器人机械手运动以及工作单元中的外围部件。工作人员 可以利用手递示教盒将机械手的动作编程进入控制器。这种信息可被存储在控制 器的记忆装置中以便以后回忆使用。控制器存储着机器人系统的所有程序数据。它可以存储几种不同的程序,并且它们中任一程序均可被编辑。

也可要求控制器与工作单元中外围设备进行交流。例如, 控制器具有一根 输入线, 该输入线可识别某项机械加工什么时候完成。当该机械循环完成时, 输 入线被接通,它会吩咐控制器让机械手到位以便机械手能夹起以加工完的零件。接着, 该机械手再捡起一根新的零件并将它安放到机床上, 然后, 控制器向该机 床发出信号让它开始运转。

控制器可由机械操纵的磁鼓构成, 这些鼓按工作发生的先后次序操作。这 类控制器用于非常简单的机器人系统。在大多数机器人系统中见到的控制器是很 复杂的装置, 它们体现了现代化的电子科学。换言之, 它们由微信息处理器操纵。这些

微信息处理器不是 8位、16位就是 32位的信息处理器。这种功能使控制器 的运行具有非常好的柔性。

控制器可通过通讯线路发出电子信号, 发出能与机械手各轴线进行沟通的 电信号, 机器人机械手与控制器之间这种双向交流可使系统的位置及运行维持在 不断修正及更新得状态下,控制器还可以控制安装在机器人手腕端部的任意工 具。

控制器还有与工厂中不同计算机开展交流的任务, 这个通讯网络可使机器 人成为计算机辅助制造(CAM 系统的一部分。

根据上述基本定义, 机器人是一台可再编程序的多功能机械手。所以, 控 制器必须包含某种形式的记忆存储器, 以微信息处理器为基础的系统常与固态记 忆装置连同运行。这些记忆装置可以是磁泡、随机存取记忆装置、软塑料磁盘或 磁带。每种记忆存储装置均可存储编程信息以便以后回忆使用。

动力源

动力源是向控制器及机械手供给动力得装置,有两类动力供给机器人系 统。一类动力是供控制器运行的交流点动力, 另一类被用于驱动机械手各轴。例 如, 若机器人的机械手由液压或气压装置控制, 则控制信号被发送到这些装置才 能使机器人运动。

每个机器人系统均需要动力来驱动机械手,这种动力既可由液压动力源、气压动力源, 也可以由电力动力源提供, 这些动力源是机器人工作单元总的部件 及设备中的一部分。

当液压动力源与及机器人机械手底座相连接, 液压源产生液压流体, 这些 流体输送到机械手各控制元件,于是,使轴绕机器人底座旋转。

压力空气被输送到机械手, 使轴沿轨道作直线运动, 也可将这种气动源连 接到钻床, 它可为钻头的旋转提供动力。一般情况下, 可从工厂得供给站获取气 动源并做调整,然后将它输入机器人机械手的轴。

电动机可以是交流式的, 也可以是直流式的。控制器发出的脉冲信号被发 送到机械手得电机。这些脉冲为电机提供必要的指令信息以使机械手在机器人底 座上旋转。

用于机械手轴的三种动力系统任一种均需要使用反馈监督系统, 这种系统 会不断地将每个轴位置数据反馈给控制器。

每种机器人系统不仅需要动力来开动机械手的轴, 还需要动力来驱动控制 器,这种动力可由制造环境的动力源提供。

端部执行件

在大部分机器人应用的场合见到的端部执行件均是机械手手腕法兰相连 接的一个装置, 端部执行件可应用于生产领域中许多不同场合, 例如, 它可用于 捡起零件, 用于焊接, 或用于喷漆, 端部执行件为机器人系统提供了机器人运行 时必须的柔性。

通常所设计得端部执行件可满足机器人用户的需要。这些部件可由机器人 制造商或机器人系统的物主制造。

端部执行件事机器人系统中唯一可将一种工作变成另一种工作的部件, 例 如, 即日起可与喷水割机相连, 它在汽车生产线上被用于切割板边。也可要求机 器人将零件安放到磁盘中, 在这简单的过程中, 改变了机器人端部执行件, 该机 器人就可以用于其它应用场合, 端部执行件得变更以及机器人的再编程序可使该 系统具有很高的柔性。

机器人传感器

尽管机器人有巨大的能力,但很多时候却比不过没有经过一点训练的工 人。例如, 工人们能够发现零件掉在地上或发现进料机上没有零件, 但没有了传 感器, 机器人就得不到这些信息, 及时使用最尖端的传感器, 机器人也比不上一 个经验丰富的

工人, 因此, 一个好的机器人系统的设计需要使用许多传感器与机 器人控制器相接,使其尽可能接近操作工人得感知能力。

机器人技术最经常使用的传感器分为接触式的与非接触式的。接触式传感 器可以进一步分为触觉传感器、力和扭矩传感器。触觉或接触传感器可以测出受 动器端与其他物体间的实际接触, 微型开关就是一个简单的触觉传感器, 当机器 人得受动气端与其他物体接触时, 传感器是机器人停止工作, 避免物体间的碰撞, 告诉机器人已到达目标;或者在检测时用来测量物体尺寸。力和扭矩传感器位于 机器人得抓手与手腕的最后一个关节之间, 或者放在机械手得承载部件上, 测量 反力与力矩。力和扭矩传感器有压电传感器和装在柔性部件上的应变仪等。非接触传感器包括接近传感器、视觉传感器、声敏元件及范围探测器等。接近传感器和标示传感器附近的物体。例如, 可以用涡流传感器精确地保持与钢 板之间的固定的距离。最简单的机器人接近传感器包括一个发光二极管发射机和

一个光敏二极管接收器, 接收反射面移近时的反射光线, 这种传感器的主要缺点 是移近物对光线的反射率会影响接收信号。其他得接近传感器使用的是与电容和 电感相关的原理。

视觉传感系统十分复杂, 基于电视摄像或激光扫描的工作原理。摄像信号 经过硬件预处理, 以 30帧至 60帧每秒的速度输入计算机。计算机分析数据并提 取所需的信息,例如,物体是否存在以及物体的特征、位置、操作方向,或者检 测元件的组装及产品是否完成。

声敏元件用来感应并解释声波, 从基本的声波探测到人们连续讲话的逐字 识别, 各种声敏元件的复杂程序不等, 除了人机语音交流外, 机器人还可以使用 声敏元件控制弧焊, 听到碰撞或倒塌的声音时阻止机器人的运动, 预测将要发生 的机械破损及检测物体内部缺陷。

还有一种非接触系统使用投影仪和成像设备获取物体的表面形状信息或 距离信息。

传感器有静态探测与闭环探测两种使用方法。当机器人系统的探测和操作 动作交替进行时, 通常就要使用传感器, 也就是说探测时机器人不操作, 操作时 与传感器无关, 这种方法被称为静态探测, 使用这种方法, 视觉传感器先寻找被 捕捉物体的位置与方向,然后机器人径直朝那个地点移动。

相反, 闭式探测的机器人在操作运动中, 始终受传感器的控制, 多数视觉传感器 都采用闭环模式, 它们随时监测机器人的实际位置与理想位置间的偏差, 并驱动 机器人修正这一偏差。在闭环探测中,即使物体在运动,例如在传送带上,机器 人也能抓住它并把它送到预定位置。

Robots and robot sensor Introduction Industrial robot and its operation is the subject of this article.Industrial robots are used in manufacturing environment as a tool to increase productivity.It can be used to undertake routine, tedious assembly line work, or the implementation of those workers may be hazardous work.For example, in the first generation of industrial robots, there were a nuclear power plant is for the replacement of fuel rods.Workers engaged in this work may be exposed to harmful amounts of radiation in the next.Industrial robots can operate in the assembly line-to install small-scale components, such as electronic components mounted on circuit board.To this end, workers from the tedious task of this routine operation freed.The robot can be programmed to remove the bomb detonators for the disabled in our community services and play a role in many applications.Robot arm can be seen as the end of the implementation of tools, sensors, and / or jaws to move to a predetermined position of a machine.When the robot reaches the position, it will perform a task.The task may be welded, sealed, mechanical loading, mechanical unloading, or many assembly work.In addition to programming, and open

and close the system, the general, not require the participation of people will be able to complete such work.Robotics Glossary Robot is a reprogrammable multifunctional manipulator that can be programmable motion moving parts, materials, tools or special devices to perform a different task.By the following paragraphs of this definition may lead to other definitions were described, which provides a complete system for the robot itself.Location is pre-programmed robot must follow in order to complete the work and the way through.A point in these locations, the robot will stop and perform some operations, such as assembling parts, painting or welding.These pre-programmed robot position is stored in the memory device to continue operation for later use.In addition, when job requirements change, the only other programming data and these can be modified pre-programmed locations.Therefore, precisely because of the characteristics of this program, an industrial robot and one can store data, and can recall and edit the computer is very similar.Robot is a robot arm, which allows the robot pitch, stretching and rotating.This action is provided by the robot axis, mechanical axis, also known as robot hand of freedom.A robot can have 3-16 axis.In my later, the term degrees of freedom and a total number of robot axes associated.Tools and not within the robot gripper itself, which is mounted on the robot arm end attachment.With the end of the robot arm connected to these attachments, the robot can lift parts, spot welding, painting, welding, drilling, deburring, the request can also point to various types of tasks.Robot system can also control the operation of the robot's work unit.Robotic work cell is a general environment in the environment, the robot must perform the tasks entrusted to it.The unit can accommodate the controller, the robot manipulator, working platforms, safety devices, or conveyor.Robot to carry out all the equipment needed for the work are included in this unit of work.In addition, the signal from the external device to communicate with the robot, so that you can tell the robot when it is part of the assembly, pick up the parts or the parts to the unloading conveyor.Basic components Robotic system has three basic components: the robot, controller and power source.In some robot system can be seen in the first four components, end of the implementation of parts, these parts will be described in the following sections.Manipulator Robot bear robot system manual work, which consists of two parts: the mechanical parts and is connected to appendages.There is also a robot appendage connected to the base.The base of the robot work area is usually fixed in the ground.Sometimes, the base can be moved.In that case, the base is installed to the rail so that the robot can move from one place to another.For example, a robot can work for a few machine tools, loading and unloading for each machine.As mentioned earlier, the appendage extending from the base of the robot.The attachment is a robot arm.It can be a linear movable arm, it can be a hinged arm.Articulated arm, also known as articulated arm.Adjunct manipulator can provide a variety of sports-axis robot.The shaft is connected with the fixed base, which base has been tightened to the rack.This rack can ensure that the robot is in a position to maintain.Ends of the arm connected to a wrist.The axis of the wrist and wrist flange by additional components, with the flange of the wrist, the robot according to the different users can work in different tools installed on the wrist.Axis allows the robot manipulator in a certain area implementation.As mentioned earlier, the region known as the robot work unit, and its scale and size of the corresponding robot.When the robot's physical size increases, the size of the unit of work must also increase.Mechanical hand movements by the driver, or drive system control.Drive or shaft drive system allows the movement in the work unit, drive system using electric, hydraulic or pneumatic power.Drive the energy emitted from a variety of mechanical drive into mechanical power.These drives are joined together by a mechanical linkage.The linkage in turn drive the various robot axes.Mechanical linkage from the sprocket body, composed of gears and ball screws.Controller Robot controller is running in the heart.After the memory controller stores used for the pre-programmed information, control peripherals, to communicate it with the factory computer to make the production of constantly updated.Controller used to control the manipulator motion and the outer parts of the work unit.Staff can use the box to teach hand-delivery actions programmed into the robot controller.This information can be stored in the controller's memory for later recall using the device.Robot controller stores all program data.It can store several different programs, and they can be in any program to be edited.May also request the work unit controller and peripheral devices to communicate.For example, the controller has an input line, the input line can be identified when a mechanical process to complete.When the mechanical cycle is complete, the input line is connected, it will place orders for the controller to the robot manipulator to pick up the processing of finished parts.Then, the robot then picked up a new part and it is placed into the machine, then, the controller send a signal to the machine to get it started operation.Mechanical manipulation of the drum controller can be constituted, the work place by order of the drum operation.The controller for a very simple robot system.Seen in most of the robot system controller is a very complex device, which reflects the modern electronic science.In other words, they are manipulated by the micro-information processor.These micro-information processors instead of 8 bits, 16 bits of information that is 32-bit processors.This feature allows the controller to run with very good flexibility.Controller can send electronic signals through the communication line to issue with the mechanical hand signals to communicate with the axis of the robot manipulator and controller, this two-way communication between the location and operation makes the system constantly revised and updated to maintain the state may The controller can also control the robot wrist in the end installed any tools.There are different controller computers and factory to carry out the task of communication, the communication network will enable the robot to become computer-aided manufacturing(CAM part of the system.According to the basic definition, the robot is a multi-function can be re-programmed robot.Therefore, the controller must include some form of memory storage, to micro-processor-based information systems are often associated with solid-state

memory device with the operation.These memory devices can be magnetic bubbles, random access memory device, soft plastic disk or tape.Each memory storage device programming information can be stored for later recall using the.Power source Source of power to the controller and the robot was powered device, there are two types of robot power supply system.Controller for a class of power is power to run the exchange point, and the other is used to drive the robot axes.For example, if the robot manipulator controlled by a hydraulic or pneumatic device, the control signal is sent to these devices to make the robot movement.Each robot systems require power to drive the robot, this source of power either by hydraulic power, pneumatic power source, power source can also be provided by electricity, the power source is a unit of work the robot parts and equipment in the total part.When the hydraulic power source with and connected to the base manipulator, hydraulic pressure source to produce the hydraulic fluid, the fluid transport of the control components to the robot, so the robot base rotated around the axis.Pressure air is fed to the robot, the axis along the track in a straight line, the source can also be connected to such a pneumatic drill, it can provide power for the drill rotation.Under normal circumstances, can be obtained from the factory air supply station for the source and make adjustments, and then enter it in the axis manipulator.AC motor type can also be a DC-style.Controller sends out pulses of the signal was sent to the robot motors.These pulses provide the necessary instructions for the motor information to enable the robot in the robot base rotation.The three-axis robot for power systems either require the use of feedback control systems, this system will continue to position data for each axis of feedback to the controller.Each robot system not only need power to start the robot axis, also need power to drive the controller, this dynamic manufacturing environment, the power source can provide.Implementation of end pieces In most applications where the robot to see implementation of end pieces are connected to the robot wrist flange of a device, end pieces can be used in the production areas of the

implementation of many different occasions, for example, it can be used to pick up parts, used for welding, or for painting, the implementation of parts for the robot end system provides the flexibility of the robot must run.Usually designed to meet the end of the implementation of pieces of the robot users.These components can robot manufacturer or owner of manufacturing robot system.The implementation of the system end the only thing the robot can be a work into another working parts, for example, are available from the cutting machine is connected with the water, which is used in the automotive production line cutting edge.May also request the robot placed the parts to disk, in this simple process, change the end of the implementation of parts of the robot, the robot can be used for other applications, the implementation of end pieces may change, and then the robot programmed allows the system to have high flexibility.Robot Sensor Although the robot has great ability, but often than not with a little practice, but the workers.For example, workers can find parts that fall to the ground or no parts feeder, but not the sensor, the robot will not get this information in a timely manner using the most sophisticated sensors, the robot is smaller than an experienced worker Therefore, a good robot system design requires many sensor and robot controller using the phase, it was as close as possible operative awareness.The most frequently used robotics sensors into contact with the non-contact.Contact sensors can be further divided into tactile sensors, force and torque sensors.Tactile or contact sensors can be measured by the drive-side and the actual contact between other objects, micro-switch is a simple tactile sensor, the robot may be angry when the client contact with other objects, the sensor is the robot to stop work and avoid objects between collisions, tell the robot has reached the goal;or when used to measure the size of objects detected.Force and torque sensors in the robot gripper and wrist was the last joint, or between the parts on the robot to carry a measured reaction force and torque.Force and torque sensors are mounted on the flexible piezoelectric sensors and strain gauges on the parts.Non-contact sensors include proximity sensors, vision sensors, sound detectors, sensitive components and scope.Proximity sensors and labeling of objects near the

sensor.For example, eddy current sensor can be used to accurately maintain a fixed distance between the plates.The most simple robot proximity sensors including a light-emitting diode and a photodiode receiver transmitter, receiver reflector closer to the reflection of light, the main disadvantage of this sensor is closer to the object reflectance of light will affect the received signal.The other was close to the sensor using a capacitance and inductance associated with the principle.Visual sensing system is very complex, based on the TV camera or laser scanner works.Video signal through the hardware pretreatment to 30-60 per second input into the computer.Computer analysis of the data and extract the required information, for example, the existence of objects and object features, location, operating direction, or components of the assembly and product testing is complete.Sound sensitive devices used to sense and interpret sound waves, sound waves detected from the basic people recognize continuous speech, word for word, all kinds of sound ranging from sensitive components of the complex procedures, in addition to human-computer voice communication, the robot can also use the sound sensitive devices control of arc welding, I heard the sound of collision or collapse of the movement to stop the robot to predict the mechanical damage will occur and the detection of objects within the defects.There is also a non-contact systems for projector and imaging the surface of the object shape information or distance information.Static detection and closed-loop sensor probe used in two ways.When the detection and operation of the robot system moves alternately, it is usually necessary to use sensors that detect when the robot is not operating, the operation has nothing to do with the sensors, this method is called static detection, using this method, visual Find the sensor captured the first position and orientation of objects, and then the robot moves straight to the site.In contrast, closed manipulation and motion detection robot, always under the control of sensors, vision sensors are used the majority of closed-loop mode, which monitor the robot's actual position at any time and the deviation between the ideal position, and drive the robot fix this error.In the closed-loop detection, even if the object

in motion, for example, the conveyor belt, the robot can grasp it and send it to the desired location.

第四篇:外文翻译——使用远程网络控制系统的三轴机器人

使用远程网络控制系统的三轴机器人

Min-Chie Chiu, Tian-Syung Lan, Ho-Chih Cheng 自动控制工程系,中州技术学院,彰化,台湾,中国 宇达商业科技大学资讯管理系,苗栗县,台湾,中国

摘要 对于石油行业,在有发生瓦斯爆炸危险的工作区使用防爆设备以降低风险,如空气驱动装置,这对于避免爆炸是必不可少的。此外,使用一个可视化的监测系统和网络的远程操作的机器人,以达到节省人力的目的。然而,要克服昂贵的人力成本的缺点和提高防爆区域的安全,提出了使用远程网络控制一个三轴机器人的系统控制。在本文中,三轴的机器人可以经由USB协议被在线监视。此外,它也可以通过点击客户端PC上的VB接口的命令,利用TCP/ IP协议远程操作。因此,远程控制三轴机器人不仅能在严重和危险的情况下为人们工作,而且还可以降低人力成本。

关键词:三轴机器人,远程网络监控

1.简介

在现代世界发展的新趋势,机器人开始感觉到他们的存在。为了提高这个过程,并减少不必要的人力,各种工业机器人已被广泛开发[1]。传统的机器人已被禁止在爆炸危险区使用电机驱动。为了克服这个缺点,需要一个新的设计要求的防爆电机[2]。但是,它是非常昂贵的。因此,在石油工业中为避免引起爆炸的火花,空气驱动装置对于防止爆炸是必要的[3,4]。目前,各种机器人已被提出,但是他们缺乏远程机器人和用户之间的交互性。为了在危险的工作区手动操作机器人执行特定的工作,一个空气系统驱动的远程控制机器人是非常重要的。在本文中,三轴机器人配备一个网络摄像头,它可以通过USB协议进行在线监视。显然,远程控制三轴机器人不仅可以为人们在动荡和危险的情况下工作,还可以降低人力成本。因此,一个基于PC的控制系统使用VB在一个服务器电脑和客户端PC通过RS232/RS485协议建立接口。2.基于PC的远程控制系统

用于减少人力的工业加工的自动化系统是随处可见。正如图1中,使用两个VB经由网络接口(一个服务器中的PC和另一个在客户端中的PC)和Web摄像头已建立的远程三轴机器人系统。正如在图2中所示,施加两种系统模量(7060D和7520)中的远程监视/控制系统。由于RS232协议传送的距离超过十五米时信号会产生严重的衰减,一个新建议的协议(RS485)在长距离传输时信号衰减的影响是微不足道的[5,6]。在这里,7520是一个从RS232—RS485协议的转换设备[7,8]。通过RS232/RS485转换器从服务器PC发出的命令将被发送到其他模量。电磁控制阀的硬件如图3所示用于操纵的活塞运动(即机器人臂的运动)使用一个7060D模块的DI/O(数字输入和输出),被发射的信号从一个服务器PC通过一个7520A模块(从RS232,RS285协议转换器)。正如图4所示,电磁控制阀7060模块通过使用一个VB接口的服务器PC上一个RS232/RS485协议触发数字信号输出。控制阀的位置状态会从控制阀(a0, a1, b0, b1, c0, and c1)传送的磁信号被7060模块的数字输入信号检测到。

图1 远程三轴机器人系统

图2 两种模块

图3 三个电磁控制阀相对于活塞的图表

图4 导线连接的模块

正如在图5和图6中所示,用户可以通过点击的移动按钮通过VB 服务器PC和客户端PC上的对话相关的电磁控制阀操纵机器人的手臂。此外,当前位置活塞A,B和C监测的灯光A +,A-,B+,B-,C+,和C-可以在服务器和客户端PC的VB对话框中控制。

气动机械臂在被执行之前,系统在系统的测试图的基础上进行确认。正如在图7中所示,三个电磁控制阀的信号的操纵过程中将被重新检查。此外,也可以通过单击命令按钮,在PC界面上VB的对话框中触发相关的活塞将灯光A +,A-,B+,B-,C+,和C-作出回应。

图5 VB对话框(PC服务器)手动移动机器人的手臂 要监视在线的真实运动的机器人手臂,需要安装一个网络摄像头。机器人手臂的图像将被捕获,并通过一个USB协议发送回至服务器电脑。此外,图像将通过TCP / IP协议被传输到客户端电脑。

图6 VB对话框(PC客户端)手动移动机器人的手臂

3.结果与讨论 3.1 结果

正如在图5和图6上所示,使用两个VB的接口(一个中的服务器的PC和客户端中的pc),通过网络与Web摄像头的一个三轴机器人的远程控制已经成功建立。在客户端电脑可以被操纵,TCP/ IP协议的基础上,应先连接电脑的服务器和在客户端的电脑对话中输入IP地址和运输端口号。要保持的机器人臂的特定移动,6个按钮(x轴正向,x轴向后,y轴转发,y轴向后,z轴的正向,和z轴向后,)对应于服务器电脑VB对话框的上选择机器人的动作。

3.2 讨论

用户可以通过服务器PC和客户端PC操纵机器人手臂。VB界面所示的机器人手臂(活塞的位置的电磁信号)的状态将通过TCP / IP协议被发送到PC客户端。点击在客户端PC的命令,也将被发送到服务器的PC导致的电磁控制阀的动作,从而通过切换空气路径控制所述活塞的活塞运动。同时,活塞的位置信号将被转换成的灯光A +,A-,B+,B-,C+,和C-显示在两个VB在PC服务器和客户端的对话框上。此外,机器人手臂的图像通过USB协议将被捕获并发送到服务器PC。通过TCP / IP协议图像将从PC服务器传输到PC客户端。4.结论

这证明该远程控制系统控制的空气驱动三轴机器人手臂节省了人力,避免了爆炸,并提高了工业生产过程。传统的机器人已被禁止在危险爆炸区使用电机驱动。此外,另一种用电气马达防爆的设计是昂贵的。因此,为了节省人力,避免发生爆炸的危险,同时,降低成本费用,使用空气驱动的机器人手臂是必要的。空气驱动的机器人在无火花化学过程中,并使用VB对话可以安全地和远程操纵,它通过RS232/RS485协议,利用电磁控制阀,以触发一个空气驱动的活塞。此外,通过经由USB协议的监控机器人臂运动的图像发送到服务器电脑。此外,机器人运动的图像将通过TCP / IP协议被转发到客户端电脑机。在客户端PC的用户也可以在客户端PC使用VB界面通过TCP / IP协议操纵机器人运动。

因此,应当指出,如果在危险的工作环境中进行操作时,使用远程网络监视/控制系统控制空气驱动的机械臂,工人/植物和工业过程的安全和效率将得到改善。

5.致谢

作者感谢财政支持这个项目(CCUT-AI-96-AC02)。笔者感谢匿名审稿人友情提供的建议和意见,以改进这项工作。

6.参考文献

[1] M.C.Chiu, L.J.Yeh and Y.C.Lin, “The Design and Application of a Robot ic Vacuum Cleaner,”Journal of Information & Optimization Sciences, Vol.30, No.1, 2009, pp.39-62.[2] H.A.Akeel and A.J.Malarz, “Electric Robot for Use in a Hazardous Location,” United States Patent 4984745, 2002.[3] Users’ Guidebook for Explosion Protection Electric Facility, Guildline, RIIS-TR-94-2, National Institute of Industrial Safety, 1994.[4] M.-R.Lin and C.-Y.Chen, “Applications of Inherently Safer Design on Industrial Processes,” Chemical Engineering, Vol.47, No.1, 2000, pp.41-51.[5] M.C.Chiu, “An Automatic Thermal Control on Green-house Using Network Remote Controlling System,” Journal of Applied Sciences , Vol.10, No.17, 2010, pp.1944-1950.[6] M.C.Chiu,“A Multi-Function Aquarium Equipped with Automatic Thermal Control/Fodder-Feeding/Water Treat-ment Using Network Remote Controlling System,” Information Technology Journal , Vol.9, No.7, 2010, pp.1458-1466.[7] M.C.Chiu, “The Study of Remote Network Monitoring and Controlling System on Thermal Procedure,” in: Y.-L.Chang-Hwa and C.-H.Chai-Ialley, Eds., The Proceedings of 2008 Academic Joint Venture, 2008.[8] M.C.Chiu, H.C.Cheng and M.J.Hsu, “The Study of Remote Network Monitoring and Controlling System on Gas-Driven Robotic,” The Proceedings of Mechanics, Light, and Electricity, San-Johns Technical University, Taipei, 2008.A Three-Axis Robot Using a Remote Network Control System

Min-Chie Chiu, Tian-Syung Lan, Ho-Chih Cheng Department of Automatic Control Engineering, Chungchou Institute of Technology,Changhua, Taiwan, China

Department of Information Management, Yu Da University, Miaoli, Taiwan, China

E-mail : tslan888@yahoo.com.tw

Received August 7 , 2010;revised October 8 , 2010;accepted October 18 , 2010

Abstract For the petroleum industry, to reduce the risk of a gas explosion in dangerous working areas, the use of explosion-proof equipment such as air-driven devices which are free from explosions becomes essential.Moreover, for the purpose of saving manpower, a remote operation using a robot via a visual monitoring system and a network is used.However, to overcome the drawback of costly manpower and to improve safety in explosion-prone zones, a three-axis robot using a remote network control system is proposed.In this paper, the three-axis robot can be monitored on line via the USB protocol.Furthermore, it also can be remotely manipulated via the TCP/IP protocol by clicking the command of the VB interface on the client pc.Consequently, the remote-control three-axis robot can not only work for people in severe and dangerous circumstances but also can reduce the cost of manpower.Keywords: Three-Axis Robot, Remote Network Monitoring

1.Introduction

As new trends in the modern world evolve, robots begin to make their presence felt.In order to improve the process and reduce unnecessary manpower, various industrial robots have been widely developed [1].Traditional robot driven by electrical motor used in a dangerous explosion zone has been prohibited.To overcome the drawback, a new design of explosion proof for an electrical motor is required [2].However, it is extremely expensive.Therefore, to avoid explosions caused by sparks in the petroleum industry, an air-driven device which is explosion free is necessary [3,4].Currently, various robots have been presented;however, they lack remote interactivity between the robot and the user.In order to manually operate a robot to execute a specific job in a dangerous working area, a remote-control robot system driven by air is vital.In this paper, the three-axis robot equipped with a web camera, which can be monitored online via the USB protocol, is established.Obviously, the remote-control three-axis robot not only can work for people in volatile and dangerous circumstances but also can lower the cost of manpower.Consequently, a PC-based control system is constructed using a VB interface in both a sever pc and a client pc via the RS232/RS485 protocol.2.A PC-Based Remote Controlling System

Automation systems used in industrial processing to reduce manpower are seen everywhere.As indicated in Figure 1, a remote three-axis robot system using two VB interfaces(one in the sever pc and the other in the client pc)via a network and a web camera has been established.As indicated in Figure 2, two kinds of system modulus(7060D and 7520)are applied in the remote monitoring/control system.Because of the serious decay of the signal for a RS232 protocol traveling over a distance of fifteen meters, a new protocol(RS485)in which the effect of signal decay is trivial for long-distance transportation is recommended [5,6].Here, the 7520 module is a protocol transfer device from RS232 to RS485 [7,8].A command emitted from the sever pc will be sent to other modulus via the RS232/RS485 converter.The hardware of the electromagnetic control valve shown in Figure 3 is used to manipulate the piston motion(i.e., the motion of the robotic arm)using a 7060D module’s DI/O(digital input and output)that is emitted from a sever pc via a 7520A module(a protocol translator from RS232 to RS285).As indicated in Figure 4 , the electromagnetic control valve will be triggered by the digital output signal of the 7060 module via a RS232/RS485 protocol using a VB interface on the sever pc.The status of the piston positions will be also detected by the digital input signal of the 7060 module transmitted from the magnetic signals(a0, a1, b0, b1, c0, and c1)of the pistons.Figure 1.A remote three-axis robot system.Figure 2.Two kinds of modulus.Figure 3.The diagram of the pistons with respect to three electromagnetic control valves.As indicated in Figures 5 and 6 , the user can manipulate the robot’s arm by clicking the movement button to actuate the related electromagnetic control valve via the VB dialogue on both the pc sever and the pc client.Moreover, the current position of pistons A, B, and C will be monitored by the lights of A+, A–, B+, B–, C+, and C– in the VB dialogues in pc server and client.Before the gas robotic arm is performed, the system confirmation is carried based on a system testing diagram.As indicated in Figure 7 , the signals of three electromagnetic control valves will be rechecked during the manipulating process.Besides, the related piston triggered by clicking the command button in the VB dialogue will also be responded to the lights of A+, A–, B+, B–, C+, and C– in pc’s interface.To monitor the real motion of robotic arm online, a web camera is installed.The image of the robotic arm will be caught and sent back to the sever pc via a USB protocol.Moreover, the image will be transmitted to the client pc via the TCP/IP protocol.Figure 4.The wire connections of the modulus.3.Results and Discussion

3.1.Results

As indicated in Figures 5 and 6 , the remote control of a three-axis robot using two VB interfaces(one in the sever pc and the other in the client pc)via a network and a web camera has been established successfully.Before the client pc can be manipulated, based on the TCP/IP protocol, the sever pc shall be connected first by inputting the IP address and transp ort number in the client’s pc dialogue.To keep the

Figure 5.The manual movement of the robot’s arm on the VB dialogue(pc sever).Figure 6.The manual movement of the robot’s arm on the VB dialogue(pc client).Figure 7.A system testing diagram for a remote-controlled three-axis robotic arm.robotic arm in a specific motion, six buttons(x-axis forward, x-axis backward, y-axis forwarding, y-axis backward, z-axis forward, and z-axis backward,)of the robot’s motion will be selected on the VB dialogue of the sever pc.3.2.Discussion

The user can manipulate the robotic arm in both the pc sever and the pc client.The status of the robotic arm(the electromagnetic signal of the piston’s location)shown in the VB interface will be transmitted to the pc client via a TCP/IP protocol.The command clicked in the pc client will be also transmitted to the pc sever to actuate the electromagnetic control valve so as to control the piston motion of the piston by switching the air path.Meanwhile, the signals of pistons’position will be translated as the lights of A+, A–, B+, B–, C+, and C– shown in two VB dialogues in pc server and client.Moreover, the image of the robotic arm will be caught and sent to the pc sever using the USB protocol.The image will be then transmitted from the pc sever to the pc client via the TCP/IP.4.Conclusions

It has been shown that a remote control system dealing with an air-driven three-axis robotic arm reduces manpower, avoids the explosion, and improves the industrial process.Traditional robot driven by electrical motor used in a dangerous explosion zone has been prohibited.Moreover, an alternative design of explosion proof for an electrical motor is expensive.Therefore, in order to save manpower, avoid the danger for explosion simultaneously, and to cost down the f ee of machine, an air-driven robotic arm is compulsory.The air-driven robot provides no spark in the chemical process and can be safely and remotely manipulated using a VB dialogue to trigger an air-driven piston, which is actuated by an electromagnetic control valve via the RS232/RS485.Additionally, a visual monitoring of the robotic arm is performed by transmitting the image of the robotic motion to the sever pc via the USB protocol.Moreover, the image of the robotic motion will be forwarded to the client pc via the TCP/IP protocol.The user at the client pc can also manipulate the robotic motion using a VB interface at the client pc via the TCP/IP protocol.Consequently, it is noted that both the safety of workers/plant and the efficiency of the industrial process will be improved if an air-driven robotic arm in conjunction with a remote network monitoring/control system is applied when operating in a dangerous work environment.5.Acknowledgements

The authors acknowledge the financial support of the Project(CCUT-AI-96-AC02).The author would like to thank the anonymous referees who kindly provided the suggestions and comments to improve this work.6.References

[1] M.C.Chiu, L.J.Yeh and Y.C.Lin, “The Design and Application of a Robot ic Vacuum Cleaner,” Journal of Information & Optimization Sciences, Vol.30, No.1, 2009, pp.39-62.[2] H.A.Akeel and A.J.Malarz, “Electric Robot for Use in a Hazardous Location,” United States Patent 4984745, 2002.[3] Users’ Guidebook for Explosion Protection Electric Facility, Guildline, RIIS-TR-94-2, National Institute of Industrial Safety, 1994.[4] M.-R.Lin and C.-Y.Chen, “Applications of Inherently Safer Design on Industrial Processes,” Chemical Engineering, Vol.47, No.1, 2000, pp.41-51.[5] M.C.Chiu, “An Automatic Thermal Control on Green-house Using Network Remote Controlling System,” Journal of Applied Sciences , Vol.10, No.17, 2010, pp.1944-1950.[6] M.C.Chiu,“A Multi-Function Aquarium Equipped with Automatic Thermal Control/Fodder-Feeding/Water Treat-ment Using Network Remote Controlling System,” Information Technology Journal , Vol.9, No.7, 2010, pp.1458-1466.[7] M.C.Chiu, “The Study of Remote Network Monitoring and Controlling System on Thermal Procedure,” in: Y.-L.Chang-Hwa and C.-H.Chai-Ialley, Eds., The Proceedings of 2008 Academic Joint Venture, 2008.[8] M.C.Chiu, H.C.Cheng and M.J.Hsu, “The Study of Remote Network Monitoring and Controlling System on Gas-Driven Robotic,” The Proceedings of Mechanics, Light, and Electricity, San-Johns Technical University, Taipei, 2008.

第五篇:高性能的PLC控制步进电机在机器人机械手外文翻译

高性能的PLC控制步进电机在机器人机械手

摘要:在最近几年,一个完整的多轴数字控制系统已经研制成功。本文

介绍了一个用工业可编程逻辑控制(PLC)来控制五轴转子位置,方向和速度,从而减少电路元件的数量,降低成本和提高可靠性。一些实验结果表明是由控制器的高性能和功能得来的。关键词:

PLC,机器人和步进电机。

1、简介

运动控制的主要目的是设计控制系统能实现真正的自动运动机器。这种性能必须达到优化机械,即生产力实现更高的工作速度,尽量减少能源要求,减少了使机械磨损的因素(1)。一个完全数字化的体系来说通过对基于总线控制系统的最大的灵活性应用系统提供高性能的伺服控制是必需的。在大多数情况下,PLC是一种固态装置,设计工作在嘈杂的工业环境并执行所有的逻辑功能,早先就实现了对鼓机电继电器开关,机械定时器和计数器的使用(2)。步进电机,通常用于微型电子计算机,现已广泛应用于机器人(3)。在本文中,我提出了各轴包含一个由plc控制的步进电机的五档速度控制轴机器人。(SLC 150)

2、可编程控制器

PLC,像一台电脑,采用了微处理器芯片进行处理和存储芯片来存储方案。PLC的基本结构如图1所示,输入设备是监控机器或被控制的过程的传感器。这些传感器的状态(ON或OFF)被输送到PLC控制器。取决于这些传感器输入状态的PLC的输出可能切换到活力马达,继电器,阀门等....,来控制机器或过程。SLC150的PLC[2]有10个输入,编号从1到10的,然后再从10数到1的IO当作 IO1的输入。SLCI50有12个输出编号从11至16,和111至116。

3、机器人的描述、图2显示了一个典型的机器人(4)。它由一英寸上有8-32螺纹孔的12英寸至14英寸大小的底板和炮塔——一个周围配备了传送带的旋转平台(它的每一英寸的中心有8-32螺纹孔)。这些孔配合安装在机器人的手臂和手腕马达的相对于其中心的不同地;,炮塔钳,可连接炮塔和炮塔轴;炮塔装载,可连接底板唇,覆盖炮塔马达,和支撑炮塔轴和炮塔。炮塔轴是用来保留炮塔和炮塔内的炮架集合,炮塔轴承(有两个)的

呈递担保装入举行炮塔轴,推力 轴承安装在炮塔的轴上,以适应 机器人的重量,提供平稳和旋转 炮塔,推力垫圈安装在炮塔轴接口的推力轴承的安装和炮塔钳总成(他们是在任的推力轴承一面放置),炮塔齿轮(有二分之一254〜0tha届一,步进电机(五电机),数字编码器,40齿)臂环节,是一个机器人手爪手,提供下巴 位置和动态压缩力信息到控制器。

下载外文翻译--使用语音识别技术控制的焊接机器人工作单元-精品word格式文档
下载外文翻译--使用语音识别技术控制的焊接机器人工作单元-精品.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐